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their environment. In particular, they are not able
use standard input devices of a computer. Most of
the time, they can only handle a single switch de-
vice. As a result, communicating with an AAC sys-
tem consists of typing messages by means of a vir-
tual table of symbols (words, letters or icons)
where the user successively selects the desired
items.

Basically, an AAC system, such dsSASTY
(Trost et al. 2005) oBBYLLE (Schadle et al, 2004),
consists of four components. At first, one finds a
physical input interface connected to the computer.
This device is adapted to the motion capacities of
the user. When the latter must be restricted to a
single switch (eye glimpse or breath detector, for
instance), the control of the environment is reduce
to a mereYes/Nacommand.

Secondly, a virtual keyboard is displayed on
screen. It allows the user to select successivay t
symbols that compose the intended message. In
SBYLLE, key selection is achieved by pointing let-
ters through a linear scan procedure: a cursor suc-
cessively highlights each key of the keyboard.

. The last two components are a text editor (to
1 Introduction: NLP for AAC systems write e-mails or other documents) and a speech

Augmented and Alternative Communicatiorsynthesis module, which is used in case of spoken
(AAC) is a field of research which concerns naturgiommunication. The latest version @&BYLLE
language processing as well as human-machik@rks for French and German, and it is usable with
interaction, and which aims at restoring the con®ny Windows™ application (text editor, web
municative abilities of disabled people with severBrowser, mailer...), which means that the use of a
speech and motion impairments. These people caecific editor is no longer necessary.

be for instance cerebrally and physically handilhe main weakness of AAC systems results from
capped persons or they suffer from a locked-ithe slowness of message composition. On average,
syndrome due to a cerebral apoplexy. Whatever tHiabled people cannot type more than 1 to 5 words
disease or impairment considered, oral communicB€rr minute; moreover, this task is very tiring. The
tion is impossible for these persons who have #se of NLP techniques to improve AAC systems is
addition serious difficulties to control physicallytherefore of first importance.

Abstract

Most current word prediction systems make
use of n-gram language models (LM) to es-
timate the probability of the following word

in a phrase. In the past years there have
been many attempts to enrich such lan-
guage models with further syntactic or se-
mantic information. We want to explore the
predictive powers of Latent Semantic
Analysis (LSA), a method that has been
shown to provide reliable information on
long-distance semantic dependencies be-
tween words in a context. We present and
evaluate here several methods that integrate
LSA-based information with a standard
language model: aemantic cachepartial
reranking and different forms of interpola-
tion. We found that all methods show sig-
nificant improvements, compared to the 4-
gram baseline, and most of them to a sim-
ple cache model as well.
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Figure 1: User interface of ti@&BYLLE AAC system

Two complementary approaches are possible &itempts to integrate part-of-speech information
speed up communication. The first one aims @Fazly and Hirst, 2003) or more complex syntactic
minimizing the duration of each item selectionmodels (Schadle et al, 2004) to achieve a better
Considering a linear scan procedure, one could fprediction. In this paper, we will neverthelessitim
instance dynamically reorganize the keyboard iour study to a standard 4-gram model as a baseline
order to present the most probable symbols at firéb make our results comparable. Our main aim is
The second strategy tries to minimize the numbéere to investigate the use of long-distance seman-
of keystrokes to be made. Here, the system triestto dependencies to dynamically adapt the predic-
predict the words which are likely to occur just aftion to the current semantic context of communica-
ter those already typed. The predicted word is theion. Similar work has been done by Li and Hirst
either directly displayed after the end of the inf2005) and Matiasek and Baroni (2003), who ex-
serted text (a method referred to as “word compl@loit Pointwise Mutual Informatior{PMI; Church
tion”, cf. Boissiére and Dours, 1996), or a listNof and Hanks, 1989). Trnka et al. (2005) dynamically
best (typically 3 to 7) predictions is providedttie interpolate a high number of topic-oriented models
virtual keyboard. When one of these predictions order to adapt their predictions to the current
corresponds to the intended word, it can be salectmpic of the text or conversation.

by the user. As can be seen in figure 1, the iaterf  Classically, word predictors are evaluated by an
of the SBYLLE system presents such a list of mosbbjective metric calledKeystroke Saving Rate
probable words to the user. (ksn):

Several approaches can be used to carry out k
word prediction. Most of the commercial AAC sys- ksr = (1——"] (100 (@D)
tems make only use of a simple lexicon: in this ap- K
proach, the context is not considered.

On the other hand, stochastic language modelswith k, k, being the number of keystrokes
can provide a list of word suggestions, dependingeeded on the input device when typing a message
on then-1 (typically n = 3 or 4) last inserted words. with (k,) and without predictionki = number of
It is obvious that such a model cannot take into acharacters in the text that has been entened,
count long-distance dependencies. There have bdength of the prediction list, usually = 5). As

a
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Trost et al. (2005) and Trnka et al. (2005), we asaantic similarity to a language model (cf. Belle-
sume that one additional keystroke is required fagarda, 1997; Coccaro and Jurafsky, 1998). LSA
the selection of a word from the list and that anodels semantic similarity based on co-occurrence
space is automatically inserted afterwards. Nowfistributions of words, and it has shown to be help
also that words, which have already occurred in tHal in a variety of NLP tasks, but also in the dama
list, will not reappear after the next charactes haf cognitive modeling (Landauer et al, 1997).
been inserted. LSA is able to relate coherent contexts to spe-
The perplexity measure, which is frequentiific content words, and it is good at predictihg t
used to assess statistical language models, proweturrence of a content word in the presence of
to be less accurate in this context. We still pneseother thematically related terms. However, since it
perplexities as well in order to provide compamtivdoes not take word order into account (“bag-of-

results. words” model) it is very poor at predicting their
) _ actual position within the sentence, and it is com-
2 Language modeling and semantics pletely useless for the prediction of function werd

L Therefore, some attempts have been made to inte-
21 Suatistical Language Models grate the information coming from an LSA-based
For about 10 to 15 years statistical language modehodel with standard language models of the n-
ing has had a remarkable success in various NigPam type.

domains, for instance in speech recognition, ma- In the LSA model (Deerwester et al, 1990) a
chine translation, Part-of-Speech tagging, but alseord w; is represented as a high-dimensional vec-
in word prediction systems. N-gram based lartor, derived by Singular Value Decomposition
guage models (LM) estimate the probability of oc(SVD) from a term x document (or a term x term)
currence for a word, given a stringrell preceding co-occurrence matrix of a training corpus. In this
words. However, computers have only recentliramework, a context or histofy (= wy, ... , Wy)
become powerful enough to estimate probabilitiesan be represented by the sum of the (already nor-
on a reasonable amount of training data. Morenalized) vectors corresponding to the words it con-
over, the largen gets, the more important the prob+tains (Landauer et al. 1997):

lem of combinatorial explosion for the probability

estimation becomes. A reasonable trade-off be- o
tween performance and number of estimated events h= Z\Ni (2)
seems therefore to be arof 3 to 5, including so- =1

phisticated techniques in order to estimate the _ _ _
probability of unseen events (smoothing methods), 1 Nis vector reflects the meaning of the preceding
Whereas n-gram-like language models are aQ{%llrea(_jy typed) section, and it has the same dimen-
ready performing rather well in many applicationss,'ona“ty as the term vectors. It can thus _be_ com-
their capacities are also very limited in that thef@red to the term vectors by well-known similarity
cannot exploit any deeper linguistic structurdneasures (scalar product, cosine).
Long-distance syn_tactic relatiqnships are neglectedy Transforming L SA similarities into prob-
as well as semantic or thematic constraints. abilities
In the past 15 years many attempts have been
made to enrich language models with more com- We make the assumption that an utterance or a
plex syntactic and semantic models, with varyinfeXt to be entered is usually semantically cohesive
success (cf. (Rosenfeld, 1996), (Goodman, 200¥ye then expect all word vectors to be close to the
or in a word prediction task: (Fazly and Hirstcurrent context vector, whose corresponding words
2003), (Schadle, 2004), (Li and Hirst, 2005)). wéelong to the semantic field of the context. This
want to explore here an approach based.atent forms the basis for a simple probabilistic model of
Semantic Analysi€Deerwester et al, 1990). LSA: After calculating the cosine similarity for
each word vectof with the vectorh of the cur-

rent context, we could use the normalized similari-
Several works have suggested the useadént ties as probability values. This probability distri
Semantic Analysi§.SA) in order to integrate se- tion however is usually rather flat (i.e. the dynam
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range is low). For this reason a contrasting (o1-te 2.4  Density as a confidence measure
perature) factoy is normally applied (cf. Coccaro Measuring relation quality in an LSA space,

and Jurafsky, 1998), which raises the cosine {®andmacher (2005) pointed out that the reliability

some powery(is normally between 3 and 8). After ¢ ga relations varies strongly between terms. He
normalization we obtain a probability distribution; ;o5 showed that the entropy of a term does not

which can be used for prediction purposes. It isyrrelate with relation quality (i.e. number of se-

calculated as follows: mantically related terms in an LSA-generated term
_ cluster), but he found a medium correlati®redr-

(cos@,ﬁ) —-cos. (ﬁ))/ soncoeff. = 0.56) between the number of semanti-

P..(w|h) ————"—'75 (3 cally related terms and the average cosine similar-

Zk (Cos@vk,h) - COSm.n(h)) ity of the m nearest neighbors (density). The closer

the nearest neighbors of a term vector are, the mor
w; is a word in the vocabulary, h is the current corprobable it is to find semantically related terros f

text (history)vy andh are their corresponding vec-the given word. In turn, terms having a high dgnsit
are more likely to be semantically related to a&giv

tors in the LSA space; C,Qﬁ(qﬁ) returns the lowest ¢gntext (i.e. their specificity is higher).
cosine value measured ftr). The denominator We define the density of a tenm as follows:
then normalizes each similarity value to ensuré tha

2. R, h) =1. D, (w) = [} cos@@, NN, () (@
Let us illustrate the capacities of this model by m 5=

giving a short example from the French version of _ _ _ _
our own LSA predictor: In the following we will use this measure (with

m=100) as a confidence metric to estimate the reli-
Context “Mon pére était professeur en mathématiquesability of a word being predicted by the LSA com-
et je pense qué ponent, since it showed to give slightly better re-

("My dad has been a professor in mathematsylts in our experiments than the entropy measure.
ics and | think that ")

3 Integrating semantic information

Rank Word P

1. | professeu(professor) 0.0117 In the following we present several different meth-

g- math?mg“qut,e(? ”l‘a“}’%;“a“ﬁf,)) 8-8;3; ods to integrate semantic information as it is pro-
. | enseignéparticiple of ‘taug . : :

4 | enseignaiftaught) 0.0053 vided by an LSA model into a standard LM.

5. | mathematicierf'mathematician’) 0.0049 1 nti hem

6. | pére(‘father’) 0.0046 3. Semantic cache model

7. | mathématiqu¢'mathematics’) 0.0044 Cache (or recency promotion) models have shown

g- 9f?”d'nge(‘_gfa“d";athe") g-ggg: to bring slight but constant gains in language mod-
. | scienceg'‘sciences’ . ; ; ;

10 T enseignantteacher) 0.0032 _ellng (Kuhn and De Mori, 1990). The underlying

ea is that words that have already occurred in a
ext are more likely to occur another time. There-
fore their probability is raised by a constant g+ e
d)nentially decaying factor, depending on the posi-

words are semantically related to the context, th n of the element in the cache. The idea of a de-

should therefore be given a high probability of océizwr?e%aczhgefugggg norlwstLheatcz)Z?ngr(s)ibr;?itl):r%/ 0cq)cfrtehe
currence. However, this example also shows the P y

drawbacks of the LSA model: it totally neglects th ;);dhiin th:t C?ggsbﬁi?d (;[P?e\(l)vé)(ESr:gnEg igriiilf;?ld'
presence of function words as well as the syntacti er 13 o 20pwor ds y y
structure of the current phrase. We therefore ne%Imilar to Clarkson .and Robinson (1997), we im-
to find an appropriate way to integrate the informa lemented an exponentially decaying éache of

tion coming from a standard n-gram model and the .
LSA approach. engthl (usually between 100 and 1000), using the

Example 1: Most probable words returned by th
LSA model for the given context.

As can be seen in example 1, all ten predict
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following decay function for a wordk; and its posi- ing to their cosine similarity wittwo. , which is

tion p in the cache. less than 1 (but larger thah
fa(wi,p) is the decay factor for the current posi-
[sz tion p of w; in the cache, calculated as shown in
f,(w,p)=e ° (5) equation (5).

o= 3 ifp<uand o=1/3if p= 1 The func- 3.2 Partial reranking

tion returns O ifw; is not in the cache, and it is 1 if The underlying idea of partial reranking is to re-

p = 1. A typical graph for (5) can be seen in figure@dard only the best candidates from the basic lan-
(2). guage model for the semantic model in order to

prevent the LSA model from making totally im-
plausible (i.e. improbable) predictions. Words be-
, ing improbable for a given context will be disre-
! garded as well as words that do not occur in the
g f semantic model (e.g. function words), because LSA
g0 II is not able to give correct estimates for this grou
l

5 e of words (here the base probability remains un-
o changed).
N —— For the besh candidates their semantic probability

is calculated and each of these words is assigmed a

additional value, after a fraction of its base prob

ability has been subtractedg¢kpotstrategy).

or a given context we calculate the ordered set
BEST,(h) = <wy, ... , wy>, so thatP(wjjh) =

Figure 2: Decay function witp=20 and=300.

We extend this model by calculating for each eIeE
ment having occurred in the context fitsnearest
g P(W,h) ... 2P(wi]h)

LSA neighbors NN, (W,...0), using cosine simi- For eachw; in BEST,(h) we then calculate its
larity), if their cosine lies above a threshéldand reranking probability as follows:

add them to the cache as well, right after the word

that has occurred in the texBfing your friend% _ -

strategy). The size of the cache is adapted accord-PRR(W) = pleosyy, h) D(w) L (Besi(h),w) (7)
ingly (for &, oandl), depending on the number of o _

neighbors added. This results in the following?iS @ weighting constant controlling the overall
cache function: influence of the reranking proceseg W, W ) re-

turns the cosine of the word’s vector and the cur-
P_(w)= Z' BOE_(W_,w) @ (W, p) (6) rent context vecto(w;) gives the confidence
' measure of; andl is an indicator function being

with | = size of the cache? is a constant con- 1, iff wi BEST(h), and 0 otherwise.

trolling the influence of the component (usuglly 3.3  Standard interpolation

0.14); Woec is @ word that has already recently oc-

curred in the context and is therefore added aS][rHerp?Iatl?n |shthte standard way 1o mteti;/\r/?]'He |fn-
standard cache element, wheragsis a nearest ormation from heterogeneous resources. lie for

Neighbor toWoee fedWioee W) returns the cosine a linear combination we simply add the weighted

N g o DY probabilities of two (or more) models, geometric
similarity betweenw,. and W, with coW,.,W)  jnernolation multiplies the probabilities, whichea

> 0 (Rem:w; with co{ W _,W) < 6 have not been weighted by an exponential coefficient{@<1):

cc !

added to the cache). Since{W,W )=1, terms
having actually occurred before will be given full

weight, whereas allv, being only nearest LSA ' _ _
neighbors tav. will receive a weight correspond- P(w) =4 R W) +(@-2)R(w) (8)

Linear Interpolation (LI):
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Geometric Interpolation (Gl): The LSA space was calculated on a 100 million
word corpus fromLe Monde(1996 — 2002). Using

: P(w)*[P(w)*™” the Infomap toolkit’, we generated a term x term
(w) = Z P(w): [P (W)™ ©) co-occurrence matrix for an 80,000 word vocabu-
IERLA sy lary (matrix size = 80,000 x 3,000), stopwords

were excluded. After several pre-tests, we set the
The main difference between the two methods &ze of the co-occurrence window to +100. The ma-
that the latter takes the agreement of two modet$x was then reduced by singular value decomposi-
into account. Only if each of the single models asion to 150 columns, so that each word in the vo-
signs a high probability to a given event will thecabulary was represented by a vector of 150 di-
combined probability be assigned a high value. thensions, which was normalized to speed up simi-
one of the models assigns a high probability andrity calculations (the scalar product of two nor-
the other does not the resulting probability wa! b malized vectors equals the cosine of their angle).

lower. Our test corpus consisted of 8 sections from the
. : . . French newspapédumanité (January 1999, from
34  Confidence-weighted inter polation 5,378 to 8,750 words each), summing up to 58,457

Whereas in standard settings the coefficients aneords. We then calculated for each test set the key
stable for all probabilities, some approaches us#roke saving rate based on a 5-word kstsf and
confidence-weighted coefficients that are adaptemkrplexity for the following settings
for each probability. In order to integrate n-gram
and LSA probabilities, Coccaro and Jurafsky
(1998) proposed an entropy-related confidence 2. 4-gram + decaying cache< 400)
measure for the LSA component, based on the ob- . 4-gram + LSA using linear interpolation
servation that words that occur in many different with A sa = 0.11 (LI)

. . LSA . .
contexts (i.e. have a high entropy), cannot well be
predicted by LSA. We use here a density-based 4. 4-gram + LSA using geometric interpola-
measure (cf. section 2.2), because we found it more tion, with sa = 0.07 (GI).
reliable than entropy in preliminary tests. Foemt 4-gram + LSA using linear interpolation

polation purposes we calcuIaFe the coefficient of and (density-based) confidence weighting
the LSA component as follows: (CWLI).

1. 4-gram LM only (baseline)

) = BID(W), iff D(w) > 0; 0 otherwise (10) 6. 4-gram + LSA using geometric interpola-
' ' tion and (density-based) confidence
, . _ weighting (CWGI).
with S being a weighting constant to control the

influence of the LSA predictor. For all experi- 7. 4-gram + partial rerankingn(= 1000, =
ments, we sefto 0.4 (i.e. (& J; < 0.4), which 0.001)
proved to be optimal in pre-tests. 8. 4-gram + decaying semantic cache

(I = 4000;m= 10;6 = 0.4, 3= 0.0001)

_ Figures 3 and 4 display the overall results in g&2rm
We calculated our baseline n-gram model on a 44 sy and perplexity.

million word corpus from the French daille
Monde (1998-1999). Using th&RI toolkit (Stol- "
cke, 20025 we computed a 4-gram LM over a con;, Infomap Project: http://infomap-nlp.sourceforgelnet

; s All parameter settings presented here are baseesaits of
trolled 141,000 word vocabulary, usingodified extended empirical pre-tests. We used held-outldpreent

Kneser-Neydiscounting (Goodman, 2001), and Weat, sets that have randomly been chosen fromuheanité
applied Stolckepruning (Stolcke, 1998) to reducecorpus.(8k to 10k words each). The parameters hmiag

the model to a manageable sige=(107). sented here were optimal for our test sets. Faoreaof sim-
plicity we did not use automatic optimization teitjues such
as the EM algorithm (cf. Jelinek, 1990).

4 Results

! SRI Toolkit: www.speech.sri.com.
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59,00

58,92 and at such a level, additional gains become hoard t
5650 achieve (cf. Lesher et al, 2002).
58,61 The fact that CWLI performed worse than even
‘ 58,49 5853 ; ; ;
: 58,42 simple LI was not expected, but it can be explained
§8.30 by an inherent property of linear interpolation: If
one of the models to be interpolated overestimates

58,00

oo - - the probability for a word, the other cannot com-
oreo | L ‘ ‘ ‘ ‘ ‘ ‘ pensate for it (even if it gives correct estimates)
dgram Cache Ll Gl CWL cWol Rernk Sem. and the res_ulting probability will be too _high. In_
our case, this happens when a word receives a high
Figure 3: Resultskérs) for all methods tested.  confidence value; its probability will then be over

estimated by the LSA component.

ksrs(%)

58,40 1

. 5 Conclusion and further work
] 1078 Adapting a statistical language model with seman-
2 100 ] 08,1 tic information, stemming from a distributional
s analysis like LSA, has shown to be a non-trivial
& ot 02 problem. Considering the task of word prediction
‘ voc vos : in an AAC system, we tested different methods to
e ’ ,—\ |—| """"" ’_’ integrate an n-gram LM with LSA: A semantic
%0 tgram Cache L Gl | owll | cwel Rerank sem cache mpdel, a_partlal r_eranklng approach, and
only Cache some variants of interpolation.
Figure 4: Results (perplexity) for all methods We evaluated the method_s using two different
tested. measures, the keystroke saving ra&ter)(and per-

plexity, and we found significant gains for all

Using the results of our 8 samples, we performeraethods inc_orporating LSA information, compared
pairedt tests for every method with the baseline 4@ the baseline. In terms &br the most successtul
well as with the cache model. All gains fesr method was confidence-weighted geometric inter-

turned out to be highly significant (sig. level <Polation (CWGI; +1.05%in ks); for perplexity,
0.001), and apart from the results for CWLI, alfhe greatest reduction was obtained for standard as
perplexity reductions were significant as well (sigwe_II as for confidence-weighted geometric interpo-
level < 0.007), with respect to the cache resWits. ation (-9.3% for both). Partial reranking and the
can therefore conclude that, with exception cfemantic cache gave very similar results, despite
CWLI, all methods tested have a beneficial effecih€ir rather different underlying approach. _
even when compared to a simple cache model. The?V€ could not provide here a comparison with
highest gain inksr (with respect to the baseline)Othejr models that make use of distributional infor-
was obtained for the confidence-weighted gedPation, like the trigger approach by Rosenfeld
metric interpolation method (CWGI: +1.05%), the1996), Matiasek and Baroni (2003) or the model
highest perplexity reduction was measured for diresented by Li-and Hirst (2005), basedRwint-
as well as for CWGI (-9.3% for both). All otherWise Mutual Informatior(PMI). A comparison of
methods (apart from IWLI) gave rather similar reIhes_,e similarities with LSA remains to be done.
sults (+0.6 to +0.8% iksr, and -6.8% to -7.7% in _ Finally, an AAC system has not only the func-
perplexity). tion of simple text entering but also of providing
We also calculated for all samples the correl&O9Nitive support o its user, whose communicative
tion betweenksr and perplexity. We measured Abilities might be. totally dependlng on it. There-
Pearsoncoefficient of -0.683 (Sig. level < 0.0001). fore, she or he might feel a strong improvement of
At first glance, these results may not seem ovelf2€ System, if it can provide semantically plausibl
whelming, but we have to take into account tht'edictions, even though the actual gain ksr

our ksr baseline of 57.9% is already rather higinight be modest or even slightly decreasing. For
this reason we will perform an extended qualitative

512



analysis of the presented methods with persodslinek, F. (1990): “Self-organized Language Modets
who use our AAC syste@BYLLE This is one of ~ Speech Recognition”, In: A. Waibel and K.-F. Lee
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tion and Rehabilitation Centref Kerpape, Brit- Kuhn, R. and De Mori, R. (1990). “A Cache-Based
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They appreciate the system not only for communi- Intelligence 12 (6), pp. 570-583.

cation but also for language learning purposes. Landauer, T. K., Laham, D., Rehder, B. and Schreine
Moreover, we intend to make the word predictor M. E. (1997). “How well can passage meaning be de-
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