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Abstract

We address the problem of smoothing trans-
lation probabilities in a bilingual N-gram-
based statistical machine translation system.
It is proposed to project the bilingual tuples
onto a continuous space and to estimate the
translation probabilities in this representa-
tion. A neural network is used to perform the
projection and the probability estimation.

Smoothing probabilities is most important
for tasks with a limited amount of training
material. We consider here the BTEC task
of the 2006 IWSLT evaluation. Improve-
ments in all official automatic measures are
reported when translating from Italian to En-
glish. Using a continuous space model for
the translation model and the target language
model, an improvement of 1.5 BLEU on the
test data is observed.

1 Introduction

The goal of statistical machine translation (SMT) is
to produce a target sentencee from a source sen-
tencef . Among all possible target language sen-
tences the one with the highest probability is chosen:

e
∗ = arg max

e
Pr(e|f) = arg max

e
Pr(f |e) Pr(e)

wherePr(f |e) is the translation model andPr(e)
is the target language model. This approach is
usually referred to as thenoisy source-channel ap-
proach in statistical machine translation (Brown et
al., 1993).

During the last few years, the use of context
in SMT systems has provided great improvements
in translation. SMT has evolved from the origi-
nal word-based approach to phrase-based translation
systems (Och et al., 1999; Koehn et al., 2003). A
phrase is defined as a group of source wordsf̃ that
should be translated together into a group of target
wordsẽ. The translation model in phrase-based sys-
tems includes the phrase translation probabilities in
both directions, i.e.P (ẽ|f̃) andP (f̃ |ẽ).

The use of a maximum entropy approach simpli-
fies the introduction of several additional models ex-
plaining the translation process :

e
∗ = arg max p(e|f)

= arg max
e
{exp(

∑

i

λihi(e, f))} (1)

The feature functionshi are the system models and
theλi weights are typically optimized to maximize
a scoring function on a development set (Och and
Ney, 2002).

The phrase translation probabilitiesP (ẽ|f̃ ) and
P (f̃ |ẽ) are usually obtained using relative frequency
estimates. Statistical learning theory, however, tells
us that relative frequency estimates have several
drawbacks, in particular high variance and low bias.
Phrase tables may contain several millions of en-
tries, most of which appear only once or twice,
which means that we are confronted with a data
sparseness problem. Surprisingly, there seems to be
little work addressing the issue of smoothing of the
phrase table probabilities.

On the other hand, smoothing of relative fre-
quency estimates was extensively investigated in the
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area of language modeling. A systematic compari-
son can be for instance found in (Chen and Good-
man, 1999). Language models and phrase tables
have in common that the probabilities of rare events
may be overestimated. However, in language mod-
eling probability mass must be redistributed in order
to account for the unseenn-grams. Generalization
to unseen events is less important in phrase-based
SMT systems since the system searches only for the
best segmentation and the best matching phrase pair
among the existing ones.

We are only aware of one work that performs a
systematic comparison of smoothing techniques in
phrase-based machine translation systems (Foster et
al., 2006). Two types of phrase-table smoothing
were compared: black-box and glass-box methods.
Black-methods do not look inside phrases but in-
stead treat them as atomic objects. By these means,
all the methods developed for language modeling
can be used. Glass-box methods decomposeP (ẽ|f̃)
into a set of lexical distributionsP (e|f̃ ). For in-
stance, it was suggested to use IBM-1 probabili-
ties (Och et al., 2004), or other lexical translation
probabilities (Koehn et al., 2003; Zens and Ney,
2004). Some form of glass-box smoothing is now
used in all state-of-the-art statistical machine trans-
lation systems.

Another approach related to phrase table smooth-
ing is the so-called N-gram translation model
(Mariño et al., 2006). In this model, bilingual tu-
ples are used instead of the phrase pairs andn-gram
probabilities are considered rather than relative fre-
quencies. Therefore, smoothing is obtained us-
ing the standard techniques developed for language
modeling. In addition, a context dependence of the
phrases is introduced. On the other hand, some
restrictions on the segmentation of the source sen-
tence must be used. N-gram-based translation mod-
els were extensively compared to phrase-based sys-
tems on several tasks and typically achieve compa-
rable performance.

In this paper we propose to investigate improved
smoothing techniques in the framework of the N-
gram translation model. Despite the undeniable suc-
cess ofn-graam back-off models, these techniques
have several drawbacks from a theoretical point of
view: the words are represented in a discrete space,
the vocabulary. This prevents “true interpolation” of

the probabilities of unseenn-grams since a change
in this word space can result in an arbitrary change
of the n-gram probability. An alternative approach
is based on acontinuous representation of the words
(Bengio et al., 2003). The basic idea is to convert
the word indices to a continuous representation and
to use a probability estimator operating in this space.
Since the resulting distributions are smooth func-
tions of the word representation, better generaliza-
tion to unknownn-grams can be expected. Prob-
ability estimation and interpolation in a continuous
space is mathematically well understood and numer-
ous powerful algorithms are available that can per-
form meaningful interpolations even when only a
limited amount of training material is available. This
approach was successfully applied to language mod-
eling in large vocabulary continuous speech recogni-
tion (Schwenk, 2007) and to language modeling in
phrase-based SMT systems (Schwenk et al., 2006).

In this paper, we investigate whether this ap-
proach is useful to smooth the probabilities involved
in the bilingual tuple translation model. Reliable es-
timation of unseenn-grams is very important in this
translation model. Most of the trigram tuples en-
countered in the development or test data were never
seen in the training data. N-gram hit rates are re-
ported in the results section of this paper. We report
experimental results for the BTEC corpus as used
in the 2006 evaluations of the international work-
shop on spoken language translation IWSLT (Paul,
2006). This task provides a very limited amount
of resources in comparison to other tasks like the
translation of journal texts (NIST evaluations) or of
parliament speeches (TC-STAR evaluations). There-
fore, new techniques must be deployed to take the
best advantage of the limited resources. Among the
language pairs tested in this years evaluation, Ital-
ian to English gave the best BLEU results in this
year evaluation. The better the translation quality is,
the more it is challenging to outperform it without
adding more data. We show that a new smoothing
technique for the translation model achieves a sig-
nificant improvement in the BLEU score for a state-
of-the-art statistical translation system.

This paper is organized as follows. In the next
section we first describe the baseline statistical ma-
chine translation systems. Section 3 presents the ar-
chitecture and training algorithms of the continuous
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space translation model and section 4 summarizes
the experimental evaluation. The paper concludes
with a discussion of future research directions.

2 N-gram-based Translation Model

The N -gram-based translation model has been de-
rived from the finite-state perspective; more specif-
ically, from the work of Casacuberta (2001). How-
ever, different from it, where the translation model
is implemented by using a finite-state transducer,
the N -gram-based system implements a bilingual
N -gram model. It actually constitutes a language
model of bilingual units, referred to as tuples, which
approximates the joint probability between source
and target languages by usingN -grams, such as de-
scribed by the following equation:

p(e, f) ≈
K
∏

k=1

p((e, f)k|(e, f)k−1, . . . , (e, f)k−4)

(2)
wheree refers to target,f to source and(e, f)k to
thekth tuple of a given bilingual sentence pair.

Bilingual units (tuples) are extracted from any
word-to-word alignment according to the following
constraints:

• a monotonic segmentation of each bilingual
sentence pairs is produced,

• no word inside the tuple is aligned to words
outside the tuple, and

• no smaller tuples can be extracted without vio-
lating the previous constraints.

As a consequence of these constraints, only one
segmentation is possible for a given sentence pair.

Two important issues regarding this translation
model must be considered. First, it often occurs that
a large number of single-word translation probabil-
ities are left out of the model. This happens for all
words that are always embedded in tuples contain-
ing two or more words, then no translation probabil-
ity for an independent occurrence of these embed-
ded words will exist. To overcome this problem, the
tuple trigram model is enhanced by incorporating
1-gram translation probabilities for all the embed-
ded words detected during the tuple extraction step.

These 1-gram translation probabilities are computed
from the intersection of both the source-to-target and
the target-to-source alignments.

The second issue has to do with the fact that some
words linked to NULL end up producing tuples with
NULL source sides. Since no NULL is actually ex-
pected to occur in translation inputs, this type of tu-
ple is not allowed. Any target word that is linked to
NULL is attached either to the word that precedes
or the word that follows it. To determine this, an ap-
proach based on the IBM1 probabilities was used, as
described in (Mariño et al., 2006).

2.1 Additional features

The following feature functions were used in the N-
gram-based translation system:

• A target language model. In the baseline sys-
tem, this feature consists of a4-gram back-off
model of words, which is trained from the tar-
get side of the bilingual corpus.

• A source-to-target lexicon model and a
target-to-source lexicon model. These fea-
ture, which are based on the lexical parameters
of the IBM Model1, provide a complementary
probability for each tuple in the translation ta-
ble.

• A word bonus function. This feature intro-
duces a bonus based on the number of target
words contained in the partial-translation hy-
pothesis. It is used to compensate for the sys-
tem’s preference for short output sentences.

All these models are combined in the de-
coder. Additionally, the decoder allows for a
non-monotonic search with the following distorsion
model.

• A word distance-baseddistorsion model.

P (tK1 ) = exp(−
K
∑

k=1

dk)

wheredk is the distance between the first word
of the kth tuple (unit), and the last word+1 of
the(k − 1)th tuple.
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Figure 1:Comparing regular and unfolded tuples.

Distance are measured in words referring to the units
source side.

To reduce the computational cost we place lim-
its on the search using two parameters: the distor-
tion limit (the maximum distance measured in words
that a tuple is allowed to be reordered,m) and the
reordering limit (the maximum number of reorder-
ing jumps in a sentence,j). Tuples need to be ex-
tracted by an unfolding technique (Mariño et al.,
2006). This means that the tuples are broken into
smaller tuples, and these are sequenced in the order
of the target words. In order not to lose the infor-
mation on the correct order, the decoder performs a
non-monotonic search. Figure 1 shows an example
of tuple unfolding compared to the monotonic ex-
traction. The unfolding technique produces a differ-
ent bilingualn-gram language model with reordered
source words.

In order to combine the models in the decoder
suitably, an optimization tool based on the Simplex
algorithm is used to compute log-linear weights for
each model.

3 Continuous Space N-gram Models

The architecture of the neural networkn-gram
model is shown in Figure 2. A standard
fully-connected multi-layer perceptron is
used. The inputs to the neural network are
the indices of then−1 previous units (words
or tuples) in the vocabulary hj=wj−n+1,
. . . , wj−2, wj−1 and the outputs are the poste-
rior probabilities ofall units of the vocabulary:

projection
layer hidden

layer

output
layerinput

projections
shared

LM probabilities
for all words

probability estimation

Neural Network

discrete
representation:

indices in wordlist

continuous
representation:

P dimensional vectors

N

wj−1 P

H

N

P (wj =1|hj)
wj−n+1

wj−n+2

P (wj =i|hj)

P (wj =N|hj)

cl

oiM

Vdj

p1 =

pN =

pi =

Figure 2: Architecture of the continuous space LM.
hj denotes the contextwj−n+1, . . . , wj−1. P is the
size of one projection andH,N is the size of the
hidden and output layer respectively. When short-
lists are used the size of the output layer is much
smaller than the size of the vocabulary.

P (wj = i|hj) ∀i ∈ [1,N ] (3)

whereN is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., theith unit of
the vocabulary is coded by setting theith element of
the vector to 1 and all the other elements to 0. The
ith line of theN ×P dimensional projection matrix
corresponds to the continuous representation of the
ith unit. Let us denotecl these projections,dj the
hidden layer activities,oi the outputs,pi their soft-
max normalization, andmjl, bj, vij andki the hid-
den and output layer weights and the corresponding
biases. Using these notations, the neural network
performs the following operations:

dj = tanh

(

∑

l

mjl cl + bj

)

(4)

oi =
∑

j

vij dj + ki (5)

pi = eoi /
N
∑

r=1

eor (6)

The value of the output neuronpi corresponds di-
rectly to the probabilityP (wj = i|hj).
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Training is performed with the standard back-
propagation algorithm minimizing the following er-
ror function:

E =
N
∑

i=1

ti log pi + β





∑

jl

m2
jl +

∑

ij

v2
ij



 (7)

whereti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next unit in the training
sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from over-fitting the train-
ing data (weight decay). The parameterβ has to be
determined experimentally. Training is done using
a re-sampling algorithm as described in (Schwenk,
2007).

It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior
probabilities. Therefore, the neural network directly
minimizes the perplexity on the training data. Note
also that the gradient is back-propagated through the
projection-layer, which means that the neural net-
work learns the projection of the units onto the con-
tinuous space that is best for the probability estima-
tion task.

In general, the complexity to calculate one prob-
ability with this basic version of the neural network
n-gram model is dominated by the dimension of the
output layer since the size of the vocabulary (10k
to 64k) is usually much larger than the dimension of
the hidden layer (200 to 500). Therefore, in previous
applications of the continuous spacen-gram model,
the output was limited to thes most frequent units,s
ranging between 2k and 12k (Schwenk, 2007). This
is called a short-list.

Sents Words

Train (bitexts) 20k 155.4/166.3k
Dev 489 5.2k
Eval 500 6k

Table 1: Available data in thesupplied resources of
the 2006 IWSLT evaluation.

4 Experimental Evaluation

In this work we report results on theBasic Travel-
ing Expression Corpus (BTEC) as used in the 2006
evaluations of the international workshop on spoken
language translation (IWSLT). This corpus consists
of typical sentences from phrase books for tourists in
several languages (Takezawa et al., 2002). We report
results on the supplied development corpus of 489
sentences and the official test set of the IWSLT’06
evaluation. The main measure is the BLEU score,
using seven reference translations. The scoring is
case insensitive and punctuations are ignored. De-
tails on the available data are summarized in Table 1.
We concentrated first on the translation from Ital-
ian to English. All participants in the IWSLT evalua-
tion achieved much better performances for this lan-
guage pair than for the other considered translation
directions. This makes it more difficult to achieve
additional improvements.

A non-monotonic search was performed follow-
ing a local reordering named in Section 2, setting
m = 5 andj = 3. Also we used histogram prun-
ing in the decoder, i.e. the maximum number of hy-
potheses in a stack is limited to 50.

4.1 Language-dependent preprocessing

Italian contracted prepositions have been separated
into preposition + article, such as ’alla’→’a la’,
’degli’→’di gli’ or ’dallo’ →’da lo’, among others.

4.2 Model training

The training and development data for the bilingual
back-off and neural network translation model were
created as follows. Given the alignment of the train-
ing parallel corpus, we perform a unique segmenta-
tion of each parallel sentence following the criterion
of unfolded segmentation seen in Section 2. This
segmentation is used in a sequence as training text
for building the language model. As an example,
given the alignment and the unfold extraction of Fig-
ure 1, we obtain the following training sentence:

<s> how long#cuánto does#NULL last#dura
the#el flight#vuelo</s>

The reference bilingual trigram back-off transla-
tion model was trained on these bilingual tuples us-
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ing the SRI LM toolkit (Stolcke, 2002). Different
smoothing techniques were tried, and best results
were obtained using Good-Turing discounting.

The neural network approach was trained on ex-
actly the same data. A context of two tuples was
used (trigram model). The training corpus contains
about 21,500 different bilingual tuples. We decided
to limit the output of the neural network to the 8k
most frequent tuples (short-list). This covers about
90% of the requested tuplen-grams in the training
data.

Similar to previous applications, the neural net-
work is not used alone but interpolation is performed
to combine severaln-gram models. First of all, the
neural network and the reference back-off model are
interpolated together - this always improved perfor-
mance since both seem to be complementary. Sec-
ond, four neural networks with different sizes of the
continuous representation were trained and interpo-
lated together. This usually achieves better general-
ization behavior than training one larger neural net-
work. The interpolation coefficients were calculated
by optimizing perplexity on the development data,
using an EM procedure. The obtained values are
0.33 for the back-off translation model and about
0.16 for each neural network model respectively.
This interpolation is used in all our experiments. For
the sake of simplicity we will still call this the con-
tinuous space translation model.

Each network was trained independently using
early stopping on the development data. Conver-
gence was achieved after about 10 iterations through
the training data (less than 20 minutes of processing
on a standard Linux machine). The other parameters
are as follows:

• Context of two tuples (trigram)

• The dimension of the continuous representation
of the tuples werec =120,140,150 and 200,

• The dimension of the hidden layer was set to
P = 200,

• The initial learning rate was 0.005 with an ex-
ponential decay,

• The weight decay coefficient was set toβ =
0.00005.

N-gram models are usually evaluated using per-
plexity on some development data. In our case, i.e.
using bilingual tuples as basic units (“words”), it is
less obvious if perplexity is a useful measure. Nev-
ertheless, we provide these numbers for complete-
ness. The perplexity on the development data of the
trigram back-off translation model is 227.0. This
could be reduced to 170.4 using the neural network.
It is also very informative to analyze then-gram
hit-rates of the back-off model on the development
data: 10% of the probability requests are actually a
true trigram, 40% a bigram and about 49% are fi-
nally estimated using unigram probabilities. This
means that only a limited amount of phrase con-
text is used in the standard N-gram-based translation
model. This makes this an ideal candidate to ap-
ply the continuous space model since probabilities
are interpolated for all possible contexts and never
backed-up to shorter contexts.

4.3 Results and analysis

The incorporation of the neural translation model
is done usingn-best list. Each hypothesis is com-
posed of a sequence of bilingual tuples and the cor-
responding scores of all the feature functions. Fig-
ure 3 shows an example of such an n-best list. The
neural trigram translation model is used to replace
the scores of the trigram back-off translation model.
This is followed by a re-optimization of the coef-
ficients of all feature functions, i.e. maximization
of the BLEU score on the development data using
the numerical optimization tool CONDOR (Berghen
and Bersini, 2005). An alternative would be to add
a feature function and to combine both translation
models under the log-linear model framework, us-
ing maximum BLEU training.

Another open question is whether it might by
better to already use the continuous space transla-
tion model during decoding. The continuous space
model has a much higher complexity than a back-
off n-gram. However, this can be heavily optimized
when rescoringn-best lists, i.e. by grouping to-
gether all calls in the wholen-best list with the same
context, resulting in only one forward pass through
the neural network. This is more difficult to per-
form when the continuous space translation model
is used during decoding. Therefore, this was not in-
vestigated in this work.
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spiacente#sorry tutto occupato#it ’s full
spiacente#i ’m sorry tutto occupato#it ’s full
spiacente#i ’m afraid tutto occupato#it ’s full
spiacente#sorry tutto#all occupato#busy
spiacente#sorry tutto#all occupato#taken

Figure 3: Example of sentences in the n-best list of
bilingual tuples. The special character ’#’ is used to
separate the source and target sentence words. Sev-
eral words in one tuple a grouped together using ’.’

In all our experiments 1000-best lists were used.
In order to evaluate the quality of these n-best lists,
an oracle trigram back-off translation model was
build on the development data. Rescoring the n-
best lists with this translation model resulted in an
increase of the BLEU score of about 10 points (see
Table 2). While there is an decrease of about 6%
for the position dependent word error rate (mWER),
a smaller change in the position independent word
error rate was observed (mPER). This suggests that
most of the alternative translation hypothesis re-
sult in word reorderings and not in many alternative
word choices. This is one of the major drawbacks
of phrase- and N-gram-based translation systems:
only translations observed in the training data can
be used. There is no generalization to new phrase
pairs.

Back-off Oracle Neural
BLEU 42.34 52.45 43.87

mWER 41.6% 35.6% 40.3%
mPER 31.5% 28.2% 30.7%

Table 2: Comparison of different N-gram-
translation models on the development data.

When the 1000-best lists are rescored with the
neural network translation model the BLEU score
increases by 1.5 points (42.34 to 43.87). Similar im-
provements were observed in the word error rates
(see Table 2). For comparison, a 4-gram back-off
translation model was also built, but no change of
the BLEU score was observed. This suggests that
careful smoothing is more important than increasing
the context when estimating the translation probabil-
ities in an N-gram-based statistical machine transla-
tion system.

In previous work, we have investigated the use of
the neural network approach to modeling the target
language for the IWSLT task (Schwenk et al., 2006).
We also applied this technique to this improved N-
gram-based translation system. In our implemen-
tation, the neural network target 4-gram language
model gives an improvement of 1.3 points BLEU
on the development data (42.34 to 43.66), in com-
parison to 1.5 points for the neural translation model
(see Table 3).

Back-off neural neural neural
TM+LM TM LM TM+LM

BLEU 42.34 43.87 43.66 44.83

Table 3: Combination of a neural translation model
(TM) and a neural language model (LM). BLEU
scores on the development data.

The neural translation and target language model
were also applied to the test data, using of course the
same feature function coefficients as for the devel-
opment data. The results are given in Table 4 for all
the official measures of the IWSLT evaluation. The
new smoothing method of the translation probabili-
ties achieves improvement in all measures. It gives
also an additional gain (again in all measures) when
used together with a neural target language model.
Surprisingly, neural TM and neural LM improve-
ments almost add up: when both techniques are used
together, the BLEU scores increases by 1.5 points
(36.97→ 38.50). Remember that the reference N-
gram-based translation system already uses a local
reordering approach.

Back-off neural neural neural
TM+LM TM LM TM+LM

BLEU 36.97 37.21 38.04 38.50
mWER 48.10 47.42 47.83 47.61
mPER 38.21 38.07 37.26 37.12
NIST 8.3 8.3 8.6 8.7

Meteor 63.16 63.40 64.70 65.20

Table 4: Test set scores for the combination of a
neural translation model (TM) and a neural language
model (LM).
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5 Discussion

Phrase-based approaches are the de-facto standard
in statistical machine translation. The phrases are
extracted automatically from the word alignments
of parallel texts, and the different possible transla-
tions of a phrase are weighted using relative fre-
quency. This can be problematic when the data is
sparse. However, there seems to be little work on
possible improvements of the relative frequency es-
timates by some smoothing techniques. It is today
common practice to use additional feature functions
like IBM-1 scores to obtain some kind of smoothing
(Och et al., 2004; Koehn et al., 2003; Zens and Ney,
2004), but better estimation of the phrase probabili-
ties is usually not addressed.

An alternative way to represent phrases is to de-
fine bilingual tuples. Smoothing, and context de-
pendency, is obtained by using ann-gram model on
these tuples. In this work, we have extended this
approach by using a new smoothing technique that
operates on a continuous representation of the tu-
ples. Our method is distinguished by two charac-
teristics: better estimation of the numerous unseen
n-grams, and adiscriminative estimation of the tu-
ple probabilities. Results are provided on the BTEC

task of the 2006 IWSLT evaluation for the translation
direction Italian to English. This task provides very
limited amount of resources in comparison to other
tasks. Therefore, new techniques must be deployed
to take the best advantage of the limited resources.
We have chosen the Italian to English task because it
is challenging to enhance a good quality translation
task (over 40 BLEU percentage). Using the continu-
ous space model for thetranslation andtarget lan-
guage model, an improvement of 2.5 BLEU on the
development data and 1.5 BLEU on the test data was
observed.

Despite these encouraging results, we believe that
additional research on improved estimation of prob-
abilities in N-gram- or phrase-based statistical ma-
chine translation systems is needed. In particu-
lar, the problem ofgeneralization to new trans-
lations seems to be promising to us. This could
be addressed by the so-called factored phrase-based
model as implemented in the Moses decoder (Koehn
et al., 2007). In this approach words are decom-
posed into several factors. These factors are trans-

lated and a target phrase is generated. This model
could be complemented by a factored continuous
tuple N-gram. Factored word language models
were already successfully used in speech recogni-
tion (Bilmes and Kirchhoff, 2003; Alexandrescu and
Kirchhoff, 2006) and an extension to machine trans-
lation seems to be promising.

The described smoothing method was explicitly
developed to tackle the data sparseness problem in
tasks like the BTEC corpus. It is well known from
language modeling that careful smoothing is less im-
portant when large amounts of data are available.
We plan to investigate whether this also holds for
smoothing of the probabilities in phrase- or tuple-
based statistical machine translation systems.
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E. Vidal, and J.M. Vilar. 2001. Speech-to-speech
translation based on finite-state transducers.Interna-
tional Conference on Acoustic, Speech and Signal Pro-
cessing, 1.

437



S. F. Chen and J. T. Goodman. 1999. An empirical study
of smoothing techniques for language modeling.CSL,
13(4):359–394.

G. Foster, R. Kuhn, and H. Johnson. 2006. Phrasetable
smoothing for statistical machine translation. In
EMNLP06, pages 53–61.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrased-based machine translation. InHuman Lan-
guage Technology Conference (HLT-NAACL), pages
127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. InProceed-
ings of ACL, demonstration session.

J.B. Mariño, R.E. Banchs, J.M. Crego, A. de Gispert,
P. Lambert, J.A.R. Fonollosa, and M. R. Costa-jussà.
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