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Abstract
We present V-measure, an external entropy-
based cluster evaluation measure. V-
measure provides an elegant solution to
many problems that affect previously de-
fined cluster evaluation measures includ-
ing 1) dependence on clustering algorithm
or data set, 2) the “problem of matching”,
where the clustering of only a portion of data
points are evaluated and 3) accurate evalu-
ation and combination of two desirable as-
pects of clustering, homogeneity and com-
pleteness. We compare V-measure to a num-
ber of popular cluster evaluation measures
and demonstrate that it satisfies several de-
sirable properties of clustering solutions, us-
ing simulated clustering results. Finally, we
use V-measure to evaluate two clustering
tasks: document clustering and pitch accent
type clustering.

1 Introduction
Clustering techniques have been used successfully
for many natural language processing tasks, such
as document clustering (Willett, 1988; Zamir and
Etzioni, 1998; Cutting et al., 1992; Vempala and
Wang, 2005), word sense disambiguation (Shin and
Choi, 2004), semantic role labeling (Baldewein et
al., 2004), pitch accent type disambiguation (Levow,
2006). They are particularly appealing for tasks
in which there is an abundance of language data
available, but manual annotation of this data is
very resource-intensive. Unsupervised clustering
can eliminate the need for (full) manual annotation
of the data into desired classes, but often at the cost
of making evaluation of success more difficult.

External evaluation measures for clustering can
be applied when class labels for each data point in
some evaluation set can be determineda priori. The

clustering task is then to assign these data points to
any number of clusters such that each cluster con-
tains all and only those data points that are members
of the same class Given the ground truth class la-
bels, it is trivial to determine whether this perfect
clustering has been achieved. However, evaluating
how far from perfect an incorrect clustering solution
is a more difficult task (Oakes, 1998) and proposed
approaches often lack rigor (Meila, 2007).

In this paper, we describe a new entropy-based
external cluster evaluation measure, V-MEASURE1,
designed to address the problem of quantifying such
imperfection. Like all external measures, V-measure
compares a target clustering — e.g., a manually an-
notated representative subset of the available data —
against an automatically generated clustering to de-
termine now similar the two are. We introduce two
complementary concepts, completeness and homo-
geneity, to capture desirable properties in clustering
tasks.

In Section 2, we describe V-measure and how it
is calculated in terms of homogeneity and complete-
ness. We describe several popular external cluster
evaluation measures and draw some comparisons to
V-measure in Section 3. In Section 4, we discuss
how some desirable properties for clustering are sat-
isfied by V-measure vs. other measures. In Sec-
tion 5, we present two applications of V-measure, on
document clustering and on pitch accent type clus-
tering.

2 V-Measure and Its Calculation
V-measure is an entropy-based measure which ex-
plicitly measures how successfully the criteria of ho-
mogeneity and completeness have been satisfied. V-
measure is computed as the harmonic mean of dis-
tinct homogeneity and completeness scores, just as

1The ‘V’ stands for “validity”, a common term used to de-
scribe the goodness of a clustering solution.
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precision and recall are commonly combined into
F-measure (Van Rijsbergen, 1979). As F-measure
scores can be weighted, V-measure can be weighted
to favor the contributions of homogeneity or com-
pleteness.

For the purposes of the following discussion, as-
sume a data set comprisingN data points, and two
partitions of these: a set of classes,C = {ci|i =
1, . . . , n} and a set of clusters,K = {ki|1, . . . ,m}.
LetA be the contingency table produced by the clus-
tering algorithm representing the clustering solution,
such thatA = {aij} whereaij is the number of data
points that are members of classci and elements of
clusterkj .

To discuss cluster evaluation measures we intro-
duce two criteria for a clustering solution: homo-
geneity and completeness. A clustering result sat-
isfies homogeneity if all of its clusters contain only
data points which are members of a single class. A
clustering result satisfies completeness if all the data
points that are members of a given class are elements
of the same cluster. The homogenity and complete-
ness of a clustering solution run roughly in opposi-
tion: Increasing the homogeneity of a clustering so-
lution often results in decreasing its completeness.
Consider, two degenerate clustering solutions. In
one, assigning every datapoint into a single cluster,
guarantees perfect completeness — all of the data
points that are members of the same class are triv-
ially elements of the same cluster. However, this
cluster is asunhomogeneous as possible, since all
classes are included in this single cluster. In an-
other solution, assigning each data point to a dis-
tinct cluster guarantees perfect homogeneity — each
cluster trivially contains only members of a single
class. However, in terms of completeness, this so-
lution scores very poorly, unless indeed each class
contains only a single member. We define the dis-
tance from a perfect clustering is measured as the
weighted harmonic mean of measures of homogene-
ity and completeness.

Homogeneity:
In order to satisfy our homogeneity criteria, a

clustering must assignonly those datapoints that are
members of a single class to a single cluster. That is,
the class distribution within each cluster should be
skewed to a single class, that is, zero entropy. We de-
termine how close a given clustering is to this ideal

by examining the conditional entropy of the class
distribution given the proposed clustering. In the
perfectly homogeneous case, this value,H(C|K),
is 0. However, in an imperfect situation, the size of
this value, in bits, is dependent on the size of the
dataset and the distribution of class sizes. There-
fore, instead of taking the raw conditional entropy,
we normalize this value by the maximum reduction
in entropy the clustering information could provide,
specifically,H(C).

Note thatH(C|K) is maximal (and equalsH(C))
when the clustering provides no new information —
the class distribution within each cluster is equal to
the overall class distribiution.H(C|K) is 0 when
each cluster contains only members of a single class,
a perfectly homogenous clustering. In the degen-
erate case whereH(C) = 0, when there is only a
single class, we define homogeneity to be 1. For a
perfectly homogenous solution, this normalization,
H(C|K)
H(C) , equals 0. Thus, to adhere to the convention

of 1 being desirable and 0 undesirable, we define ho-
mogeneity as:

h =

{

1 if H(C,K) = 0

1− H(C|K)
H(C) else

(1)

where

H(C|K) = −

|K|
∑

k=1

|C|
∑

c=1

ack

N
log

ack
∑|C|

c=1 ack

H(C) = −

|C|
∑

c=1

∑|K|
k=1 ack

n
log

∑|K|
k=1 ack

n

Completeness:
Completeness is symmetrical to homogeneity. In

order to satisfy the completeness criteria, a cluster-
ing must assignall of those datapoints that are mem-
bers of a single class to a single cluster. To eval-
uate completeness, we examine the distribution of
cluster assignments within each class. In a perfectly
complete clustering solution, each of these distribu-
tions will be completely skewed to a single cluster.
We can evaluate this degree of skew by calculat-
ing the conditional entropy of the proposed cluster
distribution given the class of the component dat-
apoints,H(K|C). In the perfectly complete case,
H(K|C) = 0. However, in the worst case scenario,
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each class is represented by every cluster with a dis-
tribution equal to the distribution of cluster sizes,
H(K|C) is maximal and equalsH(K). Finally, in
the degenerate case whereH(K) = 0, when there
is a single cluster, we define completeness to be 1.
Therefore, symmetric to the calculation above, we
define completeness as:

c =

{

1 if H(K,C) = 0

1− H(K|C)
H(K) else

(2)

where

H(K|C) = −

|C|
∑

c=1

|K|
∑

k=1

ack

N
log

ack
∑|K|

k=1 ack

H(K) = −

|K|
∑

k=1

∑|C|
c=1 ack

n
log

∑|C|
c=1 ack

n

Based upon these calculations of homogeneity
and completeness, we then calculate a clustering
solution’s V-measure by computing the weighted
harmonic mean of homogeneity and completeness,
Vβ = (1+β)∗h∗c

(β∗h)+c . Similarly to the familiar F-
measure, ifβ is greater than 1 completeness is
weighted more strongly in the calculation, ifβ is less
than 1, homogeneity is weighted more strongly.

Notice that the computations of homogeneity,
completeness and V-measure are completely inde-
pendent of the number of classes, the number of
clusters, the size of the data set and the clustering al-
gorithm used. Thus these measures can be applied to
and compared across any clustering solution, regard-
less of the number of data points (n-invariance), the
number of classes or the number of clusters. More-
over, by calculating homogeneity and completeness
separately, a more precise evaluation of the perfor-
mance of the clustering can be obtained.

3 Existing Evaluation Measures
Clustering algorithms divide an input data set into
a number of partitions, or clusters. For tasks where
some target partition can be defined for testing pur-
poses, we define a “clustering solution” as a map-
ping from each data point to its cluster assignments
in both the target and hypothesized clustering. In the
context of this discussion, we will refer to the target
partitions, or clusters, asCLASSES, referring only to
hypothesized clusters asCLUSTERS.

Two commonly used external measures for as-
sessing clustering success arePurity andEntropy
(Zhao and Karypis, 2001), defined as,

Purity =
∑k

r=1
1
n maxi(n

i
r)

Entropy =
∑k

r=1
nr

n (− 1
log q

∑q
i=1

ni
r

nr
log ni

r

nr
)

whereq is the number of classes,k the number
of clusters,nr is the size of clusterr, andni

r is the
number of data points in classi clustered in cluster
r.

Both these approaches represent plausable ways
to evaluate the homogeneity of a clustering solution.
However, our completeness criterion is not mea-
sured at all. That is, they do not address the ques-
tion of whether all members of a given class are in-
cluded in a single cluster. Therefore thePurity and
Entropy measures are likely to improve (increased
Purity, decreasedEntropy) monotonically with
the number of clusters in the result, up to a degen-
erate maximum where there are as many clusters as
data points. However, clustering solutions rated high
by either measure may still be far from ideal.

Another frequently used external clustering eval-
uation measure is commonly refered to as “cluster-
ing accuracy”. The calculation of this accuracy is
inspired by the information retrieval metric of F-
Measure (Van Rijsbergen, 1979). The formula for
this clustering F-measure as described in (Fung et
al., 2003) is shown in Figure 3.

Let N be the number of data points,C the set of classes,K
the set of clusters andnij be the number of members of class
ci ∈ C that are elements of clusterkj ∈ K.

F (C, K) =
X

ci∈C

|ci|

N
max
kj∈K

{F (ci, kj)} (3)

F (ci, kj) =
2 ∗ R(ci, kj) ∗ P (ci, kj)

R(ci, kj) + P (ci, kj)

R(ci, kj) =
nij

|ci|

P (ci, kj) =
nij

|kj |

Figure 1: Calculation of clustering F-measure

This measure has a significant advantage over
Purity andEntropy, in that it does measure both
the homogeneity and the completeness of a cluster-
ing solution. Recall is calculated as the portion of
items from classi that are present in clusterj, thus
measuring how complete clusterj is with respect to
classi. Similarly, Precision is calculated as the por-
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Solution A Solution B
F-Measure=0.5 F-Measure=0.5
V-Measure=0.14 V-Measure=0.39

Solution C Solution D
F-Measure=0.6 F-Measure=0.6
V-Measure=0.30 V-Measure=0.41

Figure 2: Examples of the Problem of Matching

tion of clusterj that is a member of classi, thus mea-
suring how homogenous clusterj is with respect to
classi.

Like some other external cluster evaluation tech-
niques (misclassification index (MI) (Zeng et al.,
2002),H (Meila and Heckerman, 2001),L (Larsen
and Aone, 1999),D (van Dongen, 2000), micro-
averaged precision and recall (Dhillon et al., 2003)),
F-measure relies on a post-processing step in which
each cluster is assigned to a class. These techniques
share certain problems. First, they calculate the
goodness not only of the given clustering solution,
but also of the cluster-class matching. Therefore, in
order for the goodness of two clustering solutions to
be compared using one these measures, an identical
post-processing algorithm must be used. This prob-
lem can be trivially addressed by fixing the class-
cluster matching function and including it in the def-
inition of the measure as inH. However, a second
and more critical problem is the “problem of match-
ing” (Meila, 2007). In calculating the similarity be-
tween a hypothesized clustering and a ‘true’ cluster-
ing, these measures only consider the contributions
from those clusters that are matched to a target class.
This is a major problem, as two significantly differ-
ent clusterings can result in identical scores.

In figure 2, we present some illustrative examples
of the problem of matching. For the purposes of this
discussion we will be using F-Measure as the mea-
sure to describe the problem of matching, however,

these problems affect any measure which requires a
mapping from clusters to classes for evaluation.

In the figures, the shaded regions representCLUS-
TERS, the shapes representCLASSES. In a perfect
clustering, each shaded region would contain all and
only the same shapes. The problem of matching
can manifest itself either by not evaluating the en-
tire membership of a cluster, or by not evaluating
every cluster. The former situation is presented in
the figures A and B in figure 2. The F-Measure of
both of these clustering solutions in 0.6. (The preci-
sion and recall for each class is3

5 .) That is, for each
class, the best or “matched” cluster contains 3 of 5
elements of the class (Recall) and 3 of 5 elements of
the cluster are members of the class (Precision). The
make up of the clusters beyond the majority class is
not evaluated by F-Measure. Solution B is a better
clustering solution than solution A, in terms of both
homogeneity (crudely, “each cluster contains fewer2

classes”) and completeness (“each class is contained
in fewer clusters”). Indeed, the V-Measure of so-
lution B (0.387) is greater than that of solution A
(0.135). Solutions C and D represent a case in which
not every cluster is considered in the evaluation of
F-Measure. In this example, the F-Measure of both
solutions is 0.5 (the harmonic mean of3

5 and3
7 ). The

small “unmatched” clusters are not measured at all
in the calculation of F-Measure. Solution D is a bet-
ter clustering than solution C – there are no incorrect
clusterings of different classes in the small clusters.
V-Measure reflects this, solution C has a V-measure
of 0.30 while the V-measure of solution D is 0.41.

A second class of clustering evaluation techniques
is based on a combinatorial approach which exam-
ines the number of pairs of data points that are clus-
tered similarly in the target and hypothesized clus-
tering. That is, each pair of points can either be 1)
clustered together in both clusterings (N11), 2) clus-
tered separately in both clusterings (N00), 3) clus-
tered together in the hypothesized but not the tar-
get clustering (N01) or 4) clustered together in the
target but not in the hypothesized clustering (N10).
Based on these 4 values, a number of measures have
been proposed, including Rand Index (Rand, 1971),

2Homogeneity is not measured by V-measure as a count of
the number of classes contained by a cluster but “fewer” is an
acceptable way to conceptualize this criterion for the purposes
of these examples.
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Adjusted Rand Index (Hubert and Arabie, 1985),Γ
statistic (Hubert and Schultz, 1976), Jaccard (Mil-
ligan et al., 1983), Fowlkes-Mallows (Fowlkes and
Mallows, 1983) and Mirkin (Mirkin, 1996). We il-
lustrate this class of measures with the calculation of
Rand Index.Rand(C,K) = N11+N00

n(n−1)/2 Rand Index
can be interpreted as the probability that a pair of
points is clustered similarly (together or separately)
in C andK.

Meila (2007) describes a number of poten-
tial problems of this class of measures posed by
(Fowlkes and Mallows, 1983) and (Wallace, 1983).
The most basic is that these measures tend not to
vary over the interval of[0, 1]. Transformations like
those applied by the adjusted Rand Index and a mi-
nor adjustment to the Mirkin measure (see Section
4) can address this problem. However, pair match-
ing measures also suffer from distributional prob-
lems. The baseline for Fowlkes-Mallows varies sig-
nificantly between0.6 and0 when the ratio of data
points to clusters is greater than 3 — thus includ-
ing nearly all real-world clustering problems. Simi-
larly, the Adjusted Rand Index, as demonstrated us-
ing Monte Carlo simulations in (Fowlkes and Mal-
lows, 1983), varies from0.5 to 0.95. This variance
in the measure’s baseline prompts Meila to ask if the
assumption of linearity following normalization can
be maintained. If the behavior of the measure is so
unstable before normalization can users reasonably
expect stable behaviorfollowing normalization?

A final class of cluster evaluation measures are
based on information theory. These measures an-
alyze the distribution of class and cluster member-
ship in order to determine how successful a given
clustering solution is or how different two parti-
tions of a data set are. We have already examined
one member of this class of measures,Entropy.
From a coding theory perspective,Entropy is the
weighted average of the code lengths of each clus-
ter. Our V-measure is a member of this class of clus-
tering measures. One significant advantage that in-
formation theoretic evaluation measures have is that
they provide an elegant solution to the “problem of
matching”. By examining the relative sizes of the
classes and clusters being evaluated, these measures
all evaluate the entire membership of each cluster —
not just a ‘matched’ portion.

Dom’sQ0 measure (Dom, 2001) uses conditional

entropy, H(C|K) to calculate the goodness of a
clustering solution. That is, given the hypothesized
partition, what is the number of bits necessary to
represent the true clustering?

However, this term – like thePurity and
Entropy measures – only evaluates the homogene-
ity of a solution. To measure the completeness of the
hypothesized clustering, Dom includes a model cost
term calculated using a coding theory argument. The
overall clustering quality measure presented is the
sum of the costs of representing the data (H(C|K))
and the model. The motivation for this approach
is an appeal to parsimony: Given identical condi-
tional entropies,H(C|K), the clustering solution
with the fewest clusters should be preferred. Dom
also presents a normalized version of this term,Q2,
which has a range of(0, 1] with greater scores being
representing more preferred clusterings.

Q0(C,K) = H(C|K)+
1

n

|K|
∑

k=1

log

(

h(k) + |C| − 1

|C| − 1

)

whereC is the target partition,K is the hypothe-
sized partition andh(k) is the size of clusterk.

Q2(C,K) =

1
n

∑|C|
c=1 log

(h(c)+|C|−1
|C|−1

)

Q0(C,K)

We believe that V-measure provides two significant
advantages overQ0 that make it a more useful diag-
nostic tool. First,Q0 does not explicitly calculate the
degree of completeness of the clustering solution.
The cost term captures some of this information,
since a partition with fewer clusters is likely to be
more complete than a clustering solution with more
clusters. However,Q0 does not explicitly address
the interaction between the conditional entropy and
the cost of representing the model. While this is
an application of theminimum description length
(MDL) principle (Rissanen, 1978; Rissanen, 1989),
it does not provide an intuitive manner for assessing
our two competing criteria of homogeneity and com-
pleteness. That is, at what point does an increase in
conditional entropy (homogeneity) justify a reduc-
tion in the number of clusters (completeness).

Another information-based clustering measure
is variation of information (V I) (Meila, 2007),
V I(C,K) = H(C|K)+H(K|C). V I is presented

414



as a distance measure for comparing partitions (or
clusterings) of the same data. It therefore does not
distinguish between hypothesized and target cluster-
ings. V I has a number of useful properties. First,
it satisfies the metric axioms. This quality allows
users to intuitively understand howV I values com-
bine and relate to one another. Secondly, it is “con-
vexly additive”. That is to say, if a cluster is split,
the distance from the new cluster to the original is
the distance induced by the split times the size of
the cluster. This property guarantees that all changes
to the metric are “local”: the impact of splitting or
merging clusters is limited to only those clusters in-
volved, and its size is relative to the size of these
clusters. Third, VI isn-invariant: the number of
data points in the cluster do not affect the value of
the measure.V I depends on the relative sizes of the
partitions ofC andK, not on the number of points
in these partitions. However,V I is bounded by the
maximum number of clusters inC or K, k∗. With-
out manual modification however,k∗ = n, where
each cluster contains only a single data point. Thus,
while technicallyn-invariant, the possible values of
V I are heavily dependent on the number of data
points being clustered. Thus, it is difficult to com-
pareV I values across data sets and clustering algo-
rithms without fixingk∗, asV I will vary over differ-
ent ranges. It is a trivial modification to modifyV I
such that it varies over [0,1]. Normalizing,V I by
log n or 1/2 log k∗ guarantee this range. However,
Meila (2007) raises two potential problems with this
modification. The normalization should not be ap-
plied if data sets of different sizes are to be com-
pared — it negates then-invariance of the measure.
Additionally, if two authors apply the latter normal-
ization and do not use the same value fork∗, their
results will not be comparable.

While V I has a number of very useful distance
properties when analyzing a single data set across a
number of settings, it has limited utility as a general
purpose clustering evaluation metric for use across
disparate clusterings of disparate data sets. Our
homogeneity (h) and completeness (c) terms both
range over [0,1] and are completelyn-invariant and
k∗-invariant. Furthermore, measuring each as a ra-
tio of bit lengths has greater intuitive appeal than a
more opportunistic normalization.

V-measure has another advantage as a clustering

evaluation measure overV I and Q0. By evaluat-
ing homogeneity and completeness in a symmetri-
cal, complementary manner, the calculation of V-
measure makes their relationship clearly observable.
Separate analyses of homogeneity and complete-
ness are not possible with any other cluster evalu-
ation measure. Moreover, by using the harmonic
mean to combine homogeneity and completeness,
V-measure is unique in that it can also prioritize one
criterion over another, depending on the clustering
task and goals.

4 Comparing Evaluation Measures
Dom (2001) describes a parametric technique for
generating example clustering solutions. He then
proceeds to define five “desirable properties” that
clustering accuracy measures should display, based
on the parameters used to generate the clustering so-
lution. To compare V-measure more directly to alter-
native clustering measures, we evaluate V-measure
and other measures against these and two additional
desirable properties.

The parameters used in generating a clustering so-
lution are as follows.

• |C| The number of classes

• |K| The number of clusters

• |Knoise| Number of “noise” clusters;
|Knoise| < |K|

• |Cnoise| Number of “noise” classes;|Cnoise| <
|C|

• ǫ Error probability;ǫ = ǫ1 + ǫ2 + ǫ3.

• ǫ1 The error mass within “useful” class-cluster
pairs

• ǫ2 The error mass within noise clusters

• ǫ3 The error mass within noise classes

The construction of a clustering solution begins
with a matching of “useful” clusters to “useful”
classes3. There are|Ku| = |K| − |Knoise| “useful”
clusters and|Cu| = |C| − |Cnoise| “useful” classes.
The claim is useful classes and clusters are matched
to each other and matched pairs contain more data
points than unmatched pairs. Probability mass of
1 − ǫ is evenly distributed across each match. Er-
ror mass ofǫ1 is evenly distributed across each pair

3The operation of this matching is omitted in the interest of
space. Interested readers should see (Dom, 2001).
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of non-matching useful class/cluster pairs. Noise
clusters are those that contain data points equally
from each cluster. Error mass ofǫ2 is distributed
across every “noise”-cluster/ “useful”-class pair. We
extend the parameterization technique described in
(Dom, 2001) in with|Cnoise| andǫ3. Noise classes
are those that contain data points equally from each
cluster. Error mass ofǫ3 is distributed across every
“useful”-cluster/“noise”-class pair. An example so-
lution, along with its generating parameters is given
in Figure 3.

C1 C2 C3 Cnoise1

K1 12 12 2 3
K2 2 2 12 3
Knoise1 4 4 4 0

Figure 3: Sample parametric clustering solution
with n = 60, |K| = 3, |Knoise| = 1, |C| =
3, |Cnoise| = 1, ǫ1 = .1, ǫ2 = .2, ǫ3 = .1

The desirable properties proposed by Dom are
given as P1-P5 in Table 1. We include two addi-
tional properties (P6,P7) relating the examined mea-
sure value to the number of ‘noise’ classes andǫ3.

P1 For |Ku| < |C| and ∆|Ku| ≤ (|C| − |Ku|),
∆M

∆|Ku|
> 0

P2 For |Ku| ≥ |C|, ∆M
∆|Ku|

< 0

P3 ∆M
∆|Knoise|

< 0, if ǫ2 > 0

P4 δM
δǫ1

≤ 0, with equality only if|Ku| = 1

P5 δM
δǫ2

≤ 0, with equality only if|Knoise| = 0

P6 ∆M
∆|Cnoise|

< 0, if ǫ3 > 0

P7 δM
δǫ3

≤ 0, with equality only if|Cnoise| = 0

Table 1: Desirable Properties of a cluster evaluation
measureM

To evaluate how different clustering measures sat-
isfy each of these properties, we systematically var-
ied each parameter, keeping|C| = 5 fixed.

• |Ku|: 10 values: 2, 3,. . . , 11

• |Knoise|: 7 values: 0, 1,. . . , 6

• |Cnoise|: 7 values: 0, 1,. . . , 6

• ǫ1: 4 values: 0, 0.033, 0.066, 0.1

• ǫ2: 4 values: 0, 0.066, 0.133, 0.2

• ǫ3: 4 values: 0, 0.066, 0.133, 0.2

We evaluated the behavior of V-Measure, Rand,
Mirkin, Fowlkes-Mallows, Gamma, Jaccard, VI,
Q0, F-Measure against the desirable properties P1-
P74. Based on the described systematic modification
of each parameter, only V-measure, VI andQ0 em-
pirically satisfy all of P1-P7 in all experimental con-
ditions. Full results reporting how frequently each
evaluated measure satisfied the properties based on
these experiments can be found in table 2.

All evaluated measures satisfy P4 and P7. How-
ever, Rand, Mirkin, Fowlkes-Mallows, Gamma, Jac-
card and F-Measure all fail to satisfy P3 and P6 in
at least one experimental configuration. This indi-
cates that the number of ‘noise’ classes or clusters
can be increased without reducing any of these mea-
sures. This implies a computational obliviousness to
potentially significant aspects of an evaluated clus-
tering solution.

5 Applying V-measure
In this section, we present two clustering experi-
ments. We describe a document clustering experi-
ment and evaluate its results using V-measure, high-
lighting the interaction between homogeneity and
completeness. Second, we present a pitch accent
type clustering experiment. We present results from
both of these experiments in order to show how V-
measure can be used to drawn comparisons across
data sets.

5.1 Document Clustering
Clustering techniques have been used widely to sort
documents into topic clusters. We reproduce such
an experiment here to demonstrate the usefulness
of V-measure. Using a subset of the TDT-4 cor-
pus (Strassel and Glenn, 2003) (1884 English news
wire and broadcast news documents manually la-
beled with one of 12 topics), we ran clustering
experiments using k-means clustering (McQueen,
1967) and evaluated the results using V-Measure,
VI and Q0 – those measures that satisfied the de-
sirable properties defined in section 4. The top-
ics and relative distributions are as follows: Acts

4The inequalities in the desirable properties are inverted in
the evaluation of VI,Q0 and Mirkin as they are defined as dis-
tance, as opposed to similarity, measures.

416



Property Rand Mirkin Fowlkes Γ Jaccard F-measure Q0 VI V-Measure
P1 0.18 0.22 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P2 1.0 1.0 0.76 1.0 0.89 0.98 1.0 1.0 1.0
P3 0.0 0.0 0.30 0.19 0.21 0.0 1.0 1.0 1.0
P4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P5 0.50 0.57 1.0 1.0 1.0 1.0 1.0 1.0 1.0
P6 0.20 0.20 0.41 0.26 0.52 0.87 1.0 1.0 1.0
P7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Rates of satisfaction of desirable properties

of Violence/War (22.3%), Elections (14.4%), Diplo-
matic Meetings (12.9%), Accidents (8.75%), Natu-
ral Disasters (7.4%), Human Interest (6.7%), Scan-
dals (6.5%), Legal Cases (6.4%), Miscellaneous
(5.3%), Sports (4.7), New Laws (3.2%), Science and
Discovery (1.4%).

We employed stemmed (Porter, 1980), tf*idf-
weighted term vectors extracted for each document
as the clustering space for these experiments, which
yielded a very high dimension space. To reduce
this dimensionality, we performed a simple feature
selection procedure including in the feature vector
only those terms that represented the highest tf*idf
value for at least one data point. This resulted in a
feature vector containing 484 tf*idf values for each
document. Results from k-means clustering are are
shown in Figure 4.
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Figure 4: Results of document clustering measured
by V-Measure, VI andQ2

The first observation that can be drawn from these
results is the degree to which VI is dependent on the
number of clusters (k). This dependency severely
limits the usefulness of VI: it is inappropriate in se-
lecting an appropriate parameter fork or for evalu-
ating the distance between clustering solutions gen-
erated using different values ofk.

V-measure andQ2 demonstrate similar behavior
in evaluating these experimental results. They both
reach a maximal value with 35 clusters, however,Q2

shows a greater descent as the number of clusters in-
creases. We will discuss this quality in greater detail
in section 5.2.

5.2 Pitch Accent Clustering
Pitch accent is how speakers of many languages
make a word intonational prominent. In most
pitch accent languages, words can also be ac-
cented in different ways to convey different mean-
ings (Hirschberg, 2002). In the ToBI labeling con-
ventions for Standard American English (Silverman
et al., 1992), for example, there are five different ac-
cent types (H*, L*, H+!H*, L+H*, L*+H).

We extracted a number of acoustic features from
accented words within the read portion of the Boston
Directions Corpus (BDC) (Nakatani et al., 1995) and
examined how well clustering in these acoustic di-
mensions correlates to manually annotated pitch ac-
cent types. We obtained a very skewed distribution,
with a majority of H* pitch accents.5 We there-
fore included only a randomly selected 10% sample
of H* accents, providing a more even distribution
of pitch accent types for clustering: H* (54.4%),
L*(32.1%), L+H* (26.5%), L*+H (2.8%), H+!H*
(2.1%).

We extracted ten acoustic features from each ac-
cented word to serve as the clustering space for
this experiment. Using Praat’s (Boersma, 2001) Get
Pitch (ac)... function, we calculated the mean F0
and∆F0, as well as z-score speaker normalized ver-
sions of the same. We included in the feature vector
the relative location of the maximum pitch value in
the word as well as the distance between this max-

5Pitch accents containing a high tone may also be down-
stepped, or spoken in a compressed pitch range. Here we col-
lapsed allDOWNSTEPPEDinstances of each pitch accent with
the corresponding non-downstepped instances.
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imum and the point of maximum intensity. Finally,
we calculated the raw and speaker normalized slope
from the start of the word to the maximum pitch, and
from the maximum pitch to the end of the word.

Using this feature vector, we performed k-means
clustering and evaluate how successfully these di-
mensions represent differences between pitch accent
types. The resulting V-measure, VI andQ0 calcula-
tions are shown in Figure 5.
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Figure 5: Results of pitch accent clustering mea-
sured by V-Measure, VI andQ0

In evaluating the results from these experiments,
Q2 and V-measure reveal considerably different be-
haviors. Q2 shows a maximum atk = 10, and de-
scends atk increases. This is an artifact of theMDL
principle. Q2 makes the claim that a clustering so-
lution based on fewer clusters is preferable to one
using more clusters, and that the balance between
the number of clusters and the conditional entropy,
H(C|K), should be measured in terms of coding
length. With V-measure, we present a different argu-
ment. We contend that the a high value ofk does not
inherently reduce the goodness of a clustering solu-
tion. Using these results as an example, we find that
at approximately 30 clusters an increase of clusters
translates to an increase in V-Measure. This is due to
an increased homogeneity (H(C|K)

H(C) ) and a relatively

stable completeness (H(K|C)
H(K) ). That is, inclusion of

more clusters leads to clusters with a more skewed
within-cluster distribution and a equivalent distribu-
tion of cluster memberships within classes. This is
intuitively preferable – one criterion is improved, the
other is not reduced – despite requiring additional
clusters. This is an instance in which theMDL prin-

ciple limits the usefulness ofQ2. We again (see sec-
tion 5.1) observe the close dependency of VI andk.
Moreover, in considering figures 5 and 4, simulta-
neously, we see considerably higher values achieved
by the document clustering experiments. Given the
naı̈ve approaches taken in these experiments, this is
expected – and even desired – given the previous
work on these tasks: document clustering has been
notably more successfully applied than pitch accent
clustering. These examples allow us to observe how
transparently V-measure can be used to compare the
behavior across distinct data sets.

6 Conclusion

We have presented a new external cluster evaluation
measure, V-measure, and compared it with existing
clustering evaluation measures. V-measure is based
upon two criteria for clustering usefulness, homo-
geneity and completeness, which capture a cluster-
ing solution’s success in including all and only data-
points from a given class in a given cluster. We have
also demonstrated V-measure’s usefulness in com-
paring clustering success across different domains
by evaluating document and pitch accent cluster-
ing solutions. We believe that V-measure addresses
some of the problems that affect other cluster mea-
sures. 1) It evaluates a clustering solution indepen-
dent of the clustering algorithm, size of the data set,
number of classes and number of clusters. 2) It does
not require its user to map each cluster to a class.
Therefore, it only evaluates the quality of the cluster-
ing, not a post-hoc class-cluster mapping. 3) It eval-
uates the clustering of every data point, avoiding the
“problem of matching”. 4) By evaluating the criteria
of both homogeneity and completeness, V-measure
is more comprehensive than those that evaluate only
one. 5) Moreover, by evaluating these criteria sepa-
rately and explicitly, V-measure can serve as an el-
egant diagnositic tool providing greater insight into
clustering behavior.
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