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Abstract The realistic path also learns a model of transla-

tion, but uses that model only to obtain Viterbi word-
for-word alignments for the training corpus. The
bitext and corresponding alignments are then used
as input to a pattern extraction algorithm, which
yields a set of patterns or rules for a second trans-
lation model (which often has a wider parameter
space than that used to obtain the word-for-word
alignments). Weights for the second model are then
set, typically by counting and smoothing, and this
weighted model is used for translation. Realistic ap-
1 Methodsof statistical MT proaches scale to large data sets and have yielded

Roughly speaking, there are two paths commonl ette:tBLEL{[ ﬁﬁrforr_nanijg than thi'rt;dfal'St'ctﬁoufn't
taken in statistical machine translation (Figure 1).erpa S, but Ihere 1S a disconnect between he Trs

The idealistic path uses an unsupervised learni odel (hereafte_r, thalignment model) and the sec
algorithm such as EM (Demptser et al., 1977 d (thetrandlation model). Examples of realistic

to learn parameters for some proposed translatio%ls’tems are the phrase-based ATS system of Och

model from a bitext training corpus, and then di—anOI Ney (2004), the phrasal-syntax hybrid system

rectly translates using the weighted model. Som'é|Ier0 (Chiang, 2005), and the GHKM syntax sys-

examples of the idealistic approach are the direc'fiem (_Galley et al., 2004; Galley et al.,, 2006). For
IBM word model (Berger et al., 1994: Germann@” alignment model, most of these use_the Aachen
et al., 2001), the phrase-based approach of Maré_L'JMM approach (Vogel _et al,, 1996), the implemen-
and Wong (2002), and the syntax approaches of V\f&“on of IBM Model 4 in GIZA++, (Och and Ney,
(1996) and Yamada and Knight (2001). Idealisticzooo_) or, more recently, the semi-supervised EMD
approaches are conceptually simple and thus easng;onthm (Fraser and Marcu, 2006).

relate to observed phenomena. However, as moreThe two-model approach of the realistic path has
parameters are added to the model the idealistic apndeniable empirical advantages and scales to large
proach has not scaled well, for it is increasingly dif-data sets, but new research tends to focus on devel-
ficult to incorporate large amounts of training datapment of higher order translation models that are
efficiently over an increasingly large search spacénformed only by low-order alignments. We would
Additionally, the EM procedure has a tendency tdike to add the analytic power gained from mod-
overfit its training data when the input units haveern translation models to the underlying alignment
varying explanatory powers, such as variable-sizenodel without sacrificing the efficiency and empiri-
phrases or variable-height trees. cal gains of the two-model approach. By adding the

We present a method for improving word
alignment for statistical syntax-based ma-
chine translation that employs a syntacti-
cally informed alignment model closer to
the translation model than commonly-used
word alignment models. This leads to ex-
traction of more useful linguistic patterns
and improved BLEU scores on translation
experiments in Chinese and Arabic.
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Figure 1: General approach to idealistic and realistic statistical MT systems

patterns
model weighted
model
counting
and

syntactic information used in the translation modesize fragments (e.g. R6 vs. R14) and thus the possi-
to our alignment model we may improve alignmenble derivation trees of rules that explain a sentence
quality such that rule quality and, in turn, systenpair have varying sizes. The smallest such deriva-
quality are improved. In the remainder of this worktion tree has a single large rule (which does not ap-
we show how a touch of idealism can improve amear in Figure 2; we leave the description of such
existing realistic syntax-based translation system. a rule as an exercise for the reader). A string-to-
tree decoder constructdarivation forest of deriva-
2 Multi-level syntactic rulesfor syntax MT  tion trees where the right sides of the rules in a tree,
taken together, explain a candidate source sentence.

Galley et al. (2004) and Galley et al. (2006) dejt then outputs the English tree corresponding to the
scribe a syntactic translation model that relates Erkighest-scoring derivation in the forest.

glish trees to foreign strings. The model describes

joint production of a (tree, string) pair via a non-3 I ntroducing syntax into the alignment

deterministic selection of weighted rules. Each rule  modd

has an English tree fragment with variables and a

corresponding foreign string fragment with the sam#Ve now lay the ground for a syntactically motivated

variables. A series of rules forms an explanation (olignment model. We begin by reviewing an align-

derivation) of the complete pair. ment model commonly seen in realistic MT systems
As an example, consider the parsed English arnd compare it to a syntactically-aware alignment

corresponding Chinese at the top of Figure 2. Thelodel.

three columns underneath the example are different . ,

rule sequences that can explain this pair; there a?e1 Thetraditional IBM alignment model

many other possibilities. Note how rules specify roiBM Model 4 (Brown et al., 1993) learns a set of 4

tation (e.g. R10, R5), direct translation (R12, R8)probability tables to compute( f|e) given a foreign

insertion and deletion (R11, R1), and tree traversalentence and its target translationvia the follow-

(R7, R15). Note too that the rules explain variableing (greatly simplified) generative story:
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NP-C &8 & (i) R5 1 iz
/\
NPB PP TAIWAN IN TWO-SHORES TRADE MIDDLE SURPLUS
/\
NPB NN IN NP-C
N I |
NNP POS surplus in NPB PP
taiwan s NIN IIl\I NF|>-C
trade between NPB
— 7
DIT CID Nll\IS
the two shores
R1: NP-C — X0 x2 I:P x1 R10: NP-C — x0 x2 x1 R10: NP-C — x0 x2 x1
NPB x2:PP NPB x2:PP NPB x2:PP
X0:NPB x1:NN X0:NPB  x1:NN X0:NPB  x1:NN
R2: NPE  — B R11: N — X0 R17: e — X0
NNP  POS XO:NNP  POS NNP  x0:POS
| | 'S taiwan
taiwan s R12: \np — B8 R18:pos— B8
I I
taiwan 's
R3: PP — x0x1 R13: pp — ZE X0 R19: pp — x0
X0:IN- XL:NP-C IN  x0:NP-C IN  x0:NP-C
R4: IN — ’[_,:E |
| in in
n
R5: NP-C — X1 x0 RS: NP-C — x1x0 R20: NP-C — x2x0x1
X0:NPB  x1:PP X0:NPB  x1:PP X0:NPB PP
xL:IIN  x2:NP-C
R6: PP — R R14: PP — X0 R21: |y — ™
IN NP-C IN  x0:NP-C bet\!veen
between
between NPB R15: np.c — X0 R15: np.c — X0
DT CD NNS | |
I x0:NPB x0:NPB
the two shores
R16: NPB — ﬁ}u:Ti R22: NPB — x0 x1
DT cD NNS x0:DT CD x1:NNS
NN .
the two shores
R23: \ns — BE R24:p7r — &
I I
shores the
R7: NPB — x0 R7: NPB — x0 R7: NPB — X0
I I I
X0:NN X0:NN X0:NN
R8: y\N — BB R Ny —BiZE |R8 yy — BHRY (n — iE | R8 ny — BB ROy — M
I I I I I I
trade surplus trade surplus trade surplus

Figure 2: A (English tree, Chinese string) pair and three different detwitiilevel tree-to-string rules that
can explain it; the first set is obtained from bootstrap alignments, the séwndhis paper’s re-alignment
procedure, and the third is a viable, if poor quality, alternative that is aohés.
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S-C
/\
NIT-C VP
— ]
NPB VBG Pll:iT PP

N | PR
Nll\lP P?S opening RP T|O NIT—C

guangxi s NPB
AN JJ NN
\\\ outside world
N\
\\
TV %t 4h FK
GUANGXI OUTSIDE-WORLD OPENING-UP
R24: s-C — xO%5 FH  R25: ywp — ) P
NP-C/\VP gualngxi
NPB VEG  PLT BP

PN RN
X0:NNP P(l)S opening RIP T|O NPl-C
S up to NPB

DIT JlJ NN
the outside world

R26: sc —X0x1 R15: \pc —x0 R11: we  — X0 R27: VP — X0 FFIK
NPe o I T
XO:NP-C x1:VP x0:NPB x0:NNP P(IDS VE?G PIIQT x0:PP
'S opening RP

up
R28: pp —Xx0 RIS gpc —X0 R29: .y — X4k R25: \wp — )T

N | DT 3 NN |
TIO X0:NP-C XO:NPB tr‘1e out‘side wo‘rld guangXi

to

Figure 3: The impact of a bad alignment on rule extraction. Including therakgp link indicated by the
dotted line in the example leads to the rule set in the second row. The re-aligproeadure described in
Section 3.2 learns to prefer the rule set at bottom, which omits the bad link.

1. Afertility y for each worck; in e is chosen Ddistortion(AlA(e;), B(fi)), whereA and
with probability p e+ (y]e;). B are functions over the source and target
2. A null word is inserted next to each vocabularies, respectively.
fertility-expanded word with probability
Prull-
3. Each tokene; in the fertility-expanded
word and null string is translated into Brown et al. (1993) describes an EM algorithm
some foreign wordf; in f with probability for estimating values for the four tables in the gener-
Prrans(filei)- ative story. However, searching the space of all pos-
4. The position of each foreign word  sjple alignments is intractable for EM, so in practice
fi that was translated frome; is the procedure is bootstrapped by models with nar-
changed byA (which may be posi- rower search space such as IBM Model 1 (Brown et

tive, negative, or zero) with probability al., 1993) or Aachen HMM (Vogel et al., 1996).
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3.2 A syntax re-alignment model SENTENCE PAIRS

Now let us contrast this commonly used model for DESCRIPTION ~ CHINESE  ARABIC

obtaining alignments with a syntactically motivated TI_UNE Nlil-:—sz_l?ggosgon :1295 5536
alternative. We recall the rules described in Section EST

2. Our model learns a single probability table torapje 1: Tuning and testing data sets for the MT
computep(etree, f) given a foreign sentencéand system described in Section 5.2.
a parsed target translatiaiiree. In the following

generative story we assume a starting variable with

syntactic type. two shores” in this context, but the rule R6 learned
1. Choose a rule to replacev, with proba- from the alignment incorrectly includes “between”.
bility prue(r|v). However, oth_er sentence:_:, in the training corpus have
2. For each variable with syntactic typgin the correct alignment, which yields rule R16. Mean-
the partially completed (tree, string) pair, while, ruleg R13 and_ R14, learned from yet other
continue to choose rules with probabil- sentences in the training corpus, handlefhe..

ity prue(ri]v;) to replace these variables structure (which roughly translates to “in between”),

until there are no variables remaining. thus allowing the middle derivation.
In Section 5.1 we discuss an EM learning proce- EM distributes rule probabilities in such a way as

dure for estimating these rule probabilities. to maximize the probability of the training corpus.
As in the IBM approach, we must miti- It thus prefers to use one rule many times instead

gate intractability by limiting the parameter spacepf several different rules for the same situation over

searched, which is potentially much wider than iriseveral sentences, if possible. R6_ is _a possibl_e _rule
the word-to-word case. We would like to supply toln 46 of the 329,031 sentence pairs in the training

EM all possible rules that explain the training dataC°"Pus: while R16 is a possible rule in 100 sentence

but this implies a rule relating each possible tregairs. Well-formed rules_are more usable _than ill-
fragment to each possible string fragment, which igormed rules and the partial alignments behind these
infeasible. We follow the approach of bootstrappindUl€S: generally also well-formed, become favored
from a model with a narrower parameter space as f& Well- The top row of Figure 3 contains an exam-
done in, e.g. Och and Ney (2000) and Fraser anQJe of an alignment learned by the bootstrap align-
Marcu (20086). ment model that includes an incorrect link. Rule
To reduce the model space we employ the rule ag-§24, which is extracted from this alignment, is a

quisition technique of Galley et al. (2004), whichP20r rule. A _S(_at of commonly seen rules qurned
obtains rules given a (tree, string) pair as well ad®m other training sentences provide a more likely

an initial alignment between them. We are agno£XPlanation of the data, and the consequent align-
tic about the source of this bootstrap alignment an@'e"t ©mits the spurious link.

in Section 5 present results based on several diffeé- Experiments

ent bootstrap alignment qualities. We require an ini-

tial set of alignments, which we obtain from aword+n this section, we describe the implementation of
for-word alignment procedure such as GIZA++ orgyr semi-idealistic model and our means of evaluat-

EMD. Thus, we are not aligning input data, bufing the resulting re-alignments in an MT task.
ratherre-aligning it with a syntax model.

5.1 Therealignment setup

4 The eal of a syntax alignment model
ap ¥ g We begin with a training corpus of Chinese-English

Consider the example of Figure 2 again. The leftand Arabic-English bitexts, the English side parsed
most derivation is obtained from the bootstrap alignby a reimplementation of the standard Collins model
ment set. This derivation is reasonable but there afBikel, 2004). In order to acquire a syntactic rule set,
some poorly motivated rules, from a linguistic standwe also need a bootstrap alignment of each training
point. The Chinese wordi i roughly means “the sentence. We use an implementation of the GHKM
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BOOTSTRAPGIZA CORPUS REALIGNMENT EXPERIMENT

ENGLISH WORDS CHINESE WORDS| TYPE RULES TUNE TEST
baseline| 19,138,252 39.08 37.7(7
9,864,294 7,520,779 initial | 18,698,549 39.49 38.30
adjusted| 26,053,341 39.76 38.69

Table 2: A comparison of Chinese BLEU performance between the Gl&&lioe (no re-alignment), re-
alignment as proposed in Section 3.2, and re-alignment as modified in Seeion 5

algorithm (Galley et al., 2004) to obtain a rule set fotakes about 10 minutes, after which the Viterbi
each bootstrap alignment. derivation trees are directly recoverable. The Viterbi
Now we need an EM algorithm for learn- derivation tree tells us which English words produce
ing the parameters of the rule set that maximizevhich Chinese words, so we can extract a word-
H p(tree, string). Such an algorithm is pre- to-word alignment from it. We summarize the ap-

corpus _ . proach described in this paper as:
sented by Graehl and Knight (2004). The algorithm 1. Obtain bootstrap alignments for a training
consists of two components:HRIV, which is a pro- corpus using GIZA++

cedure for constructing a packed forest of derivation 2. Extract rules from the corpus and align-
trees of rules that explain a (tree, string) bitext cor- ments using GHKM, noting the partial

bus given that corpus and a rule _set, amRiAN, alignment that is used to extract each rule.
which is an iterative parameter-setting procedure. 3. Construct derivation forests for each (tree

We initially attempted to use the top-downeb string) pair, ignoring the alignments and'

RIV algorithm of Graehl and Knight (2004), but as run EM to (’)btain Viterbi derivation tr’ees
the constraints of the derivation forests are largely then use the annotated partial alignmer;ts
lexical, too much time was spent on exploring dead- to obtain Viterbi alignments.

ends. Instead we build derivation forests using the 4. Use the new alignments as input to the MT
following sequence of operations: system described below.

1. Binarize rules using the synchronous bina-
rization algorithm for tree-to-string trans- 52 TheMT system setup
ducers described in Zhang et al. (2006).

2. Construct a parse chart with a CKY parser
simultaneously constrained on the foreign
string and English tree, similar to the
bilingual parsing of Wu (1997.

3. Recover all reachable edges by traversing
the chart, starting from the topmost entry.

A truly idealistic MT system would directly apply

the rule weight parameters learned via EM to a ma-
chine translation task. As mentioned in Section 1,
we maintain the two-model, or realistic approach.
Below we briefly describe the translation model, fo-
cusing on comparison with the previously described

Since the chart is constructed bottom-up, leaf Iex@llgnment rrode;ll. Ggll(_ey etfaIH (2006)| p.rowdesdal
ical constraints are encountered immediately, resulf(0r€ complete description of the transiation mode

ing in a narrower search space and faster runningf’d QeNeefe etal. (2007) provides amaore complete
time than the top-down BRIV algorithm for this escription of the end-to-end translation pipeline.

application. Derivation forest construction takes Although in principle the re-alignment model and
around 400 hours of cumulative machine time (4§ranslat|on model learn parameter weights over the

processor machines) for Chinese. The actual rug@Me rule space, in practice we limit the rules used
ning of EM iterations (which directly implements for re-alignment to the set of smallest rules that ex-

the TRAIN algorithm of Graehl and Knight (2004)) plain the trai_ning corpus apd_are consistenf[ with the
- bootstrap alignments. This is a compromise made
!In the cases where a rule is not synchronous-binarizablgy reduce the search space for EM. The translation

standard left-right binarization is performed and proper permu- del | ltinle derivati frul istent
tation of the disjoint English tree spans must be verified wheRNOGEl l€arns multiple daerivations or rules consisten

building the part of the chart that uses this rule. with the re-alignments for each sentence, and learns
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(a) Chinese re-alignment corpus has 9,864,294 English and 7,520hiiese words

BOOTSTRAPGIZA CORPUS REALIGNMENT EXPERIMENT
ENGLISH WORDS CHINESE WORDS TYPE RULES TUNE TEST
9,864,294 7520779 baseline | 19,138,252 39.08 37.7}

re-alignment| 26,053,341 39.76 38.69
baseline | 23,386,535 39.51 38.93
re-alignment| 33,374,646 40.17 39.96

221,835,870 203,181,379

(b) Arabic re-alignment corpus has 4,067,454 English and 3,14 Ad&lfic words

BOOTSTRAPGIZA CORPUS REALIGNMENT EXPERIMENT
ENGLISH WORDS ARABIC WORDS TYPE RULES TUNE TEST
baseline | 2,333,839 47.92 47.33
4,067,454 3,147,420 re-alignment| 2,474,737 47.87 47.89
168,255,347 147,165,003 baseline | 3,245,499 49.72 49.60

re-alignment| 3,600,915 49.73 49.99

Table 3: Machine Translation experimental results evaluated with casesitise BLEUA4.

weights for these by counting and smoothing. Aot rarely seen — R11 is in 13,311 foresther than
dozen other features are also added to the rules. Wewse where R2 is seen, and R12 is in 2,500 addi-
obtain weights for the combinations of the featuresional forests. EM gives R11 a probability of 772

by performing minimum error rate training (Och,— better than 98.7% of rules, and R12 a probability
2003) on held-out data. We then use a CKY decoderf ¢=2. But R2 receives a probability af 632

to translate unseen test data using the rules and turead is preferred over the R11-R12 derivation, which
weights. Table 1 summarizes the data used in tunirftas a combined probability ef 10-68,

and testing.
g 54 Making EM fair

5.3 Initial results The preference for shorter derivations containing

- . . large rules over longer derivations containing small
An initial re-alignment experiment shows a reason- 9 g g

able rise in BLEU scores from the baseline (Tabl (ules is due to a general tendency for EM to pre-

2), but closer inspection of the rules favored by E er derivations .W'th few atoms. Marcg and Wong
S 2002) note this preference but consider the phe-
implies we can do even better. EM has a tenden

omenon a feature, rather than a bug. Zollmann

to favor few large rules over many small rules, even L -
, and Sima’'an (2005) combat the overfitting aspect
when the small rules are more useful. Referring t?or arsing by using a held-out corpus and a straight
the rules in Figure 2, note that possible derivations P g by 9 P g

for (taiwan s, [ﬁ‘@)z are R2, R11-R12, and R17- maximum Ilkgllhood estimate, rather than EM. We
take a modeling approach to the phenomenon.

R18. Clearly the third derivation is not desirable, Asth bability of a derivation is determined b
and we do not discuss it further. Between the firsg > < Probabliity ora derivation Is cetermin€d by
o . the product of its atom probabilities, longer deriva-
two derivations, R11-R12 is preferred over R2, a% ns with more probabilities to multioly have an in
the conditioning for possessive insertion is not rec o> WILH MOTE probabriities to mUtiply have a
o ) L (51erent disadvantage against shorter derivations, all

lated to the specific Chinese word being inserte se bei L EM i erati q q

Of the 1,902 sentences in the training corpus whereﬁse €ing equal. 'S an lierative procedure an

. - . . thus such a bias can lead the procedure to converge
this pair is seen, the bootstrap alignments yield the.th ificially raised probabilities for short deri
R2 derivation 1,649 times and the R11-R12 derivay - arinclally raised probabiities for short deriva-
. . : tions and the large rules that comprise them. The
tion 0 times. Re-alignment does not change the re-" .
relatively rare applicability of large rules (and thus

sult much; the new alignments yield the R2 deriva- )
wer observed partial counts) does not overcome

tion 1,613 times and again never choose R11-R12. "
. L the inherent advantage of large coverage. To com-

The rules in the second derivation themselves are . . : ) .
bat this, we introduce size terms into our generative

2The Chinese gloss is simply “taiwan”. story, ensuring that all competing derivations for the
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LANGUAGE PAIR TYPE RULES TUNE TEST
baseline | 55,781,061 4151 40.55
EMD re-align | 69,318,930 41.23 40.55
baseline 8,487,656 51.90 51.69
EMD re-align| 11,498,150 51.88 52.11

CHINESE-ENGLISH

ARABIC-ENGLISH

Table 4: Re-alignment performance with semi-supervised EMD bootstrapadigts

same sentence contain the same number of atomsb.5 Results

We performed primary experiments on two different
bootstrap setups in two languages: the initial exper-
iment uses the same data set for the GIZA++ initial
alignment as is used in the re-alignment, while an
experiment on better quality bootstrap alignments
uses a much larger data set. For each bootstrap-
ping in each language we compared the baseline
of using these alignments directly in an MT sys-
tem with the experiment of using the alignments ob-

. ) o tained from the re-alignment procedure described in
This generative story changes the derivation cOMgection 5.4. For each experiment we report: the

parison from R2 vs R11-R12 to S2-R2 vs R11-R12, mper of rules extracted by the expanded GHKM
where S2 is the atom that represents the choice gigorithm of Galley et al. (2006) for the translation

size 2 (the size of a rule in this context is the numbef,qdel, converged BLEU scores on the tuning set,
of non-leaf and non-root nodes in its tree fragmenthq finally BLEU performance on the held-out test
Note that the variable number of inclusions impliedyat pata set specifics for the GIZA++ bootstrapping

by the exponent in the generative story above efyng BLEU results are summarized in Table 3.
sures that all derivations have the same size. For ex-

ample, a derivation with one size-3 rule, a derivatios g Discussion

with one size-2 and one size-1 rule, and a deriva-
tion with three size-1 rules would each have thred N€ results presented demonstrate we are able to

atoms. With this revised model that allows for faifMProve on unsupervised GIZA++ alignments by
comparison of derivations, the R11-R12 derivatio@20ut 1 BLEU point for Chinese and around 0.4
is chosen 1636 times, and S2-R2 is not chosen. F-EU point for Arabic using an additional unsu-

does, however, appear in the translation model, fervised algorithm that requires no human aligned

the expanded rule extraction described in Section 532t@. If human-aligned data is available, the EMD
creates R2 by joining R11 and R12. algorithm provides higher baseline alignments than

GIZA++ that have led to better MT performance

The probability of size atoms, like that of rule (Fraser and Marcu, 2006). As a further experi-
atoms, is decided by EM. The revised generativment we repeated the experimental conditions from
story tends to encourage smaller sizes by virtue dfable 3, this time bootstrapped with the semi-
the exponent. This does not, however, simply ensusapervised EMD method, which uses the larger
the largest number of rules per derivation is used ibootstrap GIZA corpora described in Table 3 and
all cases. llI-fitting and poorly-motivated rules suchan additional 64,469/48,650 words of hand-aligned
as R22, R23, and R24 in Figure 2 are not preferrefinglish-Chinese and 43,782/31,457 words of hand-
over R16, even though they are smaller. Howevealigned English-Arabic. The results of this advanced
R14 and R16 are preferred over R6, as the formaxperiment are in Table 4. We show a 0.42 gain in
are useful rules. Although the modified model doeBLEU for Arabic, but no movement for Chinese. We
not sum to 1, it leads to an improvement in BLEUbelieve increasing the size of the re-alignment cor-
score, as can be seen in the last row of Table 2.  pora will increase BLEU gains in this experimental

1. Choose a rule sizewith costcg;..(s)* 1.

2. Choose a rule (of sizes) to replace the
start symbol with probability, ;. (7|s, v).

3. For each variable in the partially com-
pleted (tree, string) pair, continue to
choose sizes followed by rules, recur-
sively to replace these variables until there
are no variables remaining.
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condition, but leave those results for future work. Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
We can see from the results presented that the im- Marcu. 2004. What's in a translation rule? mRnoc.

pact of the syntax-aware re-alignment procedure of H-T-NAACL, pages 273-280, Boston, May.

Section 3.2, coupled with the addition of size paramMichel Galley, Jonathan Graehl, Kevin Knight, Daniel

eters to the generative story from Section 5.4 serves Marcu, Steven DeNeefe, Wei Wang, and Ignacio

: : Thayer. 2006. Scalable inference and training of
to remove links from the bootstrap alignments that o+ .5 syntactic models. IRroc. COLING-

cause less useful rules to be extracted, and thus in-ac| pages 961-968, Sydney, July.
crease the overall quality of the rules, and hence the

. Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
system performance. We thus see the benefit to itt Marcu, and Kenji Yamada. 2001. Fast decoding and

cluding syntax in an alignment model, bringing the  ,5timal decoding for machine translation. Rroc.
two models of the realistic machine translation path ACL, pages 228-235, Toulouse, France, July.

somewhat closer together. Jonathan Graehl and Kevin Knight. 2004. Training tree

transducers. IrProc. HLT-NAACL, pages 105-112,
Boston, May.
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