
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 238–247, Prague, June 2007. c©2007 Association for Computational Linguistics

A Sequence Alignment Model Based on the Averaged Perceptron

Dayne Freitag
Fair Isaac Corporation

3661 Valley Centre Drive
San Diego, CA 92130, USA

DayneFreitag@fairisaac.com

Shahram Khadivi
Lehrstuhl für Informatik 6

Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

khadivi@cs.rwth-aachen.de

Abstract

We describe a discriminatively trained se-
quence alignment model based on the av-
eraged perceptron. In common with other
approaches to sequence modeling using per-
ceptrons, and in contrast with comparable
generative models, this model permits and
transparently exploits arbitrary features of
input strings. The simplicity of perceptron
training lends more versatility than compa-
rable approaches, allowing the model to be
applied to a variety of problem types for
which a learned edit model might be useful.
We enumerate some of these problem types,
describe a training procedure for each, and
evaluate the model’s performance on sev-
eral problems. We show that the proposed
model performs at least as well as an ap-
proach based on statistical machine transla-
tion on two problems of name translitera-
tion, and provide evidence that the combina-
tion of the two approaches promises further
improvement.

1 Introduction

Sequence alignment is a problem that crops up in
many forms, both in computational linguistics (CL)
and in other endeavors. The ability to find an op-
timal alignment between two sequences has found
application in a number of areas of CL, includ-
ing phonetic modeling (Ristad and Yianilos, 1998),
name transcription (Huang et al., 2004), and dupli-
cate detection or information integration (Bilenko

and Mooney, 2003; McCallum et al., 2005). Se-
quence alignment is a member of a broader class of
problems which we might call sequence transduc-
tion, to which one of the core CL challenges, ma-
chine translation, belongs.

Under the assumption that one string (the target)
is produced through a series of local edits to another
string (the source), and given an edit cost matrix,
the optimal sequence of edits can be efficiently com-
puted through dynamic programming (Needleman
and Wunsch, 1970). While the cost matrix tradition-
ally has been set by hand, several recent papers have
proposed determining edit costs empirically. These
proposals arise from a variety of learning paradigms,
including generative models (Ristad and Yianilos,
1998; Bilenko and Mooney, 2003), conditional ran-
dom fields (McCallum et al., 2005), maximum-
margin methods (Joachims, 2003), and gradient
boosting (Parker et al., 2006). While approaches
based on generative models support only limited fea-
ture engineering, discriminative approaches share
the advantage of allowing arbitrary features of the
input sequences.

We describe a new sequence alignment model
based on the averaged perceptron (Collins, 2002),
which shares with the above approaches the ability
to exploit arbitrary features of the input sequences,
but is distinguished from them by its relative sim-
plicity and the incremental character of its training
procedure. The fact that it is an online algorithm
makes it straightforward to adapt to a range of prob-
lems. To show this, we evaluate the approach on
several different tasks, some of them merely illus-
trative, but some with clear practical significance,

238



particularly the problem of named entity transcrip-
tion.

2 The Algorithm

2.1 The Formalism

Suppose we are given two sequences, s
m
1 ∈ Σ∗

s

and t
n
1 ∈ Σ∗

t . We desire a real-valued function
A(s, t) which assigns high scores to pairs s, t with
high affinity, where affinity is an application-specific
notion (e.g., t is a likely phoneme sequence repre-
sented by the letter sequence s). If we stipulate that
this score is the sum of the individual scores of a
series of edits, we can find the highest-scoring such
series through a generalization of the standard edit
distance:

A(si
1, t

j
1) =

max











aε,tj (s, i, t, j) + A(si
1, t

j−1

1 )

asi,ε(s, i, t, j) + A(si−1
1 , t

j
1)

asi,tj (s, i, t, j) + A(si−1
1 , t

j−1

1 )

(1)

with A(∅, ∅) = 0. The function asi,tj (s, i, t, j) rep-
resents the score of substituting tj for si; aε,tj and
asi,ε represent insertion and deletion, respectively. If
we assume constant-time computation of primitive
edit costs, this recursive definition of A allows us to
find the highest scoring series of edits for a given
sequence pair in time proportional to the product of
their lengths. Note that a is indexed by the charac-
ters involved in an edit (i.e., inserting ‘e’ generally
has a different cost than inserting ‘s’). Note further
that the score associated with a particular operation
may depend on any features computable from the
respective positions in the two sequences.

In the experiments reported in this paper, we as-
sume that each local function a is defined in terms
of p + q features, {f1, · · · , fp, fp+1, · · · , fp+q},
and that these features have the functional form
Σ∗ ×N 7→ R. In other words, each feature takes
a sequence and an index and returns a real value.
The first p features are defined over sequences from
the source alphabet, while the remaining q are de-
fined over the target alphabet.1 In this paper we use
character n-gram indicator features.

1Of course, features that depend jointly on both sequences
may also be of interest.

1: Given a set S of source sequences
2: V ← [], an empty list
3: α← 0, a weight vector
4: for some number of iterations do
5: for s in S do
6: Pick t, t

′, t having higher affinity with s

7: 〈e, v〉 ← Aα(s, t)
8: 〈e′, v′〉 ← Aα(s, t′)
9: if v′ ≥ v then

10: α← α + Φ(s, t, e)− Φ(s, t′, e′)
11: end if
12: Append α to V

13: end for
14: end for
15: Return the mean α from V

Table 1: The training algorithm. Aα is the affinity
function under model parameters α, returning edit
sequence e and score v.

The score of a particular edit is a linear combina-
tion of the corresponding feature values:

a(s, i, t, j) =
p

∑

k=1

αk · fk(s, i) +
p+q
∑

k=p+1

αk · fk(t, j)

(2)
The weights αk are what we seek to optimize in or-
der to tune the model for our particular application.

2.2 A Perceptron-Based Edit Model

In this section we present a general-purpose exten-
sion of perceptron training for sequence labeling,
due to Collins (2002), to the problem of sequence
alignment. Take α to be a model parameterization,
and let Aα(s, t) return an optimal edit sequence e,
with its score v, given input sequences s and t un-
der α. Elements of sequence e are character pairs
〈cs, ct〉, with cs ∈ Σs ∪ {ε} and ct ∈ Σt ∪ {ε},
where ε represents the empty string. Let Φ(s, t, e)
be a feature vector, having the same dimensional-
ity as α, for a source, target, and corresponding edit
sequence. This feature vector is the sum of feature
vectors at each point in e as it is played out along
input sequences s and t.

Table 1 shows the basic algorithm. Starting with
a zero parameter vector, we iterate through the col-
lection of source sequences. For each sequence, we
pick two target sequences having unequal affinity

239



with the source sequence (Line 6). If the scores re-
turned by our current model (Lines 7 and 8) agree
with our ordering, we do nothing. Otherwise, we
update the model using the perceptron training rule
(Line 10). Ultimately, we return α averaged over all
datapoint presentations.

2.3 Training Modes

The algorithm presented in Table 1 does not specify
how the two target sequences t and t

′ are to be cho-
sen in Line 6. The answer to this question depends
on the application. There are fundamentally two set-
tings, depending on whether or not target strings are
drawn from the same set as source strings; we will
call the setting in which source and target strings in-
habit the same set the affinity setting, and refer to the
the case where they form different sets as the trans-
duction setting. Here, we sketch four problem sce-
narios, two from each setting, and specify a target
selection procedure appropriate for each.

Affinity, ranking. The task poses a latent affinity
between strings, but we can measure it only indi-
rectly. In particular, we can order some of the target
sequences according to their affinity with a source
sequence s. In this case, we train as follows: Order
a sample of the target sequences according to this
partial order. Let t and t

′ be two sequences from
this order, such that t is ordered higher than t

′.
Affinity, classification. The sequences in Σ∗ can

be grouped into classes, and we wish the model to
assign high affinity to co-members of a class and
low affinity to members of different classes. Train
as follows: For each s, sample t from among its co-
members and t

′ from among the members of other
classes.

Transduction, ranking. The data is presented as
source-target pairs, where each t is a transduction
of the corresponding s. We wish to learn a model
which, given a novel s, will enable us to rank can-
didate transductions. Train as follows: Given s, let
t be the target sequence provided to us. Sample t

′

from among the other target sequences.
Transduction, generation. We are again given

source-target pairs. We wish to learn to generate a
probable target string, given a novel source string.
Train as follows: Generate a t

′ that is approximately
optimal according to the current model. Note that
since edit decisions are based in part on (arbitrary)

edit
ˆ
ing → STR

ˆ
INGS

fs,it ft,TR

fs,t ft,R

fs, in f∅
fs, i

Table 2: Features with non-zero value for an exam-
ple string pair and a model of order 2.

features of the target sequence, and since generation
involves construction of the target sequence, it is not
uncommon for a greedy generator to make edit de-
cisions which are locally optimal, but which result
several edits later in a partially constructed sequence
in which no good edits are available. Thus, the prob-
lem of generation does not correspond to a simple
recurrence relation like Equation 1. Consequently,
we experimented with several heuristic approaches
to generation and found that a beam search works
well.

3 Evaluation

To establish the effectiveness of the model, we
trained it on a range of problems, including instances
of each of the four settings enumerated above. Prob-
lems ranged from the merely illustrative to a non-
trivial application of computational linguistics.

3.1 Feature Construction

Without exception, the features we provide to the
algorithm are the same in all experiments. Given
a user-specified order k, we define a Boolean fea-
ture for every distinct character gram observed in the
data of length k or smaller. Recall that there are two
disjoint sets of features, those defined over strings
drawn from the source and target alphabets, respec-
tively. Given a source string and index, those fea-
tures have value 1 whose corresponding grams (of
size k or smaller) are observed preceding or follow-
ing the index (preceding features are distinct from
following ones); given a target string and index, we
observe only preceding grams. Although it is pos-
sible to observe following grams in the target string
in some settings, it is not possible in general (i.e.,
not when generating strings). We therefore adhere
to this restriction for convenience and uniformity.

An example will make this clear. In Table 2 we

240



are midway through the conversion of the source
string “editing” into the target string “STRINGS”.
Below the two strings are those gram features which
have non-zero value at the indicated cursors. The
underbar character encodes on which side of the cur-
sor a gram is observed. Note that an empty-gram
feature, which always tests true, is also included, al-
lowing us to experiment with 0-order models.

3.2 Illustrative Problems

To test the ability of the model to recover known
edit affinities, we experimented with a simple artifi-
cial problem. Using a large list of English words,
we define an edit affinity that is sensitive only to
consonants. Specifically, the affinity between two
words is the maximum number of consonant self-
substitutions, with any substitutions involving the
first five consonants counting for five normal substi-
tutions. Thus, substituting ‘b’ for ‘b’ contributes 5 to
the score, substituting ‘z’ for ‘z’ contributes 1, while
operations other than self-subsitutions, and any op-
erations involving vowels, contribute 0.

One epoch of training is conducted as follows.
For each word s in the training set, we choose 10
other words from the set at random and sort these
words according to both the true and estimated affin-
ity. Let t be the string with highest true affinity; let
t′ (the decoy) be the string with highest estimated
affinity. We performed 3-fold cross-validation on a
collection of 33,432 words, in each fold training the
model for 5 epochs.2

Our performance metric is ranking accuracy, the
fraction of target string pairs to which the estimated
ranking assigns the same order as the true one. Dur-
ing testing, for each source string, we sample at ran-
dom 1000 other strings from the hold-out data, and
count the fraction of all pairs ordered correctly ac-
cording to this criterion.

A 0-order model successfully learns to rank
strings according to this affinity with 99.3% ac-
curacy, while ranking according to the unmodified
Levenshtein distance yields 76.4%. Table 3 shows
the 6 averaged weights with the highest magnitude

2Here and in other experiments involving the edit model, the
number of epochs was set arbitrarily, and not based on perfor-
mance on a development set. Beyond the number of epochs re-
quired for convergence, we have not observed much sensitivity
in test accuracy to the number of epochs.

〈d, d〉: f∅ 61.1
〈c, c〉: f∅ 60.6
〈g, g〉: f∅ 60.3
〈b, b〉: f∅ 59.1
〈f, f〉: f∅ 57.0
〈t, t〉: f∅ 18.6

Table 3: Largest weights in a consonant-preserving
edit affinity in which the first five consonants are
given 5 times as much weight as others.

from a model trained on one of the folds. In pre-
senting weights, we follow the formatting conven-
tion edit:feature. Since the model in question is of
order 0, all features in Table 3 are the “empty fea-
ture.” Note how idempotent substitutions involving
the 5 highly weighted consonants are weighted sig-
nificantly higher than the remaining operations.

3.3 Rhyming

While the above problem illustrates the ability of
the proposed algorithm to learn latent alignment
affinities, it is expressible as a order-0 model. A
somewhat more interesting problem is that of mod-
eling groups of rhyming words. This problem is
an instance of what we called the “classification”
scenario in Section 2.3. Because English letters
have long since lost their direct correspondence to
phonemes, the problem of distinguishing rhyming
English words is difficult for a knowledge-lean edit
model. What’s more, the importance of a letter is
dependent on context; letters near the end of a word
are more likely to be significant.

We derived groups of rhyming words from the
CMU pronouncing dictionary (CMU, 1995), dis-
carding any singleton groups. This yielded 21,396
words partitioned into 3,799 groups, ranging in size
from 464 words (nation, location, etc.) down to 2.
We then divided the words in this data set at random
into three groups for cross-validation.

Training was conducted as follows. For each
word in the training set, we selected at random up to
5 rhyming words and 5 non-rhyming words. These
words were ranked according to affinity with the
source word under the current model. Let t be
the lowest scoring rhyming word, and let t′ be the
highest-scoring non-rhyming word.

241



Model Precision
Levenshtein 0.126
Longest common suffix 0.130
PTEM, Order 0 0.505
PTEM, Order 3 0.790

Table 4: Micro-averaged break-even precision on
the task of grouping rhyming English words.

For each word in the hold-out set, we scored and
ranked all rhyming words in the same set, as well
as enough non-rhyming words to total 1000. We
then recorded the precision at the point in this rank-
ing where recall and precision are most nearly equal.
Our summary statistic is the micro-averaged break-
even precision.

Table 4 presents the performance of the proposed
model and compares it with two simple baselines.
Not surprisingly, performance increases with in-
creasing order. The simple heuristic approaches fare
quite poorly by comparison, reflecting the subtlety
of the problem.

3.4 Transcription

Our work was motivated by the problem of named
entity transcription. Out-of-vocabulary (OOV)
terms are a persistent problem in statistical machine
translation. Often, such terms are the names of en-
tities, which typically have low corpus frequencies.
In translation, the appropriate handling of names is
often to transcribe them, to render them idiomati-
cally in the target language in a way that preserves,
as much as possible, their phonetic structure. Even
when an OOV term is not a name, transcribing it
preserves information that would otherwise be dis-
carded, leaving open the possibility that downstream
applications will be able to make use of it.

The state of the art in name transcription involves
some form of generative model, sometimes in com-
bination with additional heuristics. The generative
component may involve explicitly modeling pho-
netics. For example, Knight and Graehl (1998)
employ cascaded probabilistic finite-state transduc-
ers, one of the stages modeling the orthographic-
to-phonetic mapping. Subsequently, Al-Onaizan
and Knight (2002) find they can boost perfor-
mance by combining a phonetically-informed model

Task Train Dev Eval ELen FLen
A-E 8084 1000 1000 6.5 4.9
M-E 2000 430 1557 16.3 23.0

Table 5: Characteristics of the two transcription data
sets, Arabic-English (A-E) and Mandarin-English
(M-E), including number of training, development,
and evaluation pairs (Train, Dev, and Eval), and
mean length in characters of English and foreign
strings (ELen and FLen).

with one trained only on orthographic correspon-
dences. Huang et al. (2004), construct a probabilis-
tic Chinese-English edit model as part of a larger
alignment solution, setting edit weights in a heuris-
tic bootstrapped procedure.

In rendering unfamiliar written Arabic words or
phrases in English, it is generally impossible to
achieve perfect performance, because many sounds,
such as short vowels, diphthong markers, and dou-
bled consonants, are conventionally not written in
Arabic. We calculate from our experimental datasets
that approximately 25% of the characters in the En-
glish output must be inferred. Thus, a character error
rate of 25% can be achieved through simple translit-
eration.

3.4.1 Transcribing names

We experimented with a list of 10,084 personal
names distributed by the Linguistic Data Consor-
tium (LDC). Each entry in the database includes
an arabic name in transliterated ASCII (SATTS
method) and its English rendering. The Arabic
names appear as they would in conventional writ-
ten Arabic, i.e., lacking short vowels and other di-
acritics. We randomly segregated 1000 entries for
evaluation and used the rest for training. The A-E
row in Table 5 summarizes some of this data set’s
characteristics.

We trained the edit model as follows. For each
training pair the indicated English rendering con-
stitutes our true target (t), and we use the current
model to generate an alternate string (t′), updating
the model in the event t′ yields a higher score than t.
This was repeated for 10 epochs. We experimented
with a model of order 3.

Under this methodology, we observed a 1-best ac-

242



〈p, h〉: ft,a 38.5
〈p, t〉: ft,a 30.8
〈p, h〉: ft,ya 11.8
〈p, t〉: fs, p<e> -8.6
〈p, h〉: ft,rya -12.1
〈p, t〉: ft,uba -14.4

Table 6: Some of the weights governing the han-
dling of the tah marbouta (

�
� ) in an order-3 Arabic-

English location name transcription model. Buck-
walter encoding of Arabic characters is used here for
purposes of display. The symbol “<e>” represents
end of string.

curacy of 0.552. It is difficult to characterize the
strength of this result relative to those reported in the
literature. Al-Onaizan and Knight (2002) report a 1-
best accuracy of 0.199 on a corpus of Arabic person
names (but an accuracy of 0.634 on English names),
using a “spelling-based” model, i.e., a model which
has no access to phonetic information. However,
the details of their experiment and model differ from
ours in a number of respects.

It is interesting to see how a learned edit model
handles ambiguous letters. Table 6 shows the
weights of some of the features governing the han-
dling of the character

�
� (tah marbouta) from exper-

iments with Arabic place names. This character,
which represents the “t” sound, typically appears at
the end of words. It is generally silent, but is spoken
in certain grammatical constructions. In its silent
form, it is typically transcribed “ah” (or “a”); in its
spoken form, it is transcribed “at”. The weights in
the table reflect this ambiguity and illustrate some
of the criteria by which the model chooses the ap-
propriate transcription. For example, the negative
weight on the feature fs, p<e> inhibits the produc-
tion of “t” at the end of a phrase, where “h” is almost
always more appropriate. Similarly, “h” is more
common following “ya” in the target string (often as
part of the larger suffix “iyah”). However, the pre-
ceding context “rya” is usually observed in the word
“qaryat”, meaning “village” as in “the village of ...”
In this grammatical usage, the tah marbouta is spo-
ken and therefore rendered with a “t”. Consequently,
the corresponding weight in the “h” interpretation is
inhibitory.

The Al-Onaizan and Knight spelling model can
be regarded as a statistical machine translation
(SMT) system which translates source language
characters to target language characters in the ab-
sence of phonetic information. For comparison
with state of the art, we used the RWTH phrase-
based SMT system (Zens et al., 2005) to build an
Arabic-to-English transliteration system. This sys-
tem frames the transcription problem as follows. We
are given a sequence of source language charac-
ters sm

1 representing a name, which is to be trans-
lated into a sequence of target language characters
tn1 . Among all possible target language character se-
quences, we will choose the character sequence with
the highest probability:

t̂n̂1 = argmax
n,tn

1

{Pr(tn1 |s
m
1 )} (3)

The posterior probability Pr(tn
1 |s

m
1 ) is modeled di-

rectly using a log-linear combination of several
models (Och and Ney, 2002), including a character-
based phrase translation model, a character-based
lexicon model, a 4-gram character sequence model,
a character penalty and a phrase penalty. The first
two models are used for both directions: Arabic
to English and English to Arabic. We do not use
any reordering model because the target character
sequence is always monotone with respect to the
source character sequence. More details about the
baseline system can be found in (Zens et al., 2005).

We remark in passing that while the perceptron-
based edit model is a general algorithm for learn-
ing sequence alignments using simple features, the
above SMT approach combines several models,
some of which have been the subject of research in
the fields of speech recognition and machine trans-
lation for several years. Furthermore, we made an
effort to optimize the performance of the SMT ap-
proach on the tasks presented here.

Table 7 compares this system with the edit model.
The difference between the 1-best accuracies of the
two systems is significant at the 95% level, using
the bootstrap for testing. However, we can improve
on both systems by combining them. We segregated
1000 training documents to form a development set,
and used it to learn linear combination coefficients
over our two systems, resulting in a combined sys-
tem that scored 0.588 on the evaluation set—a sta-

243



Model 1best 5best
SMT 0.528 0.824
PTEM, Order 3 0.552 0.803

Linear combination 0.588 0.850

Table 7: 1-best and 5-best transcription accuracies.
The successive improvements in 1-best accuracy are
significant at the 95% confidence level.

tistically significant improvement over both systems
at the 95% confidence level.

3.4.2 Ranking transcriptions

In some applications, instead of transcribing a
name in one language into another, it is enough just
to rank candidate transcriptions. For example, we
may be in possession of comparable corpora in two
languages and the means to identify named entities
in each. If we can rank the likely transcriptions of
a name, we may be able to align a large portion of
the transliterated named entities, potentially extend-
ing the coverage of our machine translation system,
which will typically have been developed using a
smaller parallel corpus. This idea is at the heart of
several recent attempts to improve the handling of
named entities in machine translation (Huang et al.,
2004; Lee and Chang, 2003). A core component
of all such approaches is a generative model simi-
lar in structure to the “spelling” model proposed by
Al-Onaizan and Knight.

When ranking is the objective, we can adopt a
training procedure that is much less expensive than
the one used for generation. Let t be the correct tran-
scription for a source string (s). Sample some num-
ber of strings at random (200 in the following exper-
iments) from among the transcriptions in the training
set of strings other than s. Let t′ be the string having
highest affinity with s, updating the model, as usual,
if t′ scores higher than t.

In addition to the Arabic-English corpus, we also
experiment with a corpus distributed by the LDC
of full English names paired with their Mandarin
spelling. The M-E row of Table 5 summarizes char-
acteristics of this data set. Because we are inter-
ested in an approximate comparison with similar ex-
periments in the literature, we selected at random
2430 for training and 1557 for evaluation, which

are the data sizes used by Lee and Chang (2003)
for their experiments. In these experiments, the
Chinese names are represented as space-separated
pinyin without tonal markers.

Note that this problem is probably harder than the
Arabic one, for several reasons. For one thing, the
letters in a Mandarin transcription of a foreign name
represent syllables, leading to a somewhat lossier
rendering of foreign names in Mandarin than in Ara-
bic. On a more practical level, this data set is noisier,
occasionally containing character sequences in one
string for which corresponding characters are lack-
ing from its paired string. On the other hand, the
Mandarin problem contains full names, rather than
name components, which provides more context for
ranking.

We trained the edit model on both data sets us-
ing both the sampling procedure outlined above and
the self-generation training regime, in each case for
20 epochs, producing models of orders from 1 to 3.
However, we found that the efficiency of the phrase-
based SMT system described in the previous section
would be limited for this task, mainly due to two
reasons: the character-based phrase models due to
possible unseen phrases in an evaluation corpus, and
the character sequence model as all candidate tran-
scriptions confidently belong to the target language.
Therefore, to make the phrase-based SMT system
robust against data sparseness for the ranking task,
we also make use of the IBM Model 4 (Brown et
al., 1993) in both directions. The experiments show
that IBM Model 4 is a reliable model for the ranking
task. For each evaluation pair, we then ranked all
available evaluation transcriptions, recording where
in this list the true transcription fell.

Table 8 compares the various models, showing
the fraction of cases for which the true transcription
was ranked highest, and its mean reciprocal rank
(MRR). Both the phrase-based SMT model and the
edit model perform well on this task. While the best
configuration of PTEM out-performs the best SMT
model, the differences are not significant at the 95%
confidence level. However, compare these perfor-
mance scores to those returned by the system of Lee
and Chang (2003), who reported a peak MRR of
0.82 in similar experiments involving data different
from ours.

The PTEM rows in the table are separated into

244



Model C-E Task A-E Task
ACC MRR ACC MRR

SMT 0.795 0.797 0.982 0.985
SMT w/o LM 0.797 0.798 0.983 0.985
IBM 4 0.961 0.971 0.978 0.987
SMT + IBM 4 0.971 0.977 0.991 0.994

PTEMG, Ord. 1 0.843 0.877 0.959 0.975
PTEMG, Ord. 2 0.970 0.978 0.968 0.980
PTEMG, Ord. 3 0.975 0.982 0.971 0.983

PTEMR, Ord. 1 0.961 0.973 0.992 0.995
PTEMR, Ord. 2 0.960 0.972 0.989 0.993
PTEMR, Ord. 3 0.960 0.972 0.989 0.994

Table 8: Performance on two transcription ranking
tasks, showing fraction of cases in which the correct
transcription was ranked highest, accuracy (ACC)
and mean reciprocal rank of the correct transcription
(MRR).

those in which the model was trained using the
same procedure as for generation (PTEMG), and
those in which the quicker ranking-specific train-
ing regime was used (PTEMR). The comparison is
interesting, inasmuch it does not support the con-
clusion that one regime is uniformly superior to the
other. While generation regime yields the best per-
formance on Arabic (using a high-order model), the
ranking regime scores best on Mandarin (with a low-
order model). When training a model to generate, it
seems clear that more context in the form of larger
n-grams is beneficial. This is particularly true for
Mandarin, where an order-1 model probably does
not have the capacity to generate plausible decoys.

4 Discussion

This paper is not the first to show that perceptron
training can be used in the solution of problems
involving transduction. Both Liang, et al (2006),
and Tillmann and Zhang (2006) report on effective
machine translation (MT) models involving large
numbers of features with discriminatively trained
weights. The training of these models is an in-
stance of the “Generation” scenario outlined in Sec-
tion 2.3. However, because machine translation is
a more challenging problem than name transcrip-
tion (larger vocabularies, higher levels of ambigu-

ity, non-monotonic transduction, etc.), our general-
purpose approach to generation training may be in-
tractable for MT. Instead, much of the focus of these
papers are the heuristics that are required in order to
train such a model in this fashion, including feature
selection using external resources (phrase tables),
staged training, and generating to BLEU-maximal
sequences, rather than the reference target.

Klementiev and Roth (2006) explore the use of a
perceptron-based ranking model for the purpose of
finding name transliterations across comparable cor-
pora. They do not calculate an explicit alignment be-
tween strings. Instead, they decompose a string pair
into a collection of features derived from charac-
ter n-grams heuristically paired based on their loca-
tions in the respective strings. Thus, Klementiev and
Roth, in common with the two MT approaches de-
scribed above, carefully control the features used by
the perceptron. In contrast to these approaches, our
algorithm discovers latent alignments, essentially
selecting those features necessary for good perfor-
mance on the task at hand.

As noted in the introduction, several previous pa-
pers have proposed general, discriminatively trained
sequence alignment models, as alternatives to the
generative model proposed by Ristad and Yianilos.
McCallum, et al. (2005), propose a conditional ran-
dom field for sequence alignment, designed for the
important problem of duplicate detection and infor-
mation integration. Comprising two sub-models,
one for matching strings and one for non-matching,
the model is trained on sequence pairs explicitly
labeled “match” or “non-match,” and some care
is apparently needed in selecting appropriate non-
matching strings. It is therefore unclear how this
model would be extended to problems involving
ranking or generation.

Joachims (2003) proposes SVM-align, a sequence
alignment model similar in structure to that de-
scribed here, but which sets weights through di-
rect numerical optimization. Training involves ex-
posing the model to sequence pairs, along with the
correct alignment and some number of “decoy” se-
quences. The reliance on an explicit alignment and
hand-chosen decoys yields a somewhat less flexi-
ble solution than that presented here. It is not clear
whether these features of the training regime are in-
dispensable, or whether they might be generalized to

245



increase the approach’s scope. Note that where di-
rectly maximizing the margin is feasible, it has been
shown empirically to be superior to perceptron train-
ing (Altun et al., 2003).

Parker et al. (2006), propose to align sequences by
gradient tree boosting. This approach has the attrac-
tive characteristic that it supports a factored repre-
sentation of edits (a characteristic it shares with Mc-
Callum et al.). Although this paper does not evaluate
the method on any problems from computational lin-
guistics (the central problem is musical information
retrieval), gradient tree boosting has been shown to
be an effective technique for other sorts of sequence
modeling drawn from computational linguistics (Di-
etterich et al., 2004).

5 Conclusion

Motivated by the problem of Arabic-English tran-
scription of names, we adapted recent work in per-
ceptron learning for sequence labeling to the prob-
lem of sequence alignment. The resulting algorithm
shows clear promise not only for transcription, but
also for ranking of transcriptions and structural clas-
sification. We believe this versatility will lead to
other successful applications of the idea, both within
computational linguistics and in other fields involv-
ing sequential learning.

Acknowledgment of support

This material is based upon work supported by
the Defense Advanced Research Projects Agency
(DARPA/IPTO) under Contract HR0011-06-C-
0023. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the Defense Advanced Research Projects
Agency (DARPA).

References

Y. Al-Onaizan and K. Knight. 2002. Machine translit-
eration of names in Arabic text. In Proceedings of
the ACL-02 workshop on computational approaches to
semitic languages.

Y. Altun, I. Tsochantaridis, and T. Hofmann. 2003. Hid-
den Markov support vector machines. In Proceedings
of ICML-2003.

M. Bilenko and R. Mooney. 2003. Adaptive duplicate
detection using learnable string similarity measures.
In Proceedings of KDD-2003.

P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and
R. L. Mercer. 1993. The mathematics of statistical
machine translation: Parameter estimation. Computa-
tional Linguistics, 19(2), June.

CMU. 1995. The CMU pronouncing dictionary.
http://www.speech.cs.cmu.edu/cgi-bin/cmudict. Ver-
sion 0.6.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: theory and experiments with
perceptron algorithms. In Proceedings of EMNLP-
2002.

T. Dietterich, A. Ashenfelter, and Y. Bulatov. 2004.
Training conditional random fields via gradient tree
boosting. In Proceedings of ICML-2004.

F. Huang, S. Vogel, and A. Waibel. 2004. Improving
named entity translation combining phonetic and se-
mantic similarities. In Proceedings of HLT-NAACL
2004.

T. Joachims. 2003. Learning to align sequences: a
maximum-margin approach. Technical report, Cornell
University.

A. Klementiev and D. Roth. 2006. Weakly supervised
named entity transliteration and discovery from mul-
tilingual comparable corpora. In Proceedings of Col-
ing/ACL 2006.

K. Knight and J. Graehl. 1998. Machine transliteration.
Computational Linguistics, 24(4).

C.-J. Lee and J.S. Chang. 2003. Acquisition of English-
Chinese transliterated word pairs from parallel-aligned
texts using a statistical machine transliteration model.
In Proceedings of the HLT-NAACL 2003 Workshop on
Building and Using Parallel Texts.

P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to
machine translation. In Proceedings of COLING
2006/ACL 2006.

A. McCallum, K. Bellare, and F. Pereira. 2005. A condi-
tional random field for discriminatively-trained finite-
state string edit distance. In Proceedings of UAI-2005.

S.B. Needleman and C.D. Wunsch. 1970. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of
Molecular Biology, 48.

F.J. Och and H. Ney. 2002. Discriminative training
and maximum entropy models for statistical machine
translation. In ACL02, pages 295–302, Philadelphia,
PA, July.

246



C. Parker, A. Fern, and P Tadepalli. 2006. Gradient
boosting for sequence alignment. In Proceedings of
AAAI-2006.

E.S. Ristad and P.N. Yianilos. 1998. Learning string-edit
distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20.

C. Tillmann and T. Zhang. 2006. A discriminative global
training algorithm for statistical MT. In Proceedings
of Coling/ACL 2006.

R. Zens, O. Bender, S. Hasan, S. Khadivi, E. Matusov,
J. Xu, Y. Zhang, and H. Ney. 2005. The RWTH
phrase-based statistical machine translation system. In
Proceedings of the International Workshop on Spoken
Language Translation (IWSLT), pages 155–162, Pitts-
burgh, PA, October.

247


