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Abstract

We introduce a relation extraction method to
identify the sentences in biomedical text that
indicate an interaction among the protein
names mentioned. Our approach is based on
the analysis of the paths between two protein
names in the dependency parse trees of the
sentences. Given two dependency trees, we
define two separate similarity functions (ker-
nels) based on cosine similarity and edit dis-
tance among the paths between the protein
names. Using these similarity functions, we
investigate the performances of two classes
of learning algorithms, Support Vector Ma-
chines and k-nearest-neighbor, and the semi-
supervised counterparts of these algorithms,
transductive SVMs and harmonic functions,
respectively. Significant improvement over
the previous results in the literature is re-
ported as well as a new benchmark dataset
is introduced. Semi-supervised algorithms
perform better than their supervised ver-
sion by a wide margin especially when the
amount of labeled data is limited.

1 Introduction

Protein-protein interactions play an important role
in vital biological processes such as metabolic and
signaling pathways, cell cycle control, and DNA
replication and transcription (Phizicky and Fields,
1995). A number of (mostly manually curated)
databases such as MINT (Zanzoni et al., 2002),
BIND (Bader et al., 2003), and SwissProt (Bairoch

and Apweiler, 2000) have been created to store pro-
tein interaction information in structured and stan-
dard formats. However, the amount of biomedical
literature regarding protein interactions is increas-
ing rapidly and it is difficult for interaction database
curators to detect and curate protein interaction in-
formation manually. Thus, most of the protein in-
teraction information remains hidden in the text of
the papers in the biomedical literature. Therefore,
the development of information extraction and text
mining techniques for automatic extraction of pro-
tein interaction information from free texts has be-
come an important research area.

In this paper, we introduce an information extrac-
tion approach to identify sentences in text that in-
dicate an interaction relation between two proteins.
Our method is different than most of the previous
studies (see Section 2) on this problem in two as-
pects: First, we generate the dependency parses of
the sentences that we analyze, making use of the
dependency relationships among the words. This
enables us to make more syntax-aware inferences
about the roles of the proteins in a sentence com-
pared to the classical pattern-matching information
extraction methods. Second, we investigate semi-
supervised machine learning methods on top of the
dependency features we generate. Although there
have been a number of learning-based studies in this
domain, our methods are the first semi-supervised
efforts to our knowledge. The high cost of label-
ing free text for this problem makes semi-supervised
methods particularly valuable.

We focus on two semi-supervised learning meth-
ods: transductive SVMs (TSVM) (Joachims, 1999),
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and harmonic functions (Zhu et al., 2003). We also
compare these two methods with their supervised
counterparts, namely SVMs andk-nearest neigh-
bor algorithm. Because of the nature of these al-
gorithms, we propose two similarity functions (ker-
nels in SVM terminology) among the instances of
the learning problem. The instances in this problem
are natural language sentences with protein names in
them, and the similarity functions are defined on the
positions of the protein names in the corresponding
parse trees. Our motivating assumption is that the
path between two protein names in a dependency
tree is a good description of the semantic relation
between them in the corresponding sentence. We
consider two similarity functions; one based on the
cosine similarity and the other based on the edit dis-
tance among such paths.

2 Related Work

There have been many approaches to extract pro-
tein interactions from free text. One of them is
based on matching pre-specified patterns and rules
(Blaschke et al., 1999; Ono et al., 2001). How-
ever, complex cases that are not covered by the
pre-defined patterns and rules cannot be extracted
by these methods. Huanget al. (2004) proposed a
method where patterns are discovered automatically
from a set of sentences by dynamic programming.
Bunescuet al. (2005) have studied the performance
of rule learning algorithms. They propose two meth-
ods for protein interaction extraction. One is based
on the rule learning method Rapier and the other
on longest common subsequences. They show that
these methods outperform hand-written rules.

Another class of approaches is using more syntax-
aware natural language processing (NLP) tech-
niques. Both full and partial (shallow) parsing
strategies have been applied in the literature. In
partial parsing the sentence structure is decomposed
partially and local dependencies between certain
phrasal components are extracted. An example of
the application of this method is relational parsing
for the inhibition relation (Pustejovsky et al., 2002).
In full parsing, however, the full sentence structure
is taken into account. Temkin and Gilder (2003)
used a full parser with a lexical analyzer and a con-
text free grammar (CFG) to extract protein-protein

interaction from text. Another study that uses full-
sentence parsing to extract human protein interac-
tions is (Daraselia et al., 2004). Alternatively,
Yakushiji et al. (2005) propose a system based on
head-driven phrase structure grammar (HPSG). In
their system protein interaction expressions are pre-
sented as predicate argument structure patterns from
the HPSG parser. These parsing approaches con-
sider only syntactic properties of the sentences and
do not take into account semantic properties. Thus,
although they are complicated and require many re-
sources, their performance is not satisfactory.

Machine learning techniques for extracting pro-
tein interaction information have gained interest in
the recent years. The PreBIND system uses SVM to
identify the existence of protein interactions in ab-
stracts and uses this type of information to enhance
manual expert reviewing for the BIND database
(Donaldson et al., 2003). Words and word bigrams
are used as binary features. This system is also
tested with the Naive Bayes classifier, but SVM is
reported to perform better. Mitsumoriet al. (2006)
also use SVM to extract protein-protein interac-
tions. They use bag-of-words features, specifically
the words around the protein names. These sys-
tems do not use any syntactic or semantic informa-
tion. Sugiyamaet al. (2003) extract features from
the sentences based on the verbs and nouns in the
sentences such as the verbal forms, and the part of
speech tags of the 20 words surrounding the verb
(10 before and 10 after it). Further features are used
to indicate whether a noun is found, as well as the
part of speech tags for the 20 words surrounding
the noun, and whether the noun contains numeri-
cal characters, non-alpha characters, or uppercase
letters. They construct k-nearest neighbor, decision
tree, neural network, and SVM classifiers by using
these features. They report that the SVM classifier
performs the best. They use part-of-speech informa-
tion, but do not consider any dependency or seman-
tic information.

The paper is organized as follows. In Section 3 we
describe our method of extracting features from the
dependency parse trees of the sentences and defin-
ing the similarity between two sentences. In Section
4 we discuss our supervised and semi-supervised
methods. In Section 5 we describe the data sets and
evaluation metrics that we used, and present our re-
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sults. We conclude in Section 6.

3 Sentence Similarity Based on
Dependency Parsing

In order to apply the semi-supervised harmonic
functions and its supervised counterpart kNN, and
the kernel based TSVM and SVM methods, we need
to define a similarity measure between two sen-
tences. For this purpose, we use the dependency
parse trees of the sentences. Unlike a syntactic parse
(which describes the syntactic constituent structure
of a sentence), the dependency parse of a sentence
captures the semantic predicate-argument relation-
ships among its words. The idea of using depen-
dency parse trees for relation extraction in general
was studied by Bunescu and Mooney (2005a). To
extract the relationship between two entities, they
design a kernel function that uses the shortest path in
the dependency tree between them. The motivation
is based on the observation that the shortest path be-
tween the entities usually captures the necessary in-
formation to identify their relationship. They show
that their approach outperforms the dependency tree
kernel of Culotta and Sorensen (2004), which is
based on the subtree that contains the two entities.
We adapt the idea of Bunescu and Mooney (2005a)
to the task of identifying protein-protein interaction
sentences. We define the similarity between two
sentences based on the paths between two proteins
in the dependency parse trees of the sentences.

In this study we assume that the protein names
have already been annotated and focus instead on
the task of extracting protein-protein interaction sen-
tences for a given protein pair. We parse the sen-
tences with the Stanford Parser1 (de Marneffe et al.,
2006). From the dependency parse trees of each sen-
tence we extract the shortest path between a protein
pair.

For example, Figure 1 shows the dependency tree
we got for the sentence “The results demonstrated
that KaiC interacts rhythmically with KaiA, KaiB,
and SasA.” This example sentence illustrates that
the dependency path between a protein pair captures
the relevant information regarding the relationship
between the proteins better compared to using the
words in the unparsed sentence. Consider the pro-

1http://nlp.stanford.edu/software/lex-parser.shtml

tein pair KaiC and SasA. The words in the sentence
between these proteins areinteracts, rhythmically,
with, KaiA, KaiB, and and. Among these words
rhythmically, KaiA, andand KaiB are not directly
related to the interaction relationship between KaiC
and SasA. On the other hand, the words in the depen-
dency path between this protein pair give sufficient
information to identify their relationship.

In this sentence we have four proteins (KaiC,
KaiA, KaiB, and SasA). So there are six pairs of
proteins for which a sentence may or may not be de-
scribing an interaction. The following are the paths
between the six protein pairs. In this example there
is a single path between each protein pair. However,
there may be more than one paths between a pro-
tein pair, if one or both appear multiple times in the
sentence. In such cases, we select the shortest paths
between the protein pairs.

ccomp

prep_with

results interacts

The

KaiA KaiB

rhytmically SasAthat KaiC

demonstrated

nsubj

complm nsubj
advmod

conj_and conj_and

det

Figure 1: The dependency tree of the sentence “The
results demonstrated that KaiC interacts rhythmi-
cally with KaiA, KaiB, and SasA.”

1. KaiC - nsubj - interacts - prepwith - SasA

2. KaiC - nsubj - interacts - prepwith - SasA - conjand -
KaiA

3. KaiC - nsubj - interacts - prepwith – SasA - conjand -
KaiB

4. SasA - conjand - KaiA

5. SasA - conjand - KaiB

6. KaiA – conj and – SasA - conjand - KaiB

If a sentence containsn different proteins, there
are

(

n
2

)

different pairs of proteins. We use machine
learning approaches to classify each sentence as an
interaction sentence or not for a protein pair. A sen-
tence may be an interaction sentence for one protein
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pair, while not for another protein pair. For instance,
our example sentence is a positive interaction sen-
tence for theKaiC andSasAprotein pair. However,
it is a negative interaction sentence for theKaiA and
SasAprotein pair, i.e., it does not describe an inter-
action between this pair of proteins. Thus, before
parsing a sentence, we make multiple copies of it,
one for each protein pair. To reduce data sparseness,
we rename the proteins in the pair asPROTX1and
PROTX2, and all the other proteins in the sentence
asPROTX0. So, for our example sentence we have
the following instances in the training set:

1. PROTX1- nsubj - interacts - prepwith - PROTX2

2. PROTX1 - nsubj - interacts - prepwith - PROTX0 -
conj and -PROTX2

3. PROTX1- nsubj - interacts - prepwith – PROTX0-
conj and -PROTX2

4. PROTX1- conj and -PROTX2

5. PROTX1- conj and -PROTX2

6. PROTX1– conj and –PROTX0- conj and -PROTX2

The first three instances are positive as they describe
an interaction betweenPROTX1andPROTX2. The
last three are negative, as they do not describe an
interaction betweenPROTX1andPROTX2.

We define the similarity between two instances
based on cosine similarity and edit distance based
similarity between the paths in the instances.

3.1 Cosine Similarity

Supposepi andpj are the paths betweenPROTX1
andPROTX2in instancexi and instancexj, respec-
tively. We representpi and pj as vectors of term
frequencies in the vector-space model. The cosine
similarity measure is the cosine of the angle between
these two vectors and is calculated as follows:

cos sim(pi, pj) = cos(pi,pj) =
pi • pj

‖pi‖‖pj‖
(1)

that is, it is the dot product ofpi andpj divided by
the lengths ofpi andpj. The cosine similarity mea-
sure takes values in the range[0, 1]. If all the terms
in pi andpj are common, then it takes the maximum
value of1. If none of the terms are common, then it
takes the minimum value of0.

3.2 Similarity Based on Edit Distance

A shortcoming of cosine similarity is that it only
takes into account the common terms, but does not
consider their order in the path. For this reason, we
also use a similarity measure based on edit distance
(also called Levenshtein distance). Edit distance be-
tween two strings is the minimum number of op-
erations that have to be performed to transform the
first string to the second. In the original character-
based edit distance there are three types of opera-
tions. These are insertion, deletion, or substitution
of a single character. We modify the character-based
edit distance into a word-based one, where the oper-
ations are defined as insertion, deletion, or substitu-
tion of a single word.

The edit distance between path 1 and path 2 of
our example sentence is 2. We insertPROTX0and
conj and to path 1 to convert it to path 2.

1. PROTX1- nsubj - interacts - prepwith - insert (PROTX0)
- insert (conj and) – PROTX2

2. PROTX1 - nsubj - interacts - prepwith - PROTX0 -
conj and -PROTX2

We normalize edit distance by dividing it by the
length (number of words) of the longer path, so that
it takes values in the range[0, 1]. We convert the dis-
tance measure into a similarity measure as follows.

edit sim(pi, pj) = e−γ(edit distance(pi,pj)) (2)

Bunescu and Mooney (2005a) propose a similar
method for relation extraction in general. However,
their similarity measure is based on the number of
the overlapping words between two paths. When
two paths have different lengths, they assume the
similarity between them is zero. On the other hand,
our edit distance based measure can also account for
deletions and insertions of words.

4 Semi-Supervised Machine Learning
Approaches

4.1 kNN and Harmonic Functions

When a similarity measure is defined among the in-
stances of a learning problem, a simple and natural
choice is to use a nearest neighbor based approach
that classifies each instance by looking at the labels
of the instances that are most similar to it. Per-
haps the simplest and most popular similarity-based
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learning algorithm is the k-nearest neighbor classifi-
cation method (kNN). LetU be the set of unlabeled
instances, andL be the set of labeled instances in
a learning problem. Given an instancex ∈ U , let
NL

k (x) be the set of topk instances inL that are
most similar tox with respect to some similarity
measure. The kNN equation for a binary classifi-
cation problem can be written as:

y(x) =
∑

z∈NL
k

(x)

sim(x, z)y(z)
∑

z′∈NL
k

(x) sim(x, z′)
(3)

wherey(z) ∈ {0, 1} is the label of the instancez.2

Note thaty(x) can take any real value in the[0, 1]
interval. The final classification decision is made by
setting a threshold in this interval (e.g.0.5) and clas-
sifying the instances above the threshold as positive
and others as negative. For our problem, each in-
stance is a dependency path between the proteins in
the pair and the similarity function can be one of the
functions we have defined in Section 3.

Equation 3 can be seen as averaging the labels (0
or 1) of the nearest neighbors of each unlabeled in-
stance. This suggests a generalized semi-supervised
version of the same algorithm by incorporating un-
labeled instances as neighbors as well:

y(x) =
∑

z∈NL∪U
k

(x)

sim(x, z)y(z)
∑

z′∈NL∪U
k

(x) sim(x, z′)
(4)

Unlike Equation 3, the unlabeled instances are also
considered in Equation 4 when finding the nearest
neighbors. We can visualize this as an undirected
graph, where each data instance (labeled or unla-
beled) is a node that is connected to itsk nearest
neighbor nodes. The value ofy(·) is set to0 or 1
for labeled nodes depending on their class. For each
unlabeled nodex, y(x) is equal to the average of the
y(·) values of its neighbors. Such a function that
satisfies the average property on all unlabeled nodes
is called aharmonicfunction and is known to exist
and have a unique solution (Doyle and Snell, 1984).
Harmonic functions were first introduced as a semi-
supervised learning method by Zhuet al. (2003).
There are interesting alternative interpretations of

2Equation 3 is the weighted (orsoft) version of the kNN
algorithm. In the classicalvotingscheme,x is classified in the
category that the majority of its neighbors belong to.

a harmonic function on a graph. One of them can
be explained in terms of random walks on a graph.
Consider a random walk on a graph where at each
time point we move from the current node to one of
its neighbors. The next node is chosen among the
neighbors of the current node with probability pro-
portional to the weight (similarity) of the edge that
connects the two nodes. Assuming we start the ran-
dom walk from the nodex, y(x) in Equation 4 is
then equal to the probability that this random walk
will hit a node labeled1 before it hits a node labeled
0.

4.2 Transductive SVM

Support vector machines (SVM) is a supervised ma-
chine learning approach designed for solving two-
class pattern recognition problems. The aim is to
find the decision surface that separates the positive
and negative labeled training examples of a class
with maximum margin (Burges, 1998).

Transductive support vector machines (TSVM)
are an extension of SVM, where unlabeled data is
used in addition to labeled data. The aim now is
to assign labels to the unlabeled data and find a de-
cision surface that separates the positive and nega-
tive instances of the original labeled data and the
(now labeled) unlabeled data with maximum mar-
gin. Intuitively, the unlabeled data pushes the deci-
sion boundary away from the dense regions. How-
ever, unlike SVM, the optimization problem now
is NP-hard (Zhu, 2005). Pointers to studies for
approximation algorithms can be found in (Zhu,
2005).

In Section 3 we defined the similarity between
two instances based on the cosine similarity and
the edit distance based similarity between the paths
in the instances. Here, we use these path similar-
ity measures as kernels for SVM and TSVM and
modify theSV M light package (Joachims, 1999) by
plugging in our two kernel functions.

A well-defined kernel function should be sym-
metric positive definite. While cosine kernel is well-
defined, Corteset al. (2004) proved that edit kernel
is not always positive definite. However, it is pos-
sible to make the kernel matrix positive definite by
adjusting theγ parameter, which is a positive real
number. Li and Jiang (2005) applied the edit kernel
to predict initiation sites in eucaryotic mRNAs and
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obtained improved results compared to polynomial
kernel.

5 Experimental Results

5.1 Data Sets

One of the problems in the field of protein-protein
interaction extraction is that different studies gen-
erally use different data sets and evaluation met-
rics. Thus, it is difficult to compare their re-
sults. Bunescuet al. (2005) manually developed the
AIMED corpus3 for protein-protein interaction and
protein name recognition. They tagged199 Medline
abstracts, obtained from the Database of Interacting
Proteins (DIP) (Xenarios et al., 2001) and known to
contain protein interactions. This corpus is becom-
ing a standard, as it has been used in the recent stud-
ies by (Bunescu et al., 2005; Bunescu and Mooney,
2005b; Bunescu and Mooney, 2006; Mitsumori et
al., 2006; Yakushiji et al., 2005).

In our study we used theAIMED corpus and the
CB (Christine Brun) corpus that is provided as a re-
source by BioCreAtIvE II (Critical Assessment for
Information Extraction in Biology) challenge eval-
uation4. We pre-processed the CB corpus by first
annotating the protein names in the corpus automat-
ically and then, refining the annotation manually. As
discussed in Section 3, we pre-processed both of the
data sets as follows. We replicated each sentence
for each different protein pair. Forn different pro-
teins in a sentence,

(

n
2

)

new sentences are created,
as there are that many different pairs of proteins.
In each newly created sentence we marked the pro-
tein pair considered for interaction asPROTX1and
PROTX2, and all the remaining proteins in the sen-
tence asPROTX0. If a sentence describes an inter-
action betweenPROTX1andPROTX2, it is labeled
as positive, otherwise it is labeled as negative. The
summary of the data sets after pre-processing is dis-
played in Table 15.

Since previous studies that use AIMED corpus
perform 10-fold cross-validation. We also per-
formed 10-fold cross-validation in both data sets and
report the average results over the runs.

3ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/
4http://biocreative.sourceforge.net/biocreative2.html
5The pre-processed data sets are available at

http://belobog.si.umich.edu/clair/biocreative

Data Set Sentences + Sentences - Sentences
AIMED 4026 951 3075

CB 4056 2202 1854

Table 1: Data Sets

5.2 Evaluation Metrics

We use precision, recall, and F-score as our metrics
to evaluate the performances of the methods. Preci-
sion (π) and recall (ρ) are defined as follows:

π =
TP

TP + FP
; ρ =

TP

TP + FN
(5)

Here, TP (True Positives) is the number of sen-
tences classified correctly as positive;FP (False
Positives) is the number of negative sentences that
are classified as positive incorrectly by the classifier;
andFN (False Negatives) is the number of positive
sentences that are classified as negative incorrectly
by the classifier.
F-score is the harmonic mean of recall and precision.

F -score =
2πρ

π + ρ
(6)

5.3 Results and Discussion

We evaluate and compare the performances of
the semi-supervised machine learning approaches
(TSVM and harmonic functions) with their super-
vised counterparts (SVM and kNN) for the task of
protein-protein interaction extraction. As discussed
in Section 3, we use cosine similarity and edit dis-
tance based similarity as similarity functions in har-
monic functions and kNN, and as kernel functions
in TSVM and SVM. Our instances consist of the
shortest paths between the protein pairs in the de-
pendency parse trees of the sentences. In our ex-
periments, we tuned theγ parameter of the edit
distance based path similarity function to4.5 with
cross-validation. The results in Table 2 and Table 3
are obtained with 10-fold cross-validation. We re-
port the average results over the runs.

Table 2 shows the results obtained for the AIMED
data set. Edit distance based path similarity function
performs considerably better than the cosine sim-
ilarity function with harmonic functions and kNN
and usually slightly better with SVM and TSVM.
We achieve our best F-score performance of 59.96%
with TSVM with edit kernel. While SVM with edit
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kernel achieves the highest precision of 77.52%, it
performs slightly worse than SVM with cosine ker-
nel in terms of F-score measure. TSVM performs
slightly better than SVM, both of which perform bet-
ter than harmonic functions. kNN is the worst per-
forming algorithm for this data set.

In Table 2, we also show the results obtained pre-
viously in the literature by using the same data set.
Yakushiji et al. (2005) use an HPSG parser to pro-
duce predicate argument structures. They utilize
these structures to automatically construct protein
interaction extraction rules. Mitsumoriet al. (2006)
use SVM with the unparsed text around the pro-
tein names as features to extract protein interac-
tion sentences. Here, we show their best result ob-
tained by using the three words to the left and to the
right of the proteins. The most closely related study
to ours is that by Bunescu and Mooney (2005a).
They define a kernel function based on the short-
est path between two entities of a relationship in
the dependency parse tree of a sentence (the SPK
method). They apply this method to the domain
of protein-protein interaction extraction in (Bunescu
and Mooney, 2006). Here, they also test the meth-
ods ELCS (Extraction Using Longest Common Sub-
sequences) (Bunescu et al., 2005) and SSK (Sub-
sequence Kernel) (Bunescu and Mooney, 2005b).
We cannot compare our results to theirs directly,
because they report their results as a precision-
recall graph. However, the best F-score in their
graph seems to be around0.50 and definitely lower
than the best F-scores we have achieved (≈ 0.59).
Bunescu and Mooney (2006) also use SVM as their
learning method in their SPK approach. They define
their similarity based on the number of overlapping
words between two paths and assign a similarity of
zero if the two paths have different lengths. Our
improved performance with SVM and the shortest
path dependency features may be due to the edit-
distance based kernel, which takes into account not
only the overlapping words, but also word order and
accounts for deletions and insertions of words. Our
results show that, SVM, TSVM, and harmonic func-
tions achieve better F-score and recall performances
than the previous studies by Yakushijiet al. (2005),
Mitsumori et al. (2006), and the SSK and ELCS ap-
proaches of Bunescu and Mooney (2006). SVM and
TSVM also achieve higher precision scores. Since,

Mitsumori et al.(2006) also use SVM in their study,
our improved results with SVM confirms our moti-
vation of using dependency paths as features.

Table 3 shows the results we got with the CB
data set. The F-score performance with the edit
distance based similarity function is always better
than that of cosine similarity function for this data
set. The difference in performances is considerable
for harmonic functions and kNN. Our best F-score
is achieved with TSVM with edit kernel (85.22%).
TSVM performs slightly better than SVM. When
cosine similarity function is used, kNN performs
better than harmonic functions. However, when edit
distance based similarity is used, harmonic functions
achieve better performance. SVM and TSVM per-
form better than harmonic functions. But, the gap in
performance is low when edit distance based simi-
larity is used with harmonic functions.

Method Precision Recall F-Score
SVM-edit 77.52 43.51 55.61
SVM-cos 61.99 54.99 58.09
TSVM-edit 59.59 60.68 59.96
TSVM-cos 58.37 61.19 59.62
Harmonic-edit 44.17 74.20 55.29
Harmonic-cos 36.02 67.65 46.97
kNN-edit 68.77 42.17 52.20
kNN-cos 40.37 49.49 44.36
(Yakushiji et al., 2005) 33.70 33.10 33.40
(Mitsumori et al., 2006) 54.20 42.60 47.70

Table 2: Experimental Results – AIMED Data Set

Method Precision Recall F-Score
SVM-edit 85.15 84.79 84.96
SVM-cos 87.83 81.45 84.49
TSVM-edit 85.62 84.89 85.22
TSVM-cos 85.67 84.31 84.96
Harmonic-edit 86.69 80.15 83.26
Harmonic-cos 72.28 70.91 71.56
kNN-edit 72.89 86.95 79.28
kNN-cos 65.42 89.49 75.54

Table 3: Experimental Results – CB Data Set

Semi-supervised approaches are usually more ef-
fective when there is less labeled data than unlabeled
data, which is usually the case in real applications.
To see the effect of semi-supervised approaches we
perform experiments by varying the amount of la-
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Figure 2: The F-score on the AIMED dataset with
varying sizes of training data

beled training sentences in the range[10, 3000]. For
each labeled training set size, sentences are selected
randomly among all the sentences, and the remain-
ing sentences are used as the unlabeled test set. The
results that we report are the averages over10 such
random runs for each labeled training set size. We
report the results for the algorithms when edit dis-
tance based similarity is used, as it mostly performs
better than cosine similarity. Figure 2 shows the
results obtained over the AIMED data set. Semi-
supervised approaches TSVM and harmonic func-
tions perform considerably better than their super-
vised counterparts SVM and kNN when we have
small number of labeled training data. It is inter-
esting to note that, although SVM is one of the best
performing algorithms with more training data, it is
the worst performing algorithm with small amount
of labeled training sentences. Its performance starts
to increase when number of training data is larger
than 200. Eventually, its performance gets close to
that of the other algorithms. Harmonic functions is
the best performing algorithm when we have less
than 200 labeled training data. TSVM achieves bet-
ter performance when there are more than 500 la-
beled training sentences.

Figure 3 shows the results obtained over the CB
data set. When we have less than 500 labeled sen-
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Figure 3: The F-score on the CB dataset with vary-
ing sizes of training data

tences, harmonic functions and TSVM perform sig-
nificantly better than kNN, while SVM is the worst
performing algorithm. When we have more than
500 labeled training sentences, kNN is the worst per-
forming algorithm, while the performance of SVM
increases and gets similar to that of TSVM and
slightly better than that of harmonic functions.

6 Conclusion

We introduced a relation extraction approach based
on dependency parsing and machine learning to
identify protein interaction sentences in biomedical
text. Unlike syntactic parsing, dependency parsing
captures the semantic predicate argument relation-
ships between the entities in addition to the syntac-
tic relationships. We extracted the shortest paths be-
tween protein pairs in the dependency parse trees of
the sentences and defined similarity functions (ker-
nels in SVM terminology) for these paths based on
cosine similarity and edit distance. Supervised ma-
chine learning approaches have been applied to this
domain. However, they rely only on labeled training
data, which is difficult to gather. To our knowledge,
this is the first effort in this domain to apply semi-
supervised algorithms, which make use of both la-
beled and unlabeled data. We evaluated and com-
pared the performances of two semi-supervised ma-

235



chine learning approaches (harmonic functions and
TSVM), with their supervised counterparts (kNN
and SVM). We showed that, edit distance based sim-
ilarity function performs better than cosine simi-
larity function since it takes into account not only
common words, but also word order. Our 10-fold
cross validation results showed that, TSVM per-
forms slightly better than SVM, both of which per-
form better than harmonic functions. The worst per-
forming algorithm is kNN. We compared our results
with previous results published with the AIMED
data set. We achieved the best F-score performance
with TSVM with the edit distance kernel (59.96%)
which is significantly higher than the previously re-
ported results for the same data set.

In most real-world applications there are much
more unlabeled data than labeled data. Semi-
supervised approaches are usually more effective in
these cases, because they make use of both the la-
beled and unlabeled instances when making deci-
sions. To test this hypothesis for the application
of extracting protein interaction sentences from text,
we performed experiments by varying the number
of labeled training sentences. Our results show
that, semi-supervised algorithms perform consider-
ably better than their supervised counterparts, when
there are small number of labeled training sentences.
An interesting result is that, in such cases SVM per-
forms significantly worse than the other algorithms.
Harmonic functions achieve the best performance
when there are only a few labeled training sentences.
As number of labeled training sentences increases
the performance gap between supervised and semi-
supervised algorithms decreases.
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