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Abstract

We introduce a relation extraction method to
identify the sentences in biomedical text that
indicate an interaction among the protein
names mentioned. Our approach is based on
the analysis of the paths between two protein
names in the dependency parse trees of the
sentences. Given two dependency trees, we
define two separate similarity functions (ker-
nels) based on cosine similarity and edit dis-
tance among the paths between the protein
names. Using these similarity functions, we
investigate the performances of two classes
of learning algorithms, Support Vector Ma-
chines and k-nearest-neighbor, and the semi-
supervised counterparts of these algorithms,
transductive SVMs and harmonic functions,
respectively. Significant improvement over
the previous results in the literature is re-
ported as well as a new benchmark dataset
is introduced. Semi-supervised algorithms
perform better than their supervised ver-
sion by a wide margin especially when the
amount of labeled data is limited.
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and Apweiler, 2000) have been created to store pro-
tein interaction information in structured and stan-
dard formats. However, the amount of biomedical
literature regarding protein interactions is increas-
ing rapidly and it is difficult for interaction database
curators to detect and curate protein interaction in-
formation manually. Thus, most of the protein in-
teraction information remains hidden in the text of
the papers in the biomedical literature. Therefore,
the development of information extraction and text
mining techniques for automatic extraction of pro-
tein interaction information from free texts has be-
come an important research area.

In this paper, we introduce an information extrac-
tion approach to identify sentences in text that in-
dicate an interaction relation between two proteins.
Our method is different than most of the previous
studies (see Section 2) on this problem in two as-
pects: First, we generate the dependency parses of
the sentences that we analyze, making use of the
dependency relationships among the words. This
enables us to make more syntax-aware inferences
about the roles of the proteins in a sentence com-
pared to the classical pattern-matching information
extraction methods. Second, we investigate semi-
supervised machine learning methods on top of the
dependency features we generate. Although there

Protein-protein interactions play an important roldave been a number of learning-based studies in this
in vital biological processes such as metabolic andomain, our methods are the first semi-supervised
signaling pathways, cell cycle control, and DNAE€fforts to our knowledge. The high cost of label-
replication and transcription (Phizicky and Fieldsing free text for this problem makes semi-supervised
1995). A number of (mostly manually curated)Methods particularly valuable.

databases such as MINT (Zanzoni et al., 2002), We focus on two semi-supervised learning meth-
BIND (Bader et al., 2003), and SwissProt (Bairoctods: transductive SVMs (TSVM) (Joachims, 1999),
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and harmonic functions (Zhu et al., 2003). We alsinteraction from text. Another study that uses full-
compare these two methods with their supervisesentence parsing to extract human protein interac-
counterparts, namely SVMs arfdnearest neigh- tions is (Daraselia et al., 2004). Alternatively,
bor algorithm. Because of the nature of these alakushiji et al. (2005) propose a system based on
gorithms, we propose two similarity functionkef- head-driven phrase structure grammar (HPSG). In
nelsin SVM terminology) among the instances oftheir system protein interaction expressions are pre-
the learning problem. The instances in this probleraented as predicate argument structure patterns from
are natural language sentences with protein namestie HPSG parser. These parsing approaches con-
them, and the similarity functions are defined on theider only syntactic properties of the sentences and
positions of the protein names in the correspondingo not take into account semantic properties. Thus,
parse trees. Our motivating assumption is that thalthough they are complicated and require many re-
path between two protein names in a dependencgources, their performance is not satisfactory.

tree is a good description of the semantic relation Machine learning techniques for extracting pro-
between them in the corresponding sentence. Wein interaction information have gained interest in
consider two similarity functions; one based on théhe recent years. The PreBIND system uses SVM to
cosine similarity and the other based on the edit disdentify the existence of protein interactions in ab-

tance among such paths. stracts and uses this type of information to enhance
manual expert reviewing for the BIND database
2 Related Work (Donaldson et al., 2003). Words and word bigrams

are used as binary features. This system is also

There have been many approaches to extract prested with the Naive Bayes classifier, but SVM is
tein interactions from free text. One of them isreported to perform better. Mitsumagt al. (2006)
based on matching pre-specified patterns and rulag&o use SVM to extract protein-protein interac-
(Blaschke et al., 1999; Ono et al., 2001). Howtions. They use bag-of-words features, specifically
ever, complex cases that are not covered by thRe words around the protein names. These sys-
pre-defined patterns and rules cannot be extractésins do not use any syntactic or semantic informa-
by these methods. Huargd al. (2004) proposed a tion. Sugiyamaet al. (2003) extract features from
method where patterns are discovered automaticaliile sentences based on the verbs and nouns in the
from a set of sentences by dynamic programmingentences such as the verbal forms, and the part of
Bunescuet al. (2005) have studied the performancespeech tags of the 20 words surrounding the verb
of rule learning algorithms. They propose two meth¢10 before and 10 after it). Further features are used
ods for protein interaction extraction. One is basegb indicate whether a noun is found, as well as the
on the rule learning method Rapier and the othgsart of speech tags for the 20 words surrounding
on longest common subsequences. They show th#ke noun, and whether the noun contains numeri-
these methods outperform hand-written rules.  cal characters, non-alpha characters, or uppercase

Another class of approaches is using more syntaletters. They construct k-nearest neighbor, decision
aware natural language processing (NLP) techree, neural network, and SVM classifiers by using
niques. Both full and partial (shallow) parsingthese features. They report that the SVM classifier
strategies have been applied in the literature. Iperforms the best. They use part-of-speech informa-
partial parsing the sentence structure is decompostdn, but do not consider any dependency or seman-
partially and local dependencies between certaitic information.
phrasal components are extracted. An example of The paper is organized as follows. In Section 3we
the application of this method is relational parsinglescribe our method of extracting features from the
for theinhibition relation (Pustejovsky et al., 2002). dependency parse trees of the sentences and defin-
In full parsing, however, the full sentence structuréng the similarity between two sentences. In Section
is taken into account. Temkin and Gilder (2003¢ we discuss our supervised and semi-supervised
used a full parser with a lexical analyzer and a commethods. In Section 5 we describe the data sets and
text free grammar (CFG) to extract protein-proteirevaluation metrics that we used, and present our re-
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sults. We conclude in Section 6. tein pair KaiC and SasA. The words in the sentence
between these proteins airgeracts, rhythmically,
3 Sentence Similarity Based on with, KaiA, KaiB,andand Among these words
Dependency Parsing rhythmically, KaiA, andand KaiB are not directly
In order to apply the semi-supervised harmonic€lated to the interaction relationship between KaiC
nd SasA. On the other hand, the words in the depen-

functions and its supervised counterpart kNN, an ency path between this protein pair give sufficient
the kernel based TSVM and SVM methods, we nee; Y P . . P 1 parg
. o information to identify their relationship.
to define a similarity measure between two sen- ) . .
In this sentence we have four proteins (KaiC,

tences. For this purpose, we use the dependengy. . . .
purp ) P . K%uA, KaiB, and SasA). So there are six pairs of
parse trees of the sentences. Unlike a syntactic parse

) ) . ; roteins for which a sentence may or may not be de-
(which describes the syntactic constituent structure . " . ) :
scribing an interaction. The following are the paths
of a sentence), the dependency parse of a sentence

captures the semantic predicate-argument reIatioR?tWeen the six protein pairs. In this example there

ships among its words. The idea of using deper@ a single path between each protein pair. However,

dency parse trees for relation extraction in generéﬁ‘ere may be more than one paths between a pro-

was studied by Bunescu and Mooney (2005a). ein pair, if one or both appear multiple times in the
. ) g sentence. In such cases, we select the shortest paths
extract the relationship between two entities, the

design a kernel function that uses the shortest path¥r$tween the protein pairs.

the dependency tree between them. The motivation demonstrated

is based on the observation that the shortest path be- y wp

tween the entities usually captures the necessary in-

formation to identify their relationship. They show results interacts

that their approach outperforms the dependency tree| ., compl -, prep_with

kernel of Culotta and Sorensen (2004), which is advmo

based on the subtree that contains the two entitieghe that Kaic ~ rhytmically — SasA

We adapt the idea of Bunescu and Mooney (2005a) conj_an conj_an
to the task of identifying protein-protein interaction KaiA KaiB

sentences. We define the similarity between two,

sentences based on the paths between two protelznlgulrte 1d The dfpfngiﬂci’ tlze(,acof t?e Setme:-d'ﬁ _
in the dependency parse trees of the sentences. results demonstrate at KaiC interacts rhythmi-

In this study we assume that the protein name(\sally with KaiA, KaiB, and Sash
have already been annotated and focus instead on
the task of extracting protein-protein interaction sen- 1. KaiC - nsubj - interacts - prepith - SasA
tences fqr a given protein pair. We parse the sen-,, | .- nsubj - interacts - prepith - SasA - conjand -
tences with the Stanford Pars¢de Marneffe et al., KaiA
2006). From the dependency parse trees of each sen- ) o _ ,
tence we extract the shortest path between a protein™ E;'g " Nl - Interacts - prepith — Sash - conjand -
pair.

For example, Figure 1 shows the dependency tree®
we got for the sentenceThe results demonstrated 5. SasA - conjand - KaiB
that KaiC interacts rhythmically with KaiA, KaiB,
and SasA This example sentence illustrates that 6 KaiA-conjand —SasA - cooand - KaiB
the dependency path between a protein pair captures

. . ) : . _If a sentence contains different proteins, there
the relevant information regarding the relationship .\ . . . .
are () different pairs of proteins. We use machine

between the proteins better compared to using the ~ \2 .

. . earning approaches to classify each sentence as an
words in the unparsed sentence. Consider the pro- ! . .
Interaction sentence or not for a protein pair. A sen-

Yhttp://nip.stanford.edu/software/lex-parser.shtml tence may be an interaction sentence for one protein

SasA - conjand - KaiA
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pair, while not for another protein pair. For instance3.2 Similarity Based on Edit Distance

our example sentence is a positive interaction sen: shortcoming of cosine similarity is that it only
tence for thekaiC and SasAprotein pair. However, tayes into account the common terms, but does not
itis a negative interaction sentence for ¥&Aand  consider their order in the path. For this reason, we
SasAprotein pair, i.e., it does not describe an intery|sq yse a similarity measure based on edit distance
action between this pair of proteins. Thus, beforgysg called Levenshtein distance). Edit distance be-
parsing a sentence, we make multiple copies of ifyeen two strings is the minimum number of op-
one for each protein pair. To reduce data sparsenegsations that have to be performed to transform the
we rename the proteins in the pairBROTX1and st string to the second. In the original character-
PROTX2 and all the other proteins in the sentencg,sed edit distance there are three types of opera-
asPROTXO So, for our example sentence we havgons These are insertion, deletion, or substitution
the following instances in the training set: of a single character. We modify the character-based
1. PROTX1- nsubj - interacts - prepiith - PROTX2 edit distance into a word-based one, where the oper-
ations are defined as insertion, deletion, or substitu-
2. PROTX1- nsubj - interacts - prepith - PROTX0-  tjgn of a single word.
conjand -PROTX2 The edit distance between path 1 and path 2 of
3. PROTX1- nsubj - interacts - prepith — PROTX0- our example sentence is 2. We insBROTX0and
conj-and -PROTX2 conjandto path 1 to convert it to path 2.
4. PROTX1- conjand -PROTX2 1. PROTXZ: nsubj - interacts - pregvith - insert (PROTXO0)

- insert (conj_and) — PROTX2

5. PROTX1- conj.and -PROTX2
2. PROTX1- nsubj - interacts - prewith - PROTX0-

6. PROTXL conjand -PROTX0 conj.and -PROTX2 conj.and -PROTX2

We normalize edit distance by dividing it by the

The first three instances are positive as they descripéength (number of words) of the longer path, so that
an interaction betweeRROTX1andPROTX2 The 14y e5 values in the range, 1]. We convert the dis-

!ast thrge are negative, as they do not describe #hce measure into a similarity measure as follows.
interaction betweeRROTX1andPROTX2

We define the similarity between two instances edit_sim(p;, p;) = e~ V(edit-distance(pip;)) - (2)
based on cosine similarity and edit distance based

similarity between the paths in the instances. Bunescu and Mooney (2005a) propose a similar
method for relation extraction in general. However,
3.1 Cosine Similarity their similarity measure is based on the number of

are the paths betwedPROTX1 the overlapping W_ords between two paths. When
two paths have different lengths, they assume the
similarity between them is zero. On the other hand,
ity edit distance based measure can also account for

Supposep; andp;
andPROTX2n instancer; and instance:;, respec-

tively. We represenp; andp; as vectors of term
frequencies in the vector-space model. The cosi ) ) ;
similarity measure is the cosine of the angle betweeff!€tions and insertions of words.

these two vectors and is calculated as follows: 4 Semi-Supervised Machine Learning

Pi ® Pj Approaches

cos_sim(pi,pj) = COS(Dth) === @

P l[1ps] 4.1 kNN and Harmonic Functions

that is, it is the dot product gb; andp; divided by When a similarity measure is defined among the in-
the lengths op; andp;. The cosine similarity mea- stances of a learning problem, a simple and natural
sure takes values in the ranffe1]. If all the terms choice is to use a nearest neighbor based approach
in p; andp; are common, then it takes the maximunthat classifies each instance by looking at the labels
value of1. If none of the terms are common, then itof the instances that are most similar to it. Per-
takes the minimum value @ haps the simplest and most popular similarity-based
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learning algorithm is the k-nearest neighbor classifia harmonic function on a graph. One of them can
cation method (KNN). LeU be the set of unlabeled be explained in terms of random walks on a graph.
instances, and. be the set of labeled instances inConsider a random walk on a graph where at each
a learning problem. Given an instangec U, let time point we move from the current node to one of
N,f(x) be the set of togk instances inL that are its neighbors. The next node is chosen among the
most similar tox with respect to some similarity neighbors of the current node with probability pro-
measure. The kNN equation for a binary classifiportional to the weight (similarity) of the edge that
cation problem can be written as: connects the two nodes. Assuming we start the ran-
dom walk from the noder, y(z) in Equation 4 is
. (3) then equal to the probability that this random walk
D reNE (@) Stm(, 2') will hit a node labeled before it hits a node labeled
0.

sim(x, z)y(2)

y(e) =
zENE(2)

wherey(z) € {0,1} is the label of the instance? :
Note thaty(x) can take any real value in the, 1] 4.2 Transductive SVM
interval. The final classification decision is made bypupport vector machines (SVM) is a supervised ma-
setting a threshold in this interval (e@5) and clas- chine learning approach designed for solving two-
sifying the instances above the threshold as positi@ass pattern recognition problems. The aim is to
and others as negative. For our problem, each ifind the decision surface that separates the positive
stance is a dependency path between the proteinsdid negative labeled training examples of a class
the pair and the similarity function can be one of th&vith maximum margin (Burges, 1998).
functions we have defined in Section 3. Transductive support vector machines (TSVM)
Equation 3 can be seen as averaging the labels @g an extension of SVM, where unlabeled data is
or 1) of the nearest neighbors of each unlabeled itsed in addition to labeled data. The aim now is
stance. This suggests a generalized semi-supervid@dassign labels to the unlabeled data and find a de-
version of the same algorithm by incorporating uncision surface that separates the positive and nega-

labeled instances as neighbors as well: tive instances of the original labeled data and the
(now labeled) unlabeled data with maximum mar-

y(z) = Z sim(x, 2)y(z) (4) gin. Intuitively, the unlabeled data pushes the deci-
SENEOU (g Zz 'eENEVU (z Slm(l‘a z') sion boundary away from the dense regions. How-

ever, unlike SVM, the optimization problem now
Unlike Equation 3, the unlabeled instances are aldé NP-hard (Zhu, 2005). Pointers to studies for
considered in Equation 4 when finding the neareg@pproximation algorithms can be found in (Zhu,
neighbors. We can visualize this as an undirected005).
graph, where each data instance (labeled or unla-In Section 3 we defined the similarity between
beled) is a node that is connected to fitsiearest two instances based on the cosine similarity and
neighbor nodes. The value gf-) is set to0 or 1  the edit distance based similarity between the paths
for labeled nodes depending on their class. For eadh the instances. Here, we use these path similar-
unlabeled node, y(x) is equal to the average of theity measures as kernels for SVM and TSVM and
y(-) values of its neighbors. Such a function thamodify theSV M1'9"" package (Joachims, 1999) by
satisfies the average property on all unlabeled node#!gging in our two kernel functions.
is called aharmonicfunction and is known to exist A well-defined kernel function should be sym-
and have a unique solution (Doyle and Snell, 1984)netric positive definite. While cosine kernel is well-
Harmonic functions were first introduced as a semidefined, Cortest al. (2004) proved that edit kernel
supervised learning method by Zki al. (2003). is not always positive definite. However, it is pos-
There are interesting alternative interpretations dfible to make the kernel matrix positive definite by
— . _ ) adjusting they parameter, which is a positive real

Equation 3 is the weighted (@off) version of the kNN

algorithm. In the classicalotingschemey is classified in the number. L_i qod 'Jiang (2(_)05) applieq the edit kernel
category that the majority of its neighbors belong to. to predict initiation sites in eucaryotic mMRNAs and
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obtained improved results compared to polynomial | Data Set| Sentences + Sentences - Sentences

kernel AIMED 4026 951 3075
ernel. CB 4056 2202 1854
5 Experimental Results Table 1: Data Sets

5.1 Data Sets
. , . . 5.2 Evaluation Metrics
One of the problems in the field of protein-protein

interaction extraction is that different studies genYVe use precision, recall, and F-score as our metrics
erally use different data sets and evaluation met0 evaluate the performances of the methods. Preci-
rics. Thus, it is difficult to compare their re- Sion (r) and recall ) are defined as follows:
sults. Bunescet al. (2005) manually developed the TP TP
AIMED corpus for protein-protein interaction and =3P+ P P TPTFN ()
protein name recognition. They taggeth Medline N _
abstracts, obtained from the Database of Interactirigere; 7P (True Positives) is the number of sen-
Proteins (DIP) (Xenarios et al., 2001) and known tdénces classified correctly as positive;P (False
contain protein interactions. This corpus is becomE 0Sitives) is the number of negative sentences that
ing a standard, as it has been used in the recent stfie classified as positive incorrectly by the classifier;
ies by (Bunescu et al., 2005; Bunescu and Moone?,”dFN (False Negatives) is the number of positive
2005b; Bunescu and Mooney, 2006; Mitsumori epentences that are classified as negative incorrectly
al., 2006; Yakushiji et al., 2005). by the classifier. N

In our study we used thaIMED corpus and the F-score is the harmonic mean of recall and precision.
CB (Christine Brun) corpus that is provided as a re- 2mp
source by BioCreAtIVE Il (Critical Assessment for F-score =
Information Extraction in Biology) challenge eval- _ _
uatiorf. We pre-processed the CB corpus by firsp-3 Results and Discussion
annotating the protein names in the corpus automatye evaluate and compare the performances of
ically and then, refining the annotation manually. Ashe semi-supervised machine learning approaches
discussed in Section 3, we pre-processed both of tiESVM and harmonic functions) with their super-
data sets as follows. We replicated each senteneised counterparts (SVM and kNN) for the task of
for each different protein pair. For different pro- protein-protein interaction extraction. As discussed
teins in a sentenc g‘) new sentences are createdin Section 3, we use cosine similarity and edit dis-
as there are that many different pairs of proteindance based similarity as similarity functions in har-
In each newly created sentence we marked the protonic functions and kNN, and as kernel functions
tein pair considered for interaction BROTX1and in TSVM and SVM. Our instances consist of the
PROTX2 and all the remaining proteins in the senshortest paths between the protein pairs in the de-
tence aPROTXO If a sentence describes an interpendency parse trees of the sentences. In our ex-
action betweefPROTX1andPROTX2 it is labeled periments, we tuned the parameter of the edit
as positive, otherwise it is labeled as negative. Thaistance based path similarity function 46 with
summary of the data sets after pre-processing is disross-validation. The results in Table 2 and Table 3
played in Table & are obtained with 10-fold cross-validation. We re-

Since previous studies that use AIMED corpugort the average results over the runs.
perform 10-fold cross-validation. We also per- Table 2 shows the results obtained for the AIMED
formed 10-fold cross-validation in both data sets andata set. Edit distance based path similarity function

T+ p ©

report the average results over the runs. performs considerably better than the cosine sim-
— _ ilarity function with harmonic functions and kNN
ftp://itp.cs.utexas.edu/pub/mooney/bio-data/ and usually slightly better with SVM and TSVM.

*http://biocreative.sourceforge.net/biocreatRiatml .
sThg pre-processed data se%s are available at We achieve our best F-score performance of 59.96%

http://belobog.si.umich.edu/clair/biocreative with TSVM with edit kernel. While SVM with edit
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kernel achieves the highest precision of 77.52%, Mitsumoriet al.(2006) also use SVM in their study,
performs slightly worse than SVM with cosine ker-our improved results with SVM confirms our moti-
nel in terms of F-score measure. TSVM performsation of using dependency paths as features.
slightly better than SVM, both of which perform bet- Table 3 shows the results we got with the CB
ter than harmonic functions. kNN is the worst perdata set. The F-score performance with the edit
forming algorithm for this data set. distance based similarity function is always better
In Table 2, we also show the results obtained prehan that of cosine similarity function for this data
viously in the literature by using the same data seset. The difference in performances is considerable
Yakushiji et al. (2005) use an HPSG parser to profor harmonic functions and kNN. Our best F-score
duce predicate argument structures. They utilizs achieved with TSVM with edit kernel (85.22%).
these structures to automatically construct proteifSVM performs slightly better than SVM. When
interaction extraction rules. Mitsumaet al. (2006) cosine similarity function is used, kNN performs
use SVM with the unparsed text around the probetter than harmonic functions. However, when edit
tein names as features to extract protein interaclistance based similarity is used, harmonic functions
tion sentences. Here, we show their best result olachieve better performance. SVM and TSVM per-
tained by using the three words to the left and to théarm better than harmonic functions. But, the gap in
right of the proteins. The most closely related studyperformance is low when edit distance based simi-
to ours is that by Bunescu and Mooney (2005a)arity is used with harmonic functions.
They define a kernel function based on the short-

est path between two entities of a relationship i Fehod_ Precislon) Recal| F>core
the dependency parse tree of a sentence (the SRkym-cos 61.99 | 54.99 | 5809
method). They apply this method to the domain TSVM-edit 59.59 | 60.68 | 59.96
: i : o TSVM-cos 58.37 | 61.19 | 59.62
of protein-protein interaction extraction in (Bunescu| =" "~ " . w17 | 7220 | 2529
and Mooney, 2006). Here, they also test the meth- Harmonic-cos 36.02 | 67.65 | 46.97
ods ELCS (Extraction Using Longest Common Sub ENN-edlt 68.77 | 42.17 | 52.20
sequences) (Bunescu et al., 2005) and SSK (Sub (ﬁ;‘kﬁgﬁiji T gg'% gg"l‘g gg'jg
sequence Kernel) (Bunescu and Mooney, 2005b). (vitsumori et al., 2006) 54.20 | 42.60 | 47.70

We cannot compare our results to theirs directly,
because they report their results as a precisionyaple 2: Experimental Results — AIMED Data Set
recall graph. However, the best F-score in their

graph seems to be aroufd:0 and definitely lower

than the best F-scores we have achieved)(59). Method Precision| Recall | F-Score
Bunescu and Mooney (2006) also use SVM as theirr SVM-edit 85.15 | 84.79 | 84.96
learning method in their SPK approach. They define| SVM-cos 87.83 | 81.45| 84.49
their similarity based on the number of overlapping | TSVM-edit 85.62 | 84.89 | 85.22
words between two paths and assign a similarity of, TSVM-cos 85.67 | 84.31| 84.96

zero if the two paths have different lengths. Our| Harmonic-edit| 86.69 | 80.15| 83.26
improved performance with SVM and the shortest| Harmonic-cos| 72.28 | 70.91| 71.56
path dependency features may be due to the edit- KNN-edit 72.89 | 86.95| 79.28
distance based kernel, which takes into account not KNN-cos 65.42 | 89.49 | 75.54
only the overlapping words, but also word order and

accounts for deletions and insertions of words. Our Table 3: Experimental Results — CB Data Set
results show that, SVM, TSVM, and harmonic func-

tions achieve better F-score and recall performances Semi-supervised approaches are usually more ef-
than the previous studies by Yakushgfial. (2005), fective when there is less labeled data than unlabeled
Mitsumori et al. (2006), and the SSK and ELCS ap-data, which is usually the case in real applications.
proaches of Bunescu and Mooney (2006). SVM antio see the effect of semi-supervised approaches we
TSVM also achieve higher precision scores. Sincgerform experiments by varying the amount of la-
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Figure 2: The F-score on the AIMED dataset withFigure 3: The F-score on the CB dataset with vary-
varying sizes of training data ing sizes of training data

beled training sentences in the rarjge, 3000]. For tences, harmonic functions and TSVM perform sig-

each labeled training set size, sentences are selecfiFanty better than kNN, while SVM is the worst
randomly among all the sentences, and the remaiR€rforming algorithm. When we have more than
ing sentences are used as the unlabeled test set. P79 [abeled training sentences, kNN is the worst per-
results that we report are the averages agesuch [orming algorithm, while the performance of SVM
random runs for each labeled training set size. W@creases and gets similar to that of TSVM and
report the results for the algorithms when edit disS!I9htly better than that of harmonic functions.

tance based similarity is used, as it mostly performg Conclusion

better than cosine similarity.  Figure 2 shows the

results obtained over the AIMED data set. Semige introduced a relation extraction approach based
supervised approaches TSVM and harmonic fungsp dependency parsing and machine learning to
tions perform considerably better than their supefgentify protein interaction sentences in biomedical
vised counterparts SVM and kNN when we havgext. Unlike syntactic parsing, dependency parsing
small number of labeled training data. It is inter‘captures the semantic predicate argument relation-
esting to note that, although SVM is one of the besthjps hetween the entities in addition to the syntac-
performing algorithms with more training data, it istjc relationships. We extracted the shortest paths be-
the worst performing algorithm with small amountyyeen protein pairs in the dependency parse trees of
of labeled training sentences. Its performance staff§e sentences and defined similarity functions (ker-
to increase when number of training data is largehe|s in SVM terminology) for these paths based on
than 200. Eventually, its performance gets close tggsine similarity and edit distance. Supervised ma-
that of the other algorithms. Harmonic functions ishine learning approaches have been applied to this
the best performing algorithm when we have lesgomain. However, they rely only on labeled training
than 200 labeled training data. TSVM achieves belata. which is difficult to gather. To our knowledge,
ter performance when there are more than 500 Ignjs is the first effort in this domain to apply semi-
beled training sentences. supervised algorithms, which make use of both la-
Figure 3 shows the results obtained over the CBeled and unlabeled data. We evaluated and com-
data set. When we have less than 500 labeled sgmared the performances of two semi-supervised ma-
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chine learning approaches (harmonic functions and.

TSVM), with their supervised counterparts (KNN
and SVM). We showed that, edit distance based sim-
ilarity function performs better than cosine simi-
larity function since it takes into account not only
common words, but also word order. Our 10-fold
cross validation results showed that, TSVM per-
forms slightly better than SVM, both of which per-
form better than harmonic functions. The worst per-
forming algorithm is kNN. We compared our results
with previous results published with the AIMED

R.

Blaschke, M. A. Andrade, C. A. Ouzounis, and A. Va-
lencia. 1999. Automatic extraction of biological in-
formation from scientific text: Protein-protein interac-
tions. InProceedings of the AAAI Conference on In-
telligent Systems for Molecular Biology (ISMB 1999)
pages 60-67.

C. Bunescu and R. J. Mooney. 2005a. A shortest
path dependency kernel for relation extractionPro-
ceedings of the Human Language Technology Confer-
ence and Conference on Empirical Methods in Natu-
ral Language Processingages 724—731, Vancouver,
B.C, October.

data set. We achieved the best F-score performangec. Bunescu and R. J. Mooney. 2005b. Subsequence

with TSVM with the edit distance kerneb$.96%)
which is significantly higher than the previously re-
ported results for the same data set.

In most real-world applications there are muctr.

more unlabeled data than labeled data. Semi-

kernels for relation extraction. IRroceedings of the
19th Conference on Neural Information Processing
Systems (NIPSYancouver, B.C, December.

C. Bunescu and R. J. Mooney, 200@xt Mining and
Natural Language Processinghapter Extracting Re-

supervised approaches are usually more effective inlations from Text: From Word Sequences to Depen-

these cases, because they make use of both the la-

dency Paths. forthcoming book.

beled and unlabeled instances when making degk, Bunescu, R. Ge, J. R. Kate, M. E. Marcotte, R. J.

sions. To test this hypothesis for the application
of extracting protein interaction sentences from text,
we performed experiments by varying the number
of labeled training sentences. Our results show

that, semi-supervised algorithms perform considef.

Mooney, K. A. Ramani, and W. Y. Wong. 2005. Com-
parative experiments on learning information extrac-
tors for proteins and their interactionacrtificial Intel-
ligence in Medicing33(2):139-155, February.

J. C. Burges. 1998. A tutorial on support vector

ably better than their supervised counterparts, when Machines for pattern recognitiorData Mining and

there are small number of labeled training sentences.
An interesting result is that, in such cases SVM pere.

forms significantly worse than the other algorithms.
Harmonic functions achieve the best performance

when there are only a few labeled training sentenceg.

Knowledge Discovery2(2):121-167.

Cortes, P. Haffner, and M. Mohri. 2004. Rational
kernels: Theory and algorithmslournal of Machine
Learning Research{5):1035-1062, August.

Culotta and J. Sorensen. 2004. Dependency tree ker-

As number of labeled training sentences increases nels for relation extraction. IRroceedings of the 42nd
the performance gap between supervised and semi-Annual Meeting of the Association for Computational

supervised algorithms decreases.
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