
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 218–227, Prague, June 2007. c©2007 Association for Computational Linguistics

Unsupervised Part-of-Speech Acquisition for Resource-Scarce Languages

Sajib Dasgupta and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{sajib,vince}@hlt.utdallas.edu

Abstract

This paper proposes a new bootstrapping
approach to unsupervised part-of-speech
induction. In comparison to previous
bootstrapping algorithms developed for this
problem, our approach aims to improve
the quality of the seed clusters by
employing seed words that are both
distributionally and morphologically
reliable. In particular, we present a novel
method for combining morphological and
distributional information for seed
selection. Experimental results demonstrate
that our approach works well for English
and Bengali, thus providing suggestive
evidence that it is applicable to both
morphologically impoverished languages
and highly inflectional languages.

1 Introduction

The availability of a high-quality lexicon is crucial
to the development of fundamental text-processing
components such as part-of-speech (POS) taggers
and syntactic parsers. While hand-crafted lexicons
are readily available for resource-rich languages
such as English, the same is not true for resource-
scarce languages. Unfortunately, manually
constructing a lexicon requires a lot of linguistic
expertise, and is practically infeasible for highly
inflectional and agglutinative languages, which
contain a very large number of lexical items. Given
the scarcity of annotated data for acquiring the
lexicon in a supervised manner, researchers have
instead investigated unsupervised POS induction
techniques for automating the lexicon construction

process. In essence, the goal of unsupervised POS
induction is to learn the set of possible POS tags
for each lexical item from an unannotated corpus.

 The most common approach to unsupervised
POS induction to date has been motivated by Har-
ris’s (1954) distributional hypothesis: words with
similar co-occurrence patterns should have similar
syntactic behavior. More specifically, unsupervised
POS induction algorithms typically operate by (1)
representing each target word (i.e., a word to be
tagged with its POS) as a context vector that en-
codes its left and right context, (2) clustering dis-
tributionally similar words, and (3) manually label-
ing each cluster with a POS tag by inspecting the
members of the cluster.

This distributional approach works under the as-
sumption that the context vector of each word en-
codes sufficient information for enabling accurate
word clustering. However, many words are dis-
tributionally unreliable: due to data sparseness,
they occur infrequently and hence their context
vectors do not capture reliable statistical informa-
tion. To overcome this problem, Clark (2000) pro-
poses a bootstrapping approach, in which he (1)
clusters the most distributionally reliable words,
and then (2) incrementally augments each cluster
with words that are distributionally similar to those
already in the cluster.

The goal of this paper is to propose a new boot-
strapping approach to unsupervised POS induction
that can operate in a resource-scarce setting. Most
notably, our approach aims to improve the quality
of the seed clusters by employing seed words that
are both distributionally and morphologically reli-
able. In particular, we present a novel method for
combining morphological and distributional infor-
mation for seed selection. Furthermore, given our

218

emphasis on resource-scarce languages, our ap-
proach does not rely on any language resources. In
particular, the morphological information that it
exploits is provided by an unsupervised morpho-
logical analyzer.

It is perhaps not immediately clear why morpho-
logical information would play a crucial role in the
induction process, especially since the distribu-
tional approach has achieved considerable success
for English POS induction (see Lamb (1961),
Schütze (1995) and Clark (2000)). To understand
the role and significance of morphology, it is im-
portant to first understand why the distributional
approach works well for English. Recall from the
above that the distributional approach assumes that
the information encoded in the context vector of
each word, which typically consists of the 250
most frequent words of a given language, is suffi-
cient for accurately clustering the words. This ap-
proach works well for English because the most
frequent English words are composed primarily of
closed-class words such as “to” and “is”, which
provide strong clues to the POS of the target word.
However, this assumption is not necessarily valid
for fairly free word order and highly inflectional
languages such as Bengali. The reason is that (1)
co-occurrence statistics collected from free word
order languages are not as reliable as those from
fixed word order languages; and (2) many of the
closed-class words that appear in the context vec-
tor for English words are realized as inflections in
Bengali. The absence of these highly informative
words implies that the context vectors may no
longer capture sufficient information for accurately
clustering Bengali words, and hence the use of
morphological information becomes particularly
important for unsupervised POS induction for
these inflectional languages.

We will focus primarily on labeling open-class
words with their POS tags. Our decision is moti-
vated by the fact that closed-class words generally
comprise a small percentage of the lexical items of
a language. In Bengali, the percentage of closed-
class words is even smaller than that in English: as
mentioned before, many closed-class words in
English are realized as suffixes in Bengali.

Although our attempt to incorporate morpho-
logical information into the distributional POS in-
duction framework was originally motivated by
inflectional languages, experimental results show
that our approach works well for both English and

Bengali, suggesting its applicability to both mor-
phologically impoverished languages and highly
inflectional languages. Owing to the lack of pub-
licly available resources for Bengali, we manually
created a 5000-word Bengali lexicon for evaluation
purposes. Hence, one contribution of our work lies
in the creation of an annotated dataset for Bengali.
By making this dataset publicly available 1 , we
hope to facilitate the comparison of different unsu-
pervised POS induction algorithms and to stimu-
late interest in Bengali language processing.

The rest of the paper is organized as follows.
Section 2 discusses related work on unsupervised
POS induction. Section 3 describes our tagsets for
English and Bengali. The next three sections de-
scribe the three steps of our bootstrapping ap-
proach: cluster the words using morphological in-
formation (Section 4), remove potentially misla-
beled words from each cluster (Section 5), and
bootstrap each cluster using a weakly supervised
learner (Section 6). Finally, we present evaluation
results in Section 7 and conclusions in Section 8.

2 Related Work

Several unsupervised POS induction algorithms
have also attempted to incorporate morphological
information into the distributional framework, but
our work differs from these in two respects.
Computing morphological information. Previous
POS induction algorithms have attempted to derive
morphological information from dictionaries (Ha-
ji�, 2000) and knowledge-based morphological
analyzers (Duh and Kirchhoff, 2006). However,
these resources are generally not available for re-
source-scarce languages. Consequently, research-
ers have attempted to derive morphological infor-
mation heuristically (e.g., Cucerzan and Yarowsky
(2000), Clark (2003), Freitag (2004)). For instance,
Cucerzan and Yarowsky (2000) posit a character
sequence x as a suffix if there exists a sufficient
number of distinct words w in the vocabulary such
that the concatentations wx are also in the vocabu-
lary. It is conceivable that such heuristically com-
puted morphological information can be inaccurate,
thus rendering the usefulness of a more accurate
morphological analyzer. To address this problem,
we exploit morphological information provided by
an unsupervised word segmentation algorithm.

1 See http://www.utdallas.edu/~sajib/posDatasets.html.

219

Tag Description Treebank tags
JJ Adjective JJ
JJR Adjective, comparative JJR
JJS Adjective, superlative JJS
NN Singular noun NN, NNP
NNS Plural noun NNS, NNPS
RB Adverb RB
VB Verb, non-3rd ps. sing. present VB, VBP
VBD Verb, past tense or past participle VBD, VBN
VBG Verb, gerund/present participle VBG
VBZ Verb, 3rd ps. sing. present VBZ

Table 1: The English tagset

Using morphological information. Perhaps due to
the overly simplistic methods employed to com-
pute morphological information, morphology has
only been used as what Biemann (2006) called
add-on’s in existing POS induction algorithms,
which remain primarily distributional in nature. In
contrast, our approach more tightly integrates mor-
phology into the distributional framework. As we
will see, we train SVM classifiers using both mor-
phological and distributional features to select seed
words for our bootstrapping algorithm, effectively
letting SVM combine these two sources of infor-
mation and perform automatic feature weighting.
Another appealing feature of our approach is that
when labeling each unlabeled word with its POS
tag, an SVM classifier also returns a numeric value
that indicates how confident the word is labeled.
This opens up the possibility of having a human
improve our automatically constructed lexicon by
manually checking those entries that are tagged
with low confidence by an SVM classifier.

Recently, there have been attempts to perform
(mostly) unsupervised POS tagging without rely-
ing on a POS lexicon. Haghighi and Klein’s (2006)
prototype-driven approach requires just a few pro-
totype examples for each POS tag, exploiting these
labeled words to constrain the labels of their dis-
tributionally similar words when training a genera-
tive log-linear model for POS tagging. Smith and
Eisner (2005) train a log-linear model for POS tag-
ging in an unsupervised manner using contrastive
estimation, which seeks to move probability mass
to a positive example e from its neighbors (i.e.,
negative examples created by perturbing e).

3 The English and Bengali Tagsets

Given our focus on automatically labeling open
class words, our English and Bengali tagsets are
designed to essentially cover all of the open-class

Tag Description Examples
JJ Adjective vhalo, garam, kharap
NN Singular noun kanna, ridoy, shoshon
NN2 2nd order inflectional noun dhopake, kalamtike
NN6 6th order inflectional noun gharer, manusher
NN7 7th order inflectional noun dhakai, barite, graame
NNP Proper noun arjun, ahmmad
NNS Plural noun manushgulo, pakhider
NNSH Noun ending with “sh” barish, jatrish
VB Finite verb kheyechi, krlam, krI
VBN Non-finite verb kre, giye, jete, kadte

Table 2: The Bengali tagset

words. Our English tagset, which is composed of
ten tags, is shown in Table 1. As we can see, a tag
in our tagset can be mapped to more than one Penn
Treebank tags. For instance, we use the tag “NN”
for both singular and plural common nouns. Our
decision of which Penn Treebank tags to group
together is based on that of Schütze (1995).

Our Bengali tagset, which also consists of ten
tags, is adapted from the one proposed by Saha et
al. (2004) (see Table 2). It is worth noting that
unlike English, we assign different tags to Bengali
proper nouns and common nouns. The reason is
that for English, it is not particularly crucial to dis-
tinguish the two types of nouns during POS induc-
tion, since they can be distinguished fairly easily
using heuristics such as initial capitalization. For
Bengali, such simple heuristics do not exist, as the
Bengali alphabet does not have any upper and
lower case letters. Hence, it is important to distin-
guish Bengali proper nouns and common nouns
during POS induction.

4 Clustering the Morphologically Similar
Words

As mentioned before, our approach aims to more
tightly integrate morphological information into
the distributional POS induction framework. In
fact, our POS induction algorithm begins by clus-
tering the morphologically similar words (i.e.,
words that combine with the same set of suffixes).
The motivation for clustering morphologically
similar words can be attributed to our hypothesis
that words having similar POS should combine
with a similar set of suffixes. For instance, verbs in
English combine with suffixes like “ing”, “ed” and
“s”, whereas adjectives combine with suffixes like
“er” and “est”. Note, however, that the suffix “s”
can attach to both verbs and nouns in English, and
so it is not likely to be a useful feature for identify-

220

ing the POS of a word. The question, then, is how
to determine which suffixes are useful for the POS
identification task in an unsupervised setting where
we do not have any prior knowledge of language-
specific grammatical constraints. This section pro-
poses a method for identifying the “useful” suf-
fixes and employing them to cluster the morpho-
logically similar words. As we will see, our clus-
tering algorithm not only produces soft clusters,
but it also automatically determines the number of
clusters for a particular language.

Before we describe how to identify the useful
suffixes, we need to (1) induce all of the suffixes
and (2) morphologically segment the words in our
vocabulary. 2 However, neither of these tasks is
simple for a truly resource-scarce language for
which we do not have a dictionary or a knowledge-
based morphological analyzer. As mentioned in the
introduction, our proposed solution to both tasks is
to use an unsupervised morphological analyzer that
can be built just from an unannotated corpus. In
particular, we have implemented an unsupervised
morphological analyzer that outperforms Gold-
smith’s (2001) Linguistica and Creutz and Lagus’s
(2005) Morfessor for our English and Bengali
datasets and compares favorably to the best-
performing morphological parsers in MorphoChal-
lenge 20053 (see Dasgupta and Ng (2007)).

Given the segmentation of each word and the
most frequent 30 suffixes4 provided by our mor-
phological analyzer, our clustering algorithm oper-
ates by (1) clustering the similar suffixes and then
(2) assigning words to each cluster based on the
suffixes a word combines with. To cluster similar
suffixes, we need to define the similarity between
two suffixes. Informally, we say that two suffixes x
and y are similar if a word that combines with x
also combines with y and vice versa. In practice,
we will rarely posit two suffixes as similar under
this definition unless we assume access to a com-
plete vocabulary – an assumption that is especially
unrealistic for resource-scarce languages. As a re-
sult, we relax this definition and consider two suf-
fixes x and y similar if P(x | y) > t and P(y | x) > t,
where P(x | y) is the probability of a word combin-
ing with suffix x given that it combines with suffix

2 A vocabulary is simply a set of (distinct) words extracted
from an unannotated corpus. We extracted our English and
Bengali vocabulary from WSJ and Prothom Alo, respectively.
3 http://www.cis.hut.fi/morphochallenge2005/
4 We found that 30 suffixes are sufficient to cluster the words.

y, and t is a threshold that we set to 0.4 in all of our
experiments. Note that both probabilities can be
estimated from an unannotated corpus.5 Given this
definition of similarity, we can cluster the similar
suffixes using the following steps:
Creating the initial clusters. First, we create a
suffix graph, in which we have (1) one node for
each of the 30 suffixes, and (2) a directed edge
from suffix x to suffix y if P(y | x) > 0.4. We then
identify the strongly connected components of this
graph using depth-first search. These strongly con-
nected components define our initial partitioning of
the 30 suffixes. We denote the suffixes assigned to
a cluster the primary keys of the cluster.
Improving the initial clusters. Recall that we
ultimately want to cluster the words by assigning
each word w to the cluster in which w combines
with all of its primary keys. Given this goal, it is
conceivable that singleton clusters are not
desirable. For instance, a cluster that has “s” as its
only primary key is not useful, because although a
lot of words combine with “s”, they do not
necessarily have the same POS. As a result, we
improve each initial cluster by adding more
suffixes to the cluster, in hopes of improving the
resulting clustering of the words by placing
additional constraints on each cluster. More
specifically, we add a suffix y to a cluster c if, for
each primary key x of c, P(y | x) > 0.4. If this
condition is satisfied, then y becomes a secondary
key of c. For each initial cluster c’, we perform this
check using each of the suffixes x’ not in c’ to see
if x’ can be added to c’. If, after this expansion
step, we still have a cluster c* defined by a single
primary key x that also serves as a secondary key
in other clusters, then x is probably ambiguous
(i.e., x can probably attach to words belonging to
different POSs); and consequently, we remove c*.
We denote the resulting set of clusters by C.
Populating the clusters with words. Next, for
each word w in our vocabulary, we check whether
w can be assigned to any of the clusters in C. Spe-
cifically, we assign w to a cluster c if w can com-
bine with each of its primary keys and at least half
of its secondary keys.
Labeling and merging the clusters. After popu-
lating each cluster with words, we manually label

5 For instance, we compute P(x | y) as the ratio of the number
of distinct words that combines with both x and y to the num-
ber of distinct words that combine with y only.

221

each of them with a POS tag from the tagset. We
found that all of the clusters are labeled as NN,
VB, or JJ. The reason is that the clustered words
are mostly root words. We then merge all the clus-
ters labeled with the same POS tag, yielding only
three “big” clusters. Note that these “big” clusters
are soft clusters, since a word can belong to more
than one of them. For instance, “cool” can combine
with “s” or “ing” to form a VB, and it can also
combine with “er” or “est” to form a JJ.
Generating sub-clusters. Recall that each “big”
cluster contains a set of suffixes and also a set of
words that combines with those suffixes. Now, for
each “big” cluster c, we create one sub-cluster cx
for each suffix x that appears in c. Then, for each
word w in c, we use our unsupervised morphologi-
cal analyzer to generate w+x and add the surface
form to the corresponding sub-cluster.
Labeling the sub-clusters. Finally, we manually
label each sub-cluster with a POS tag from our
tagset. For example, all the words ending in “ing”
will be labeled as VBG. As before, we merge two
clusters if they are labeled with the same POS tag.
The resulting clusters are our morphologically
formed clusters.

5 Purifying the Seed Set

The clusters formed thus far cannot be expected to
be perfectly accurate, since (1) our unsupervised
morphological analyzer is not perfect, and (2)
morphology alone is not always sufficient for de-
termining the POS of a word. In fact, we found that
many adjectives are mislabeled as nouns for both
languages. For instance, “historic” is labeled as a
noun, since it combines with suffixes like “al” and
“ally” that “accident” combines with. In addition,
many words are labeled with the POS that does not
correspond to their most common word sense. For
instance, while words like “chair”, “crowd” and
“cycle” are more commonly used as nouns than
verbs, they are labeled as verbs by our clustering
algorithm. The reason is that suffixes that typically
attach to verbs (e.g., “s”, “ed”, “ing”) also attach to
these words. Such labelings, though not incorrect,
are undesirable, considering the fact that these
words are to be used as seeds to bootstrap our mor-
phologically formed clusters in a distributional
manner. For instance, since “chair” and “crowd”
are distributionally similar to nouns, their presence
in the verb clusters can potentially contaminate the

clusters with nouns during the bootstrapping proc-
ess. Hence, for the purpose of effective bootstrap-
ping, we also consider these words “mislabeled”.

To identify the words that are potentially misla-
beled, we rely on the following assumption: words
that are morphologically similar should also be
distributionally similar and vice versa. Based on
this assumption, we propose a purification method
that posits a word w as potentially mislabeled (and
therefore should be removed or relabeled) if the
POS of w as predicted using distributional infor-
mation differs from that as determined by mor-
phology.

The question, then, is how to predict the POS
tag of a word using distributional information? Our
idea is to use “supervised” learning, where we train
and test on the seed set. Conceptually, we (1) train
a multi-class classifier on the morphologically la-
beled words, each of which is represented by its
context vector, and (2) apply the classifier to rela-
bel the same set of words. If the new label of a
word w differs from its original label, then mor-
phology and context disagree upon the POS of w;
and as mentioned above, our method then deter-
mines that the word is potentially misclassified.
Note, however, that (1) the training instances are
not perfectly labeled and (2) it does not make sense
to train a classifier on data that is seriously misla-
beled. Hence, we make the assumption that a large
percentage (> 70%) of the training instances is cor-
rectly labeled6, and that our method would work
with a training set labeled at this level of accuracy.
In addition, since we are training a classifier based
on distributional features, we train and test on only
distributionally reliable words, which we define to
be words that appear at least five times in our cor-
pus. Distributionally unreliable words will all be
removed from the morphologically formed clus-
ters, since we cannot predict their POS using dis-
tributional information.

In our implementation of this method, rather
than train a multi-class classifier, we train a set of
binary classifiers using SVMlight (Joachims, 1999)
together with the distributional features for deter-
mining the POS tag of a given word.7 More spe-
cifically, we train one classifier for each pair of

6 An inspection of the morphologically formed clusters reveals
that this assumption is satisfied for both languages.
7 In this and all subsequent uses of SVMlight, we set all the
training parameters to their default values.

222

POS tags. For instance, since we have ten POS
tags for English, we will train 45 binary classifi-
ers.8 To determine the POS tag of a given English
word w, we will use these 45 pairwise classifiers to
independently assign a label to w. For instance, the
NN-JJ classifier will assign either NN or JJ to w.
We then count how many times w is tagged with
each of the ten POS tags. If there is a POS tag t
whose count is nine, it means that all the nine clas-
sifiers associated with t have classified w as t, and
so our method will label w as t. Otherwise, we re-
move w from our seed set, since we cannot confi-
dently label it using our classifier ensemble.

To create the training set for the NN-JJ classi-
fier, for instance, we can possibly use all of the
words labeled with NN and JJ as positive and
negative instances, respectively. However, to en-
sure that we do not have a skewed class distribu-
tion, we use the same number of instances from
each class to train the classifier. More formally, let
INN be the set of instances labeled with NN, and IJJ
be the set of instances labeled with JJ. Without loss
of generality, assume that |INN| < |IJJ|, where |X| de-
notes the size of the set X. To avoid class skew-
ness, we have to sample from IJJ, since it is the lar-
ger set. Our sampling method is motivated by bag-
ging (Breiman, 1996). More specifically, we create
10 training sets from IJJ, each of which has size
|INN| and is formed by sampling with replacement
from IJJ. We then combine each of these 10 train-
ing sets separately with INN, and train 10 SVM
classifiers from the 10 resulting training sets.
Given a test instance i, we first apply the 10 classi-
fiers independently to i and obtain the signed con-
fidence values9 of the predictions provided by the
classifiers. We then take the average of the 10 con-
fidence values, assigning i the positive class if the
average is at least 0, and negative otherwise.

As mentioned above, we use distributional fea-
tures to represent an instance created from a word
w. The distributional features are created based on
Schütze’s (1995) method. Specifically, the left
context and the right context of w are each encoded
using the most frequent 500 words from the vo-
cabulary. A feature in the left (right) context has

8 We could have trained just one 10-class classifier, but the
fairly large number of classes leads us to speculate that this
multi-class classifier will not achieve a high accuracy.
9 Here, a large positive number indicates that the classifier
confidently labels the instance as NN, and a large negative
number represents confident prediction for JJ.

the value 1 if the corresponding word appears to
the left (right) of w in our corpus, and 0 otherwise.
However, we found that using distributional fea-
tures alone would erroneously classify words like
“car” and “cars” as having the same POS because
the two words are distributionally similar. In gen-
eral, it is difficult to distinguish words in NN from
those in NNS by distributional means. The same
problem occurs for words in VB and VBD. To ad-
dress this problem, we augment the feature set with
suffixal features. Specifically, we create one binary
feature for each of the 30 most frequent suffixes
that we employed in the previous section. The fea-
ture corresponding to suffix x has the value 1 if x is
the suffix of w. Moreover, we create an additional
suffixal feature whose value is 1 if none of the 30
most frequent suffixes is the suffix of w.

6 Augmenting the Seed Set

After purification, we have a set of clusters filled
with distributionally and morphologically reliable
seed words that receive the same POS tag when
predicted independently by morphological features
and distributional features. Our goal in this section
is to augment this seed set. Since we have a small
seed set (5K words for English and 8K words for
Bengali) and a large number of unlabeled words,
we believe that it is most natural to apply a weakly
supervised learning algorithm to bootstrap the clus-
ters. Specifically, we employ a version of self-
training together with SVM as the underlying
learning algorithm. 10 Below we first present the
high-level idea of our self-training algorithm and
then discuss the implementation details.

Conceptually, our self-training algorithm works
as follows. We first train a multi-class SVM classi-
fier on the seed set for determining the POS tag of
a word using the morphological and distributional
features described in the previous section, and then
apply it to label the unlabeled (i.e., unclustered)
words. Words that are labeled with a confidence
value that exceeds the current threshold (which is
initially set to 1 and -1 for positively and nega-
tively labeled instances, respectively) will be

10 As a related note, Clark’s (2001) bootstrapping algorithm
uses KL-divergence to measure the distributional similarity
between an unlabeled word and a labeled word, adding to a
cluster the words that are most similar to its current member.
For us, SVM is a more appealing option because it automati-
cally combines the morphological and distributional features.

223

added to the seed set. In the next iteration, we re-
train the classifier on the augmented labeled data,
apply it to the unlabeled data, and add to the la-
beled data those instances whose predicted confi-
dence is above the current threshold. If none of the
instances has a predicted confidence above the cur-
rent threshold, we reduce the threshold by 0.1. (For
instance, if the original thresholds are 1 and -1,
they will be changed to 0.9 and -0.9.) We then re-
peat the above procedure until the thresholds reach
0.5 and -0.5. 11 Finally, we apply the resulting
bootstrapped classifier to label all of the unlabeled
words that have a corpus frequency of at least five,
using a threshold of 0.

In our implementation of the self-training algo-
rithm, rather than train a multi-class classifier in
each bootstrapping iteration, we train pairwise
classifiers (recall that for English, 45 classifiers are
formed from 10 POS tags) using the morphological
and distributional features described in the previ-
ous section. Again, since we employ distributional
features, we apply the 45 pairwise classifiers only
to the distributionally reliable words (i.e., words
with corpus frequency at least 5). To classify an
unlabeled word w, we apply the 45 pairwise classi-
fiers to independently assign a label to w.12 We
then count how many times w is tagged with each
of the ten POS tags. If there is a POS tag whose
count is nine and all of these nine votes are associ-
ated with confidence that exceeds the current
threshold, then we add w to the labeled data to-
gether with its assigned tag.

7 Evaluation

7.1 Experimental Setup

Corpora. Recall that our bootstrapping algorithm
assumes as input an unannotated corpus from
which we (1) extract our vocabulary (i.e., the set of
words to be labeled) and (2) collect the statistics
needed in morphological and distributional cluster-

11 We decided to stop the bootstrapping procedure at thresh-
olds of 0.5 and -0.5, because the more bootstrapping iterations
we use, the lower are the quality of the bootstrapped data as
well as the accuracy of the bootstrapped classifier.
12 As in purification, each pairwise classifier is implemented
as a set of 10 classifiers, each of which is trained on an equal
number of instances from both classes. Testing also proceeds
as before: the label of an instance is derived from the average
of the confidence values returned by the 10 classifiers, and the
confidence value associated with the label is just the average
of the 10 confidence values.

ing. We use as our English corpus the Wall Street
Journal (WSJ) portion of the Penn Treebank (Mar-
cus et al., 1993). Our Bengali corpus is composed
of five years of articles taken from the Bengali
newspaper Prothom Alo.
Vocabulary creation. To extract our English vo-
cabulary, we pre-processed each document in the
WSJ corpus by first tokenizing them and then re-
moving the most frequent 500 words (as they are
mostly closed class words), capitalized words,
punctuations, numbers, and unwanted character
sequences (e.g., “***”). The resulting English vo-
cabulary consists of approximately 35K words. We
applied similar pre-processing steps to the Prothom
Alo articles to generate our Bengali vocabulary,
which consists of 80K words.
Test set preparation. Our English test set is com-
posed of the 25K words in the vocabulary that ap-
pear at least five times in the WSJ corpus. The
gold-standard POS tags for each word w are de-
rived automatically from the parse trees in which w
appears. To create the Bengali test set, we ran-
domly chose 5K words from the vocabulary that
appear at least five times in Prothom Alo. Each
word in the test set was then labeled with its POS
tags by two of our linguists.
Evaluation metric. Following Schütze (1995), we
report performance in terms of recall, precision,
and F1. Recall is the percentage of POS tags cor-
rectly proposed, precision is the percentage of POS
tags proposed that are correct, and F1 is simply the
harmonic mean of recall and precision. To exem-
plify, suppose the correct tagset for “crowd” is
{NN, VB}; if our system outputs {VB, JJ, RB},
then recall is 50%, precision is 33%, and F1 is
40%. Importantly, all of our results will be re-
ported on word types. This prevents the frequently
occurring words from having a higher influence on
the results than their infrequent counterparts.

7.2 Results and Discussion

The baseline system. We use as our baseline sys-
tem one of the best existing unsupervised POS in-
duction algorithms (Clark, 2003). More specifi-
cally, we downloaded from Clark’s website13 the
code that implements a set of POS induction algo-
rithms he proposed. Among these implementa-
tions, we chose cluster_neyessenmorph, which
combines morphological and distributional infor-

13 http://www.cs.rhul.ac.uk/home/alexc/

224

mation and achieves the best performance in his
paper. When running his program, we use WSJ and
Prothom Alo as the input corpora. In addition, we
set the number of clusters produced to be 128,
since this setting yields the best result in his paper.
Results of the baseline system for the English and
Bengali test sets are shown under the “After Boot-
strapping” column in row 1 of Tables 3 and 4. As
we can see, the baseline achieves F1-scores of 59%
and 45% for English and Bengali, respectively.
The other results in row 1 will be discussed below.
Our induction system. Recall that our unsuper-
vised POS induction algorithm operates in three
steps. To better understand the performance con-
tribution of each of these steps, we show in row 2
of Tables 3 and 4 the results of our system after we
(1) morphologically cluster the words, (2) purify
the seed set, and (3) augment the seed set. Impor-
tantly, the numbers shown for each step are com-
puted over the set of words in the test set that are
labeled at the end of that step. For instance, the
morphological clustering algorithm labeled 11K
English words and 25K Bengali words, and so re-
call, precision and F1-score are computed over the
subset of these labeled words that appear in the test
set. Similarly, after bootstrapping, all the words
that appear at least five times in our corpus are la-
beled; since our labeled data is now a superset of
our test data, the numbers in the last column are
the results of our algorithm for the entire test set.

As we can see, after morphological clustering,
our system achieves F1-scores of 79% and 78% for
English and Bengali, respectively. When measured
on exactly the same set of words, the baseline only
achieves F-scores of 59% and 56%. In fact, com-
paring rows 1 and 2, we outperform the baseline in
each of the three steps of our algorithm. In particu-
lar, our system yields F1-scores of 73% and 77%
for the entire English and Bengali test sets, thus
outperforming the baseline by 14% and 18% for
English and Bengali, respectively.

Two additional points deserve mentioning. First,
for both languages, the highest F1-score is
achieved after the purification step. A closer analy-
sis of the labeled words reveals the reason. For
English, many of the nouns incorrectly labeled as
verbs by the morphological clustering algorithm
were subsequently removed during the purification
step when distributional similarity was used on top
of morphological similarity. For Bengali, many
proper nouns were assigned by the morphological

clustering algorithm to the clusters dominated by
common nouns (because the two types of Bengali
nouns are morphologically similar), and many of
these mislabeled proper nouns were subsequently
removed during purification. Second, as expected,
precision drops after the seed augmentation step,
since the quality of the labeled data deteriorates as
bootstrapping progresses. Nevertheless, with a lot
more words labeled in the bootstrapping step, we
still achieve F1-scores of 73% for English and 76%
for Bengali.

The remaining rows of the Tables 3 and 4 show
the performance of our algorithm for each tag in
our two POS tagsets. Different observations can be
made for the two languages. For English, the poor
results for VBZ and NNS can be attributed to the
fact that it is not easy to distinguish between these
two tags: “s” is a typical suffix for words that are
NNS and words that are the third person singular
of a verb. In addition, results for verbs are better
than those for nouns, since verbs are easier to iden-
tify using only morphological knowledge.

For Bengali, results for adjectives are not good,
since (1) adjectives and nouns have very similar
distributional property in Bengali and (2) there are
not enough suffixes to induce the adjectives mor-
phologically. Moreover, we achieve high precision
but low recall for proper nouns. This implies that
most of the words that our algorithm labels as
proper nouns are indeed correct, but there are also
many proper nouns that are mislabeled. A closer
examination of the clusters reveals that many of
these proper nouns are mislabeled as common
nouns, presumably because these two types of
Bengali nouns are morphologically and distribu-
tionally similar and therefore it is difficult to sepa-
rate them. We will leave the identification of Ben-
gali proper nouns as a topic for future research.

7.3 Additional Experiments

Labeling rare words with morphological infor-
mation. Although our discussion thus far has fo-
cused on words whose corpus frequency is at least
five, it would be informative to examine how well
our algorithm performs on rare, distributionally
unreliable words (i.e., words with corpus fre-
quency less than five). Recall that our morphologi-
cal clustering algorithm also clusters rare words. In
fact, these rare words comprise 15% of the English
words and 18% of the Bengali words in our mor-
phological formed clusters. Perhaps more impor-

225

After Morphological Clustering After Purification After Bootstrapping
P R F1 P R F1 P R F1

Baseline 84.1 45.3 58.9 84.9 51.4 64.1 75.6 48.0 59.0
Ours 85.9 74.0 79.4 89.3 74.4 81.7 80.4 66.8 73.1
JJ 88.7 49.1 63.2 91.4 51.9 66.1 57.7 62.9 60.2
JJR 91.1 86.2 88.6 92.1 92.0 92.0 62.1 83.1 71.0
JJS 100 98.3 99.1 100 100 100 81.3 86.9 83.9
NN 91.6 43.7 59.2 94.8 42.8 58.8 95.2 47.1 62.8
NNS 90.6 39.2 53.5 93.5 41.3 57.2 96.6 44.7 60.9
RB 100 76.1 86.4 100 82.2 90.6 98.8 63.5 77.3
VB 74.0 97.7 84.1 79.8 96.0 87.1 65.7 92.8 76.9
VBD 96.6 98.9 97.7 97.6 100 98.8 96.7 91.9 93.3
VBG 89.9 100 94.7 91.1 100 95.7 90.8 93.5 92.1
VBZ 60.9 99.9 74.7 65.1 96.8 77.7 52.8 92.6 67.3

Table 3: POS induction results for English based on word type

After Morphological Clustering After Purification After Bootstrapping
P R F1 P R F1 P R F1

Baseline 82.1 42.3 55.5 83.1 45.3 58.3 78.1 43.3 49.3
Ours 74.1 81.3 77.5 83.4 78.0 80.7 74.1 79.2 76.6
JJ 50.0 51.8 50.9 56.1 55.0 55.5 57.5 51.4 54.3
NN 63.0 96.8 76.4 67.0 96.0 78.9 62.2 92.2 74.3
NN2 96.3 100 98.1 99.0 100 99.5 99.0 99.0 99.0
NN6 95.5 89.2 92.2 97.2 90.0 93.9 97.1 91.0 93.9
NN7 88.4 94.1 89.7 92.1 99.2 93.1 90.1 78.7 84.1
NNP 87.2 37.3 52.3 92.8 43.8 59.4 92.7 51.5 66.1
NNS 62.7 93.1 75.0 66.8 93.5 77.9 65.2 94.1 77.1
NNSH 91.0 100 95.6 91.0 100 95.7 91.0 100 95.7
VB 68.9 93.0 79.2 77.0 94.6 84.9 73.9 91.8 81.9
VBN 84.3 49.1 62.1 82.4 50.1 62.9 56.1 46.7 50.1

Table 4: POS induction results for Bengali based on word type

tantly, when measuring performance on just these
morphologically clustered rare words, our algo-
rithm achieves F1-scores of 81% and 79% for Eng-
lish and Bengali, respectively. These results pro-
vide empirical support for the claim that morpho-
logical information can be usefully employed to
label rare words (Clark, 2003).
Soft clustering. Many words have more than one
POS tag. For instance, “received” can be labeled as
VBD and JJ. Although our morphological cluster-
ing algorithm can predict some of these ambigui-
ties, those are at the “big” cluster level. At the sub-
cluster level, the algorithm imposes a hard cluster-
ing on the words. In other words, no word appears
in more than one sub-cluster.

Ideally, a POS induction algorithm should pro-
duce soft clusters due to lexical ambiguity. In fact,
Jardino and Adda (1994), Schütze (1997) and
Clark (2000) have attempted to address the ambi-
guity problem to a certain extent. We have also
experimented with a very simple method for han-
dling ambiguity in our bootstrapping algorithm:
when augmenting the seed set, instead of labeling a

word with a tag that receives 9 votes from the 45
pairwise classifiers, we label a word with any tag
that receives at least 8 votes, effectively allowing
the assignment of more than one label to a word.
However, our experimental results (not shown due
to space limitations) indicate that the incorporation
of this method does not yield better overall per-
formance, since many of the additional labels are
erroneous and hence their presence deteriorates the
quality of the bootstrapped data.

8 Conclusions

We have proposed a new bootstrapping algorithm
for unsupervised POS induction. In contrast to ex-
isting algorithms developed for this problem, our
algorithm is designed to (1) operate under a re-
source-scarce setting in which no language-
specific tools or resources are available and (2)
more tightly integrate morphological information
with the distributional POS induction framework.
In particular, our algorithm (1) improves the qual-
ity of the seed clusters by employing seed words

226

that are distributionally and morphologically reli-
able and (2) uses support vector learning to com-
bine morphological and distributional information.
Our results show that it outperforms Clark’s algo-
rithm for English and Bengali, suggesting that it is
applicable to both morphologically impoverished
and highly inflectional languages.

Acknowledgements

We thank the five anonymous EMNLP-CoNLL
referees for their valuable comments. We also
thank Zeeshan Abedin and Mahbubur Rahman
Haque for creating the Bengali lexicon.

References

Chris Biemann. 2006. Unsupervised part-of-speech tag-
ging employing efficient graph clustering. In Pro-
ceedings of the COLING/ACL 2006 Student Research
Workshop.

Leo Breiman. 1996. Bagging predictors. Machine
Learning 24(2):123-140.

Alexander Clark. 2000. Inducing syntactic categories by
context distributional clustering. In Proceedings of
CoNLL, pages 91-94.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the EACL.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. In Computer
and Information Science, Report A81, Helsinki Uni-
versity of Technology.

Silviu Cucerzan and David Yarowsky. 2000. Language
independent, minimally supervised induction of lexi-
cal probabilities. In Proceedings of the ACL, pages
270-277.

Sajib Dasgupta and Vincent Ng. 2007. High-
performance, language-independent morphological
segmentation. In Proceedings of NAACL-HLT, pages
155-163.

Kevin Duh and Katrin Kirchhoff. 2006. Lexicon acqui-
sition for dialectal Arabic using transductive learn-
ing. In Proceedings of EMNLP, pages 399-407.

Dayne Freitag. 2004. Toward unsupervised whole-
corpus tagging. In Proceedings of COLING, pages
357-363.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. In Computational
Linguistics 27(2):153-198.

Aria Haghighi and Dan Klein. 2006. Prototype-driven
learning for sequence models. In Proceedings of
HLT-NAACL, pages 320-327.

Jan Haji�. 2000. Morphological tagging: Data vs. dic-
tionaries. In Proceedings of the NAACL, pages 94-
101.

Zellig Harris. 1954. Distributional structure. In Word,
10(2/3):146-162.

Michele Jardino and Gilles Adda. 1994. Automatic de-
termination of a stochastic bi-gram class language
model. In Proceedings of Grammatical Inference and
Applications, Second International Colloquium,
ICGI-94, pages 57-65.

Thorsten Joachims. 1999. Making large-scale SVM
learning practical. In Advances in Kernel Methods –
Support Vector Learning, pages 44-56. MIT Press.

Sydney Lamb. 1961. On the mechanization of syntactic
analysis. In Proceedings of the 1961 Conference on
Machine Translation of Languages and Applied Lan-
guage Analysis, Volume 2, pages 674-685. HMSO,
London.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Bea-
trice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Andrei Mikheev. 1997. Automatic rule induction for
unknown word-guessing. Computational Linguistics,
23(3):405-423.

Goutam Kumar Saha, Amiya Baran Saha, and Sudipto
Debnath. 2004. Computer assisted Bangla words
POS tagging. In Proceedings of the International
Symposium on Machine Translation NLP and TSS
(iTRANS, 2004).

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In Proceedings of the EACL, pages 141-148.

Hinrich Schütze. 1997. Ambiguity Resolution in Lan-
guage Learning. CSLI Publications.

Noah Smith and Jason Eisner. 2005. Contrastive estima-
tion: Training log-linear models on unlabeled data. In
Proceedings of the ACL, pages 354-362.

227

