
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 208–217, Prague, June 2007. c©2007 Association for Computational Linguistics

Joint Morphological and Syntactic Disambiguation∗

Shay B. Cohen and Noah A. Smith
Language Technologies Institute

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{scohen,nasmith}@cs.cmu.edu

Abstract
In morphologically rich languages, should morphological and
syntactic disambiguation be treated sequentially or as a sin-
gle problem? We describe several efficient, probabilistically-
interpretable ways to apply joint inference to morphological
and syntactic disambiguation using lattice parsing. Joint infer-
ence is shown to compare favorably to pipeline parsing methods
across a variety of component models. State-of-the-art perfor-
mance on Hebrew Treebank parsing is demonstrated using the
new method. The benefits of joint inference are modest with
the current component models, but appear to increase as com-
ponents themselves improve.

1 Introduction

As the field of statistical NLP expands to handle
more languages and domains, models appropriate
for standard benchmark tasks do not always work
well in new situations. Take, for example, pars-
ing the Wall Street Journal Penn Treebank, a long-
standing task for which highly accurate context-free
models stabilized by the year 2000 (Collins, 1999;
Charniak, 2000). On this task, the Collins model
achieves 90% F1-accuracy. Extended for new lan-
guages by Bikel (2004), it achieves only 75% on
Arabic and 72% on Hebrew.1

It should come as no surprise that Semitic parsing
lags behind English. The Collins model was care-
fully designed and tuned for WSJ English. Many of
the features in the model depend on English syntax
or Penn Treebank annotation conventions. Inherent
in its crafting is the assumption that a million words
of training text are available. Finally, for English, it
need not handle morphological ambiguity.

Indeed, the figures cited above for Arabic and
Hebrew are achieved using gold-standard morpho-
logical disambiguation and part-of-speech tagging.

∗ The authors acknowledge helpful feedback from the
anonymous reviewers, Sharon Goldwater, Rebecca Hwa, Alon
Lavie, and Shuly Wintner.

1Compared to the Penn Treebank, the Arabic Treebank
(Maamouri et al., 2004) has 60% as many word tokens, and
the Hebrew Treebank (Sima’an et al., 2001) has 6%.

Given only surface words, Arabic performance
drops by 1.5 F1 points. The Hebrew Treebank (un-
like Arabic) is built over morphemes, a convention
we view as sensible, though it complicates parsing.

This paper considers parsing for morphologically
rich languages, with Hebrew as a test case. Mor-
phology and syntax are two levels of linguistic de-
scription that interact. This interaction, we argue,
can affect disambiguation, so we explore here the
matter of joint disambiguation. This involves the
comparison of a pipeline (where morphology is in-
ferred first and syntactic parsing follows) with joint
inference. We present a generalization of the two,
and show new ways to do joint inference for this task
that does not involve a computational blow-up.

The paper is organized as follows. §2 describes
the state of the art in NLP for Hebrew and some
phenomena it exhibits that motivate joint inference
for morphology and syntax. §3 describes our ap-
proach to joint inference using lattice parsing, and
gives three variants of weighted lattice parsing with
their probabilistic interpretations. The different fac-
tor models and their stand-alone performance are
given in §4. §5 presents experiments on Hebrew
parsing and explores the benefits of joint inference.

2 Background

In this section we discuss prior work on statistical
morphological and syntactic processing of Hebrew
and motivate the joint approach.

2.1 NLP for Modern Hebrew

Wintner (2004) reviews work in Hebrew NLP, em-
phasizing that the challenges stem from the writ-
ing system, rich morphology, unique word forma-
tion process of roots and patterns, and relative lack
of annotated corpora.

We know of no publicly available statistical parser
designed specifically for Hebrew. Sima’an et al.

208

h.

Figure 1: (a.) A sentence in Hebrew (to be read right to left), with (b.) one morphological analysis, (c.) English glosses, and (d.)
natural translation; and (e.) a different morphological analysis, (f.) English glosses, and (g.) less natural translation. (h.) shows a
morphological “sausage” lattice that encodes the morpheme-sequence analyses L(~x) possible for a shortened sentence (unmodified
“meadow”). Shaded states are word boundaries, white states are intra-word morpheme boundaries; in practice we add POS tags to
the arcs, to permit disambiguation. According to both native speakers we polled, both interpretations are grammatical—note the
long-distance agreement required for grammaticality.

(2001) built a Hebrew Treebank of 88,747 words
(4,783 sentences) and parsed it using a probabilis-
tic model. However, they assumed that the input to
the parser was already (perfectly) morphologically
disambiguated. This assumption is very common in
multilingual parsing (see, for example, Cowan et al.,
2005, and Buchholz et al., 2006).

Until recently, the NLP literature on morpho-
logical processing was dominated by the largely
non-probabilistic application of finite-state trans-
ducers (Kaplan and Kay, 1981; Koskenniemi, 1983;
Beesley and Karttunen, 2003) and the largely unsu-
pervised discovery of morphological patterns in text
(Goldsmith, 2001; Wicentowski, 2002); Hebrew
morphology receives special attention in Levinger
et al. (1995), Daya et al. (2004), and Adler and El-
hadad (2006). Lately a few supervised disambigua-
tion methods have come about, including hidden
Markov models (Hakkani-Tür et al., 2000; Hajič et
al., 2001), conditional random fields (Kudo et al.,
2004; Smith et al., 2005b), and local support vector
machines (Habash and Rambow, 2005). There are
also morphological disambiguators designed specif-
ically for Hebrew (Segal, 2000; Bar-Haim et al.,
2005).

2.2 Why Joint Inference?

In NLP, the separation of syntax and morphology is
understandable when the latter is impoverished, as

in English. When both involve high levels of am-
biguity, this separation becomes harder to justify,
as argued by Tsarfaty (2006). To our knowledge,
that is the only study to move toward joint inference
of syntax and morphology, presenting joint models
and testing approximation of these models with two
parsers: one a pipeline (segmentation → tagging →
parsing), the other involved joint inference of seg-
mentation and tagging, with the result piped to the
parser. The latter was slightly more accurate. Tsar-
faty discussed but did not carry out joint inference.

In a morphologically rich language, the different
morphemes that make up a word can play a variety
of different syntactic roles. A reasonable linguistic
analysis might not make such morphemes immedi-
ate sisters in the tree. Indeed, the convention of the
Hebrew Treebank is to place morphemes (rather than
words) at the leaves of the parse tree, allowing mor-
phemes of a word to attach to different nonterminal
parents.2

Generating parse trees over morphemes requires
the availability of morphological information when
parsing. Because this analysis is not in general re-
ducible to sequence labeling (tagging), the problem
is different from POS tagging. Figure 1 gives an

2The Arabic Treebank, by contrast, annotates words mor-
phologically but keeps the morphemes together as a single node
tagged with a POS sequence. In Bikel’s Arabic parser, complex
POS tags are projected to a small atomic set; it is unclear how
much information is lost.

209

example from Hebrew that illustrates the interaction
between morphology and syntax. In this example,
we show two interpretations of the surface text, with
the first being a more common natural analysis for
the sentence. The first and third-to-last words’ anal-
yses depend on each other if the resulting analysis
is to be the more natural one: for this analysis the
first seven words have to be a noun phrase, while for
the less common analysis (“lying there nicely”) only
the first six words compose a noun phrase, with the
last two words composing a verb phrase. Consis-
tency depends on a long-distance dependency that a
finite-state morphology model cannot capture, but a
model that involves syntactic information can. Dis-
ambiguating the syntax aids in disambiguating the
morphology, suggesting that a joint model will per-
form both more accurately.

In sum, joint inference of morphology and syntax
is expected to allow decisions of both kinds to influ-
ence each other, enforce adherence to constraints at
both levels, and to diminish the propagation of errors
inherent in pipelines.

3 Joint Inference of Morphology and
Syntax

We now formalize the problem and supply the nec-
essary framework for performing joint morphologi-
cal disambiguation and syntactic parsing.

3.1 Notation and Morphological Sausages

Let X be the language’s word vocabulary and M be
its morpheme inventory. The set of valid analyses
for a surface word is defined using a morphologi-
cal lexicon L, which defines L(x) ⊆ M+. L(~x) ⊆
(M+)+ (sequence of sequences) is the set of whole-
sentence analyses for sentence ~x = 〈x1, x2, ..., xn〉,
produced by concatenating elements of L(xi) in or-
der. L(~x) can be represented as an acyclic lattice
with a “sausage” shape familiar from speech recog-
nition (Mangu et al., 1999) and machine translation
(Lavie et al., 2004). Fig. 1h shows a sausage lat-
tice for a sentence in Hebrew. We use ~m to denote
an element of L(~x) and ~mi to denote an element of
L(xi); in general, ~m = 〈~m1, ~m2, ..., ~mn〉.

We are interested in a function f :X+ →
(M+)+ × T, where T is the set of syntactic trees
for the language. f can be viewed as a structured

classifier. We use DG(~m) ⊆ T to denote the set of
valid trees under a grammar G (here, a PCFG with
terminal alphabet M) for morpheme sequence ~m. To
be precise, f(~x) selects a mutually consistent mor-
phological and syntactic analysis from

GEN(~x) = {〈~m, τ〉 | ~m ∈ L(~x), τ ∈ DG(~m)}

3.2 Product of Experts

Our mapping f(~x) is based on a joint probability
model p(τ, ~m | ~x) which combines two probabil-
ity models pG(τ, ~m) (a PCFG built on the gram-
mar G) and pL(~m | ~x) (a morphological disam-
biguation model built on the lexicon L). Factoring
the joint model into sub-models simplifies training,
since we can train each model separately, and in-
ference (parsing), as we will see later in this sec-
tion. Factored estimation has been quite popular in
NLP of late (Klein and Manning, 2003b; Smith and
Smith, 2004; Smith et al., 2005a, inter alia).

The most obvious joint parser uses pG as a condi-
tional model over trees given morphemes and maxi-
mizes the joint likelihood:

flik(~x)
= argmax

〈~m,τ〉∈GEN(~x)
pG(τ | ~m) · pL(~m | ~x) (1)

= argmax
〈~m,τ〉∈GEN(~x)

pG(τ, ~m)∑
τ ′

pG(τ ′, ~m)
· pL(~m, ~x)∑

~m′

pL(~m′, ~x)

This is not straightforward, because it involves sum-
ming up the trees for each ~m to compute pG(~m),
which calls for the O(|~m|3)-Inside algorithm to
be called on each ~m. Instead, we use the joint,
pG(τ, ~m), which, strictly speaking, makes the model
deficient (“leaky”), but permits a dynamic program-
ming solution.

Our models will be parametrized using either un-
normalized weights (a log-linear model) or multino-
mial distributions. Either way, both models define
scores over parts of analyses, and it may be advanta-
geous to give one model relatively greater strength,
especially since we often ignore constant normal-
izing factors. This is known as a product of ex-
perts (Hinton, 1999), where a new combined distri-
bution over events is defined by multiplying compo-
nent distributions together and renormalizing. In the

210

present setting, for some value α ≥ 0,

fpoe,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

pG(τ, ~m) · pL(~m | ~x)α

Z(~x, α)
(2)

where Z(~x, α) need not be computed (since it is a
constant in ~m and τ). α tunes the relative weight
of the morphology model with respect to the pars-
ing model. The higher α is, the more we trust the
morphology model over the parser to correctly dis-
ambiguate the sentence. We might trust one model
more than the other for a variety of reasons: it could
be more robustly or discriminatively estimated, or it
could be known to come from a more appropriate
family.

This formulation also generalizes two more naı̈ve
parsing methods. If α = 0, the morphology is mod-
eled only through the PCFG and pL is ignored ex-
cept as a constraint on which analyses L(~x) are al-
lowed (i.e., on the definition of the set GEN(~x)). At
the other extreme, as α → +∞, pL becomes more
important. Because pL does not predict trees, pG

still “gets to choose” the syntax tree, but in the limit
it must find a tree for argmax~m∈L(~x) pL(~m | ~x).
This is effectively the morphology-first pipeline.3

3.3 Parsing Algorithms
To parse, we apply a dynamic programming algo-
rithm in the 〈max, +〉 semiring to solve the fpoe,α

problem shown in Eq. 4. If pL is a unigram-factored
model, such that for some single-word morphologi-
cal model υ we have

pL(~m | ~x) =
∏n

i=1 υ(~mi | xi) (3)

then we can implement morpho-syntactic parsing by
weighting the sausage lattice. Let the weight of each
arc that starts an analysis ~mi ∈ L(xi) be equal to
log υ(~mi | xi), and let other arcs have weight 0.
In the parsing algorithm, the weight on an arc is
summed in when the arc is first used to build a con-
stituent.

In general, we would like to define a joint model
that assigns (unnormalized) probabilities to ele-
ments of GEN(~x). If pG is a PCFG and pL can

3There is a slight difference. If no parse tree exists for the
pL-best morphological analysis, then a less probable ~m may be
chosen. So as α → +∞, we can view flik,α as finding the best
grammatical ~m and its best tree—not exactly a pipeline.

be described as a weighted finite-state transducer,
then this joint model is their weighted composition,
which is a weighted CFG; call the composed gram-
mar I and its (unnormalized) distribution pI . Com-
pared to G, I will have many more nonterminals if
pL has a Markov order greater than 0 (unigram, as
above). Because parsing runtime depends heavily on
the grammar constant (at best, quadratic in the num-
ber of nonterminals), parsing with pI is not compu-
tationally attractive.4 fpoe,α is not, then, a scalable
solution when we wish to use a morphology model
pL that can make interdependent decisions about dif-
ferent words in ~x in context. We propose two new,
efficient dynamic programming solutions for joint
parsing.

In the first, we approximate the distribution
pL(~M | ~x) using a unigram-factored model of the
form in Eq. 3:

p′L(~m | ~x) =
∏n

i=1 pL(~Mi = ~mi | ~x)︸ ︷︷ ︸
posterior, depends on all of ~x

(7)

Similar methods were applied by Matsuzaki et al.
(2005) and Petrov and Klein (2007) for parsing un-
der a PCFG with nonterminals with latent anno-
tations. Their approach was variational, approxi-
mating the true posterior over coarse parses using
a sentence-specific PCFG on the coarse nontermi-
nals, created directly out of the true fine-grained
PCFG. In our case, we approximate the full distri-
bution over morphological analyses for the sentence
by a simpler, sentence-specific unigram model that
assumes each word’s analysis is to be chosen inde-
pendently of the others. Note that our model (pL)
does not make such an assumption, only the ap-
proximate model p′L does, and the approximation is
per-sentence. The idea resembles a mean-field vari-
ational approximation for graphical models. Turn-
ing to implementation, we can solve for pL(~mi | ~x)
exactly using the forward-backward algorithm. We
will call this method fvari,α (see Eq. 5).

A closely related method, applied by Goodman
(1996) is called minimum-risk decoding. Good-
man called it “maximum expected recall” when ap-
plying it to parsing. In the HMM community it

4In prior work involving factored syntax models—
lexicalized (Klein and Manning, 2003b) and bilingual (Smith
and Smith, 2004)—fpoe,1 was applied, and the asymptotic run-
time went to O(n5) and O(n7).

211

fpoe,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α log pL(~m | ~x) (4)

fvari,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α
∑n

i=1 log pL(~mi | ~x) (5)

frisk,α(~x) = argmax
〈~m,τ〉∈GEN(~x)

log pG(τ, ~m) + α
∑n

i=1 pL(~mi | ~x) (6)

is sometimes called “posterior decoding.” Mini-
mum risk decoding is attributable to Goel and Byrne
(2000). Applied to a single model, it factors the
parsing decision by penalizable errors, and chooses
the solution that minimizes the risk (expected num-
ber of errors under the model). This factors into a
sum of expectations, one per potential mistake. This
method is expensive for parsing models (since it re-
quires the Inside algorithm to compute expected re-
call mistakes), but entirely reasonable for sequence
labeling models. The idea is to score each word-
analysis ~mi in the morphological lattice by the ex-
pected value (under pL) that ~mi is present in the fi-
nal analysis ~m. This is, of course pL(~Mi = ~mi | ~x),
the same quantity computed for fvari,α, except the
score of a path in the lattice is now a sum of pos-
teriors rather than a product. Our second approxi-
mate joint parser tries to maximize the probability
of the parse (as before) and at the same time to min-
imize the risk of the morphological analysis. See
frisk,α in Eq. 6; the only difference between frisk,α

and fvari,α is whether posteriors are added (frisk,α)
or multiplied (fvari,α).

To summarize this section, fvari,α and frisk,α

are two approximations to the expensive-in-general
fpoe,α that boil down to parsing over weighted lat-
tices. The only difference between them is how
the lattice is weighted: using α log pL(~mi | ~x) for
fvari,α or using αpL(~mi | ~x) for frisk,α.5 In case of
a unigram pL, fpoe,α is equivalent to fvari,α; other-
wise fpoe,α is likely to be too expensive.

3.4 Lattice Parsing

To parse the weighted lattices using fvari,α and
frisk,α in the previous section, we use lattice parsing.
Lattice parsing is a straightforward generalization of

5Until now, we have talked about weighting word analyses,
which may cover several arcs, rather than arcs. In practice we
apply the weight to the first arc of a word analysis, and weight
the remaining arcs of that analysis with 0 (no cost or benefit),
giving the desired effect.

string parsing that indexes constituents by states in
the lattice rather than word interstices. At parsing
time, a 〈max, +〉 lattice parser finds the best com-
bined parse tree and path through the lattice. Im-
portantly, the data structures that are used in chart
parsing need not change in order to accommodate
lattices. The generalization over classic Earley or
CKY parsing is simple: keep in the parsing chart
constituents created over a pair of start state and end
state (instead of start position and end position), and
(if desired) factor in weights on lattice arcs; see Hall
(2005).

4 Factored Models

A fair comparison of joint and pipeline parsing must
make some attempt to control for the component
models. We describe here two PCFGs we used for
pG(τ, ~m) and two finite-state morphological models
we used for pL(~m | ~x). We show how these mod-
els perform in stand-alone evaluations. For all ex-
periments, we used the Hebrew Treebank (Sima’an
et al., 2001). After removing traces and removing
functional information from the nonterminals, we
had 3,770 sentences in the training set, 371 sen-
tences in the development set (used primarily to se-
lect the value of α) and 370 sentences in the test set.

4.1 Syntax Model

Our first syntax model is an unbinarized PCFG
trained using relative frequencies. Preterminal (POS
tag → morpheme) rules are smoothed using back-
off to a model that predicts the morpheme length
and letter sequence. The PCFG is not binarized.
This grammar is remarkably good, given the lim-
ited effort that went into it. The rules in the train-
ing set had high coverage with respect to the de-
velopment set: an oracle experiment in which we
maximized the number of recovered gold-standard
constituents (on the development set) gave F1 ac-
curacy of 93.7%. In fact, its accuracy supersedes

212

more complex, lexicalized, models: given gold-
standard morphology, it achieves 81.2% (compared
to 72.0% by Bikel’s parser, with head rules specified
by a native speaker). This is probably attributable
to the dataset’s size, which makes training with
highly-parameterized lexicalized models precarious
and prone to overfitting. With first-order vertical
markovization (i.e., annotating each nonterminal
with its parent as in Johnson, 1998), accuracy is also
at 81.2%. Tuning the horizontal markovization of
the grammar rules (Klein and Manning, 2003a) had
a small, adverse effect on this dataset.

Since the PCFG model was relatively successful
compared to lexicalized models, and is faster to run,
we decided to use a vanilla PCFG, denoted Gvan,
and a parent-annotated version of that PCFG (John-
son, 1998), denoted Gv=2.

4.2 Morphology Model

Both of our morphology models use the same mor-
phological lexicon L, which we describe first.

4.2.1 Morphological Lexicon

In this work, a morphological analysis of a word
is a sequence of morphemes, possibly with a tag for
each morpheme. There are several available analyz-
ers for Hebrew, including Yona and Wintner (2005)
and Segal (2000). We use instead an empirically-
constructed generative lexicon that has the advan-
tage of matching the Treebank data and conventions.
If the Treebank is enriched, this would then directly
benefit the lexicon and our models.

Starting with the training data from the Hebrew
Treebank, we first create a set of prefixes Mp ⊂ M;
this set includes any morpheme seen in a non-final
position within any word. We also create a set of
stems Ms ⊂ M that includes any morpheme seen
in a final position in a word. This effectively cap-
tures the morphological analysis convention in the
Hebrew Treebank, where a stem is prefixed by a rel-
atively dominant low-entropy sequence of 0–5 prefix
morphemes. For example, MHKLB (“from the dog”)
is analyzed as M+H+KLB with prefixes M (“from”)
and H (“the”) and KLB (“dog”) is the stem. In prac-
tice, |Mp| = 124 (including some conventions for
numerals) and |Ms| = 13,588. The morphological
lexicon is then defined as any analysis given Mp and

Ms:

L(x) = {mk
1 ∈ M∗

p ×Ms | concat(mk
1) = x)}

∪{mk
1 | count(mk

1, x) ≥ 1} (9)

where mk
1 denotes 〈m1, ...,mk〉 and count(mk

1, x)
denotes the number of occurrences of x disam-
biguated as mk

1 in the training set. Note that L(x)
also includes any analysis of x observed in the train-
ing data. This permits the memorization of any
observed analysis that is more involved than sim-
ple segmentation (4% of word tokens in the train-
ing set; e.g., LXDR (“to the room”) is analyzed as
L+H+XDR). This will have an effect on evaluation
(see §5.1). On the development data, L has 98.6%
coverage.

4.2.2 Unigram Baseline
The baseline morphology model, puni

L , first de-
fines a joint distribution following Eq. 8. The word
model factors out when we conditionalize to form
puni

L (〈m1, ...,mk〉 | x). The prefix sequence model
is multinomial estimated by MLE. The stem model
(conditioned on the prefix sequence) is smoothed to
permit any stem that is a sequence of Hebrew char-
acters. On the development data, puni

L is 88.8% ac-
curate (by word).

4.2.3 Conditional Random Field
The second morphology model, pcrf

L , which is
based on the same morphological lexicon L, uses
a second-order conditional random field (Lafferty et
al., 2001) to disambiguate the full sentence by mod-
eling local contexts (Kudo et al., 2004; Smith et al.,
2005b). Space does not permit a full description; the
model uses all the features of Smith et al. (2005b)
except the “lemma” portion of the model, since the
Hebrew Treebank does not provide lemmas. The
weights are trained to maximize the probability of
the correct path through the morphological lattice,
conditioned on the lattice. This is therefore a dis-
criminative model that defines pL(~m | ~x) directly,
though we ignore the normalization factor in pars-
ing.

Until now we have described pL as a model of
morphemes, but this CRF is trained to predict POS
tags as well—we can either use the tags (i.e., label
the morphological lattice with tag/morpheme pairs,

213

puni
L (〈m1,m2, ...,mk〉, x) = p(x | 〈m1,m2, ...,mk〉)︸ ︷︷ ︸

word

· p(mk | 〈m1, ...,mk−1〉)︸ ︷︷ ︸
stem

· p(〈m1, ...,mk−1〉)︸ ︷︷ ︸
prefix sequence

(8)

so that the lattice parser finds a parse that is con-
sistent under both models), or sum the tags out and
let the parser do the tagging. One subtlety is the
tagging of words not seen in the training data; for
such words an unsegmented hypothesis with tag UN-
KNOWN is included in the lattice and may therefore
be selected by the CRF. On the development data,
pcrf

L is 89.8% accurate on morphology, with 74.9%
fine-grained POS-tagging F1-accuracy (see §5.1).

Note on generative and discriminative models.
The reader may be skeptical of our choice to com-
bine a generative PCFG with a discrimative CRF.
We point out that both are used to define conditional
distributions over desired “output” structures given
“input” sequences. Notwithstanding the fact that the
factors can be estimated in very different ways, our
combination in an exact or approximate product-of-
experts is a reasonable and principled approach.

5 Experiments

In this section we evaluate parsing performance, but
an evaluation issue is resolved first.

5.1 Evaluation Measures
The “Parseval” measures (Black et al., 1991) are
used to evaluate a parser’s phrase-structure trees
against a gold standard. They compute precision and
recall of constituents, each indexed by a label and
two endpoints. As pointed out by Tsarfaty (2006),
joint parsing of morphology and syntax renders this
indexing inappropriate, since it assumes the yields
of the trees are identical—that assumption is vio-
lated if there are any errors in the hypothesized ~m.
Tsarfaty (2006) instead indexed by non-whitespace
character positions, to deal with segmentation mis-
matches. In general (and in this work) that is still
insufficient, since L(~x) may include ~m that are not
simply segmentations of ~x (see §4.2.1).

Roark et al. (2006) propose an evaluation met-
ric for comparing a parse tree over a sentence gen-
erated by a speech recognizer to a gold-standard
parse. As in our case, the hypothesized tree could
have a different yield than the original gold-standard

parse tree, because of errors made by the speech
recognizer. The metric is based on an alignment
between the hypothesized sentence and the gold-
standard sentence. We used a similar evaluation
metric, which takes into account the information
about parallel word boundaries as well, a piece of
information that does not appear naturally in speech
recognition. Given the correct ~m∗ and the hypothe-
sis ~̂m, we use dynamic programming to find an op-
timal many-to-many monotonic alignment between
the atomic morphemes in the two sequences. The
algorithm penalizes each violation (by a morpheme)
of a one-to-one correspondence,6 and each character
edit required to transform one side of a correspon-
dence into the other (without whitespace). Word
boundaries are (here) known and included as index
positions. In the case where ~̂m = ~m∗ (or equal up to
whitespace) the method is identical to Parseval (and
also to Tsarfaty, 2006). POS tag accuracy is evalu-
ated the same way, for the same reasons; we report
F1-accuracy for tagging and parsing.

5.2 Experimental Comparison
In our experiment we vary four settings:

• Decoding algorithm: fpoe,α, frisk,α, or fvari,α

(§3.3).
• Syntax model: Gvan or Gv=2 (§4.1).
• Morphology model: puni

L or pcrf
L (§4.2). In the lat-

ter case, we can use the scores over morpheme
sequences only (summing out tags before lattice
parsing; denoted m.-pcrf

L) or the full model over
morphemes and tags, denoted t.-pcrf

L .7

• α, the relative strength given to the morphol-
ogy model (see §3). We tested values of α in
{0,+∞} ∪ {10q | q ∈ {0, 1, ..., 16}}. Recall
that α = 0 ignores the morphology model prob-
abilities altogether (using an unweighted lattice),
6That is, in a correspondence of a morphemes in one string

with b in the other, the penalty is a+ b−2, since the morpheme
on each side is not in violation.

7One subtlety is that any arc with the UNKNOWN POS
tag can be relabeled—to any other tag—by the syntax model,
whose preterminal rules are smoothed. This was crucial for
α = +∞ (pipeline) parsing with t.-pcrf

L as the morphology
model, since the parser does not recognize UNKNOWN as a tag.

214

tuned α pipeline (α → +∞)
pa

rs
er

m
or

ph
. m

od
el

sy
nt

ax
m

od
el

se
g.

ac
c

fin
e P

O
S

F
1

co
ar

se
PO

S
F
1

pa
rs

e F
1

se
g.

ac
c

fin
e P

O
S

F
1

co
ar

se
PO

S
F
1

pa
rs

e F
1

puni
L pGvan 88.0 70.6 75.5 59.5 88.5 71.5 76.1 59.8

pGv=2 88.0 70.7 75.8 60.4 88.6 70.8 75.7 59.9
m.-pcrf

L pGvan ∗ ∗ ∗ ∗ 90.9 75.6 80.2 63.7

f p
o
e
,α

pGv=2 ∗ ∗ ∗ ∗ 90.9 75.3 80.2 64.2
t.-pcrf

L pGvan ∗ ∗ ∗ ∗ 90.9 77.2 †81.5 63.0
pGv=2 ∗ ∗ ∗ ∗ 90.9 77.2 †81.5 64.0

puni
L pGvan 87.9 70.9 75.3 58.9 88.5 71.5 76.1 59.8

pGv=2 87.8 70.9 75.6 59.5 88.6 70.8 75.6 59.9
m.-pcrf

L pGvan 89.8 74.5 78.9 62.5 89.8 74.5 78.9 62.4

f r
is

k
,α

pGv=2 89.8 74.3 79.1 63.0 89.8 74.3 79.1 63.0
t.-pcrf

L pGvan 90.2 76.6 80.5 62.4 89.9 76.4 80.4 61.6
pGv=2 90.2 76.6 80.5 63.1 89.9 76.4 80.4 62.2

puni
L pGvan 88.0 70.6 75.5 59.5 88.5 71.5 76.1 59.8

pGv=2 88.0 70.7 75.8 60.4 88.6 70.8 75.7 59.9
m.-pcrf

L pGvan
†91.1 75.6 80.4 64.0 90.9 74.8 79.3 62.9

pGv=2 90.9 75.4 80.5 †64.4 90.1 74.6 79.5 63.2

f v
a
ri

,α

t.-pcrf
L pGvan

†91.3 †77.7 †81.7 63.0 90.9 77.0 †81.3 62.6
pGv=2

†91.3 †77.6 †81.6 63.6 90.9 77.0 †81.3 63.6

Table 1: Results of experi-
ments on Hebrew (test data,
max. length 40). This table
shows the performance of
joint parsing (finite α; left)
and a pipeline (α → +∞;
right). Joint parsing with a non-
unigram morphology model
is too expensive (marked ∗).
Morphological analysis accu-
racy (by word), fine-grained
(full tags) and coarse-grained
(only parts of speech) POS
tagging accuracy (F1), and gen-
eralized constituent accuracy
(F1) are reported; α was tuned
for each of these separately.
Boldface denotes that figures
were significantly better than
their counterparts in the same
row, under a binomial sign test
(p < 0.05). † marks the best
overall accuracy and figures
that are not significantly worse
(binomial sign test, p < 0.05).

and as α → +∞ a morphology-first pipeline is
approached.

We measured four outcome values: segmentation
accuracy (fraction of word tokens segmented cor-
rectly), fine- and coarse-grained tagging accuracy,8

and parsing accuracy. For tagging and parsing, F1-
measures are given, according to the generalized
evaluation measure described in §5.1.

5.3 Results

Tab. 1 compares parsing with tuned α values to the
pipeline.

The best results were achieved using fvari,α, us-
ing the CRF and joint disambiguation. Without the
CRF (using puni

L), the difference between the decod-
ing algorithms is less apparent, suggesting an inter-
action between the sophistication of the components
and the best way to decode with them. These re-
sults suggest that fvari,α, which permits pL to “veto”
any structure involving a morphological analysis for
any word that is a posteriori unlikely (note that

8Although the Hebrew Treebank is small, the size of its POS
tagset is large (four times larger than the Penn Treebank), be-
cause the tags encode morphological features (gender, person,
and number). These features have either been ignored in prior
work or encoded differently. In order for our POS-tagging fig-
ures to be reasonably comparable to previous work, we include
accuracy for coarse-grained tags (only the core part of speech)
tags as well as the detailed Hebrew Treebank tags.

log pL(~mi | ~x) can be an arbitrarily large negative
number), is beneficial as a “filter” on parses.9 frisk,α,
on the other hand, is only allowed to give “bonuses”
of up to α to each morphological analysis that pL

believes in; its influence is therefore weaker. This
result is consistent with the findings of Petrov et al.
(2007) for another approximate parsing task.

The advantage of the parent-annotated PCFG is
also more apparent when the CRF is used for mor-
phology, and when α is tuned. All other things
equal, then, pcrf

L led to higher accuracy all around.
Letting the CRF help predict the POS tags helped
tagging accuracy but not parsing accuracy.

While the gains over the pipeline are modest,
the segmentation, fine POS, and parsing accuracy
scores achieved by joint disambiguation with fvari,α

with the CRF are significantly better than any of the
pipeline conditions.

Interestingly, if we had not tested with the CRF,
we might have reached a very different conclusion
about the usefulness of tuning α as opposed to a
pipeline. With the unigram morphology model,
joint parsing frequently underperforms the pipeline,
sometimes even signficantly. The explanation, we

9Another way to describe this combination is to call it a
product of |~x|+1 experts: one for the morphological analysis of
each word, plus the grammar. The morphology experts (softly)
veto any analysis that is dubious based on surface criteria, and
the grammar (softly) vetoes less-grammatical parses.

215

pa
rs

er

m
or

ph
. m

od
el

sy
nt

ax
m

od
el

se
g.

ac
c

fin
e P

O
S

F
1

co
ar

se
PO

S
F
1

pa
rs

e F
1

puni
L pGvan 90.7 73.4 78.5 64.3

pGv=2 90.2 73.0 78.5 64.9
m.-pcrf

L pGvan 90.7 75.4 80.0 65.2

f r
is

k
,α

pGv=2 90.8 75.1 80.2 65.4
t.-pcrf

L pGvan 91.2 78.1 82.4 65.7
pGv=2 91.1 78.0 82.2 66.2

puni
L pGvan 90.6 73.2 78.3 63.5

pGv=2 90.2 72.8 78.4 64.4
m.-pcrf

L pGvan 92.0 76.6 81.5 66.9
pGv=2 91.9 76.2 81.6 66.9

f v
a
ri

,α

t.-pcrf
L pGvan 91.8 79.1 83.2 66.5

pGv=2 91.7 78.7 83.0 67.4

Table 2: Oracle results of experiments on Hebrew (test data,
max. length 40). This table shows the performance of mor-
phological segmentation, part-of-speech tagging, coarse part-
of-speech tagging and parsing when using an oracle to select
the best α for each sentence. The notation and interpretation of
the numbers are the same as in Tab. 1.

believe, has to do with the ability of the unigram
model to estimate a good distribution over analy-
ses. While the unigram model is nearly as good
as the CRF at picking the right segmentation for a
word, joint parsing demands much more. In case
the best segmentation does not lead to a grammat-
ical morpheme sequence (under the syntax model),
the morphology model needs to be able to give rela-
tive strengths to the alternatives. The unigram model
is less able to do this, because it ignores the context
of the word, and so the benefit of joint parsing is lost.

Most commonly the tuned value of α is around
10 (not shown, to preserve clarity). Because of ig-
nored normalization constants, this does not mean
that morphology is “10× more important than syn-
tax,” but it does mean that, for a particular pL and
pG, tuning their relative importance in decoding can
improve accuracy. In Tab. 2 we show how perfor-
mance would improve if the oracle value of α was
selected for each test-set sentence; this further high-
lights the potential impact of perfecting the tradeoff
between models. Of course, selecting α automati-
cally at test-time, per sentence, is an open problem.

To our knowledge, the parsers we have described
represent the state-of-the-art in Modern Hebrew
parsing. The closest result is Tsarfaty (2006), which
we have not directly replicated. Tsarfaty’s model is
essentially a pipeline application of fpoe,∞ with a

grammar like pGvan . Her work focused more on the
interplay between the segmentation and POS tag-
ging models and the amount of information passed
to the parser. Some key differences preclude direct
comparison: we modeled fine-grained tags (though
we report both kinds of tagging accurcy), we em-
ployed a richer morphological lexicon (permitting
analyses that are not just segmentation), and a dif-
ferent training/test split and length filter (we used
longer sentences). Nonetheless, our conclusions
support the argument in Tsarfaty (2006) for more in-
tegrated parsing methods.

We conclude that tuning the relative importance
of the two models—rather than pipelining to give
one infinitely more importance—can provide an im-
provement on segmentation, tagging, and parsing
accuracy. This suggests that future parsing efforts
for languages with rich morphology might con-
tinue to assume separately-trained (and separately-
improved) morphology and syntax components,
which would stand to gain from joint decoding. In
our experiments, better morphological disambigua-
tion was crucial to getting any benefit from joint
decoding. Our result also suggests that exploring
new, fully-integrated models (and training methods
for them) may be advantageous.

6 Conclusion

We showed that joint morpho-syntactic parsing can
improve the accuracy of both kinds of disambigua-
tion. Several efficient parsing methods were pre-
sented, using factored state-of-the-art morphology
and syntax models for the language under considera-
tion. We demonstrated state-of-the-art performance
on and consistent improvements across many set-
tings for Modern Hebrew, a morphologically-rich
language with a relatively small treebank.

References
M. Adler and M. Elhadad. 2006. An unsupervised

morpheme-based HMM for Hebrew morphological
disambiguation. In Proc. of COLING-ACL.

R. Bar-Haim, K. Sima’an, and Y. Winter. 2005. Choos-
ing an optimal architecture for segmentation and POS-
tagging of Modern Hebrew. In Proc. of ACL Workshop
on Computational Approaches to Semitic Languages.

K. R. Beesley and L. Karttunen. 2003. Finite State Mor-
phology. CSLI.

216

D. Bikel. 2004. Multilingual statistical pars-
ing engine. http://www.cis.upenn.edu/
∼dbikel/software.html#stat-parser.

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-
ishman, P Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage of
English grammars. In Proc. of DARPA Workshop on
Speech and Natural Language.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. In Proc. of
CoNLL.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. of NAACL.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, U. Penn.

B. Cowan and M. Collins. 2005. Morphology and
reranking for the statistical parsing of Spanish. In
Proc. of HLT-EMNLP.

E. Daya, D. Roth, and S. Wintner. 2004. Learning
Hebrew roots: Machine learning with linguistic con-
straints. In Proc. of EMNLP.

V. Goel and W. Byrne. 2000. Minimum Bayes risk auto-
matic speech recognition. Computer Speech and Lan-
guage, 14(2):115–135.

J. Goldsmith. 2001. Unsupervised learning of the mor-
phology of natural language. Comp. Ling., 27(2):153–
198.

J. Goodman. 1996. Parsing algorithms and metrics. In
Proc. of ACL.

N. Habash and O. Rambow. 2005. Arabic tokeniza-
tion, part-of-speech tagging, and morphological dis-
ambiguation in one fell swoop. In Proc. of ACL.

J. Hajič, P. Krbec, P. Květoň, K. Oliva, and V. Petkevič.
2001. Serial combination of rules and statistics: A
case study in Czech tagging. In Proc. of ACL.

D. Z. Hakkani-Tür, K. Oflazer, and G. Tür. 2000. Statis-
tical morphological disambiguation for agglutinative
languages. In Proc. of COLING.

K. Hall. 2005. Best-first Word-lattice Parsing: Tech-
niques for Integrated Syntactic Language Modeling.
Ph.D. thesis, Brown University.

G. E. Hinton. 1999. Products of experts. In Proc. of
ICANN.

M. Johnson. 1998. PCFG models of linguistic tree rep-
resentations. Comp. Ling., 24(4):613–632.

R. M. Kaplan and M. Kay. 1981. Phonological rules and
finite-state transducers. Presented at LSA.

D. Klein and C. D. Manning. 2003a. Accurate unlexical-
ized parsing. In Proc. of ACL, pages 423–430.

D. Klein and C. D. Manning. 2003b. Fast exact inference
with a factored model for natural language parsing. In
Advances in NIPS 15.

K. Koskenniemi. 1983. A general computational model
of word-form recognition and production. Technical
Report 11, University of Helsinki.

T. Kudo, K. Yamamoto, and Y. Matsumoto. 2004. Ap-
plying conditional random fields to Japanese morpho-
logical analysis. In Proc. of EMNLP.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of ICML.

A. Lavie, S. Wintner, Y. Eytani, E. Peterson, and
K. Probst. 2004. Rapid prototyping of a transfer-
based Hebrew-to-English machine translation system.
In Proc. of TMI.

M. Levinger, U. Ornan, and A. Itai. 1995. Learning mor-
pholexical probabilities from an untagged corpus with
an application to Hebrew. Comp. Ling., 21:383–404.

M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki.
2004. The Penn Arabic Treebank: Building a large-
scale annotated Arabic corpus. In Proc. of NEMLAR.

L. Mangu, E. Brill, and A. Stolcke. 1999. Finding con-
sensus among words: Lattice-based word error mini-
mization. In Proc. of ECSCT.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-
tic CFG with latent annotations. In Proc. of ACL.

S. Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. In Proc. of HLT-NAACL.

B. Roark, M. Harper, E. Charniak, B. Dorr, M. Johnson,
J. Kahn, Y. Liu, M. Ostendorf, J. Hale, A. Krasnyan-
skaya, M. Lease, I. Shafran, M. Snover, R. Stewart,
and Lisa Yung. 2006. Sparseval: Evaluation metrics
for parsing speech. In Proc. of LREC.

E. Segal. 2000. A probabilistic morphological analyzer
for Hebrew undotted texts. Master’s thesis, Technion.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Na-
tiv. 2001. Building a treebank of modern Hebrew text.
Journal Traitement Automatique des Langues. Avail-
able at http://mila.cs.technion.ac.il.

D. A. Smith and N. A. Smith. 2004. Bilingual parsing
with factored estimation: Using English to parse Ko-
rean. In Proc. of EMNLP, pages 49–56.

A. Smith, T. Cohn, and M. Osborne. 2005a. Logarithmic
opinion pools for conditional random fields. In Proc.
of ACL.

N. A. Smith, D. A. Smith, and R. W. Tromble.
2005b. Context-based morphological disambiguation
with random fields. In Proc. of HLT-EMNLP.

R. Tsarfaty. 2006. Integrated morphological and syn-
tactic disambiguation for Modern Hebrew. In Proc. of
COLING-ACL Student Research Workshop.

R. Wicentowski. 2002. Modeling and Learning Mul-
tilingual Inflectional Morphology in a Minimally Su-
pervised Framework. Ph.D. thesis, Johns Hopkins U.

S. Wintner. 2004. Hebrew computational linguistics:
Past and future. Art. Int. Rev., 21(2):113–138.

S. Yona and S. Wintner. 2005. A finite-state morpholog-
ical grammar of Hebrew. In Proc. of ACL Workshop
on Computational Approaches to Semitic Languages.

217

