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Abstract 

Trigram language models are compressed 

using a Golomb coding method inspired by 

the original Unix spell program.  

Compression methods trade off space, time 

and accuracy (loss).  The proposed 

HashTBO method optimizes space at the 

expense of time and accuracy.  Trigram 

language models are normally considered 

memory hogs, but with HashTBO, it is 

possible to squeeze a trigram language 

model into a few megabytes or less.  

HashTBO made it possible to ship a 

trigram contextual speller in Microsoft 

Office 2007. 

1 Introduction 

This paper will describe two methods of com-

pressing trigram language models: HashTBO and 

ZipTBO. ZipTBO is a baseline compression me-

thod that is commonly used in many applications 

such as the Microsoft IME (Input Method Editor) 

systems that convert Pinyin to Chinese and Kana to 

Japanese. 

Trigram language models have been so success-

ful that they are beginning to be rolled out to appli-

cations with millions and millions of users: speech 

recognition, handwriting recognition, spelling cor-

rection, IME, machine translation and more.  The 

EMNLP community should be excited to see their 

technology having so much influence and visibility 

with so many people.  Walter Mossberg of the 

Wall Street Journal called out the contextual spel-

ler (the blue squiggles) as one of the most notable 

features in Office 2007: 

There are other nice additions. In Word, Out-

look and PowerPoint, there is now contextual spell 

checking, which points to a wrong word, even if 

the spelling is in the dictionary. For example, if 

you type “their” instead of “they're,” Office 

catches the mistake. It really works.
 1
 

The use of contextual language models in spel-

ling correction has been discussed elsewhere: 

(Church and Gale, 1991), (Mays et al, 1991), (Ku-

kich, 1992) and (Golding and Schabes, 1996).  

This paper will focus on how to deploy such me-

thods to millions and millions of users.  Depending 

on the particular application and requirements, we 

need to make different tradeoffs among: 

1. Space (for compressed language model), 

2. Runtime (for n-gram lookup), and 

3. Accuracy (losses for n-gram estimates). 

HashTBO optimizes space at the expense of the 

other two.  We recommend HashTBO when space 

concerns dominate the other concerns; otherwise, 

use ZipTBO. 

 There are many applications where space is ex-

tremely tight, especially on cell phones.  HashTBO 

was developed for contextual spelling in Microsoft 

Office 2007, where space was the key challenge.  

The contextual speller probably would not have 

shipped without HashTBO compression.   

We normally think of trigram language models 

as memory hogs, but with HashTBO, a few mega-

bytes are more than enough to do interesting things 

with trigrams.  Of course, more memory is always 

better, but it is surprising how much can be done 

with so little.   

For English, the Office contextual speller started 

with a predefined vocabulary of 311k word types 

and a corpus of 6 billion word tokens.   (About a 
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third of the words in the vocabulary do not appear 

in the corpus.)  The vocabularies for other lan-

guages tend to be larger, and the corpora tend to be 

smaller.  Initially, the trigram language model is 

very large.  We prune out small counts (8 or less) 

to produce a starting point of 51 million trigrams, 

14 million bigrams and 311k unigrams (for Eng-

lish).  With extreme Stolcke, we cut the 51+14+0.3 

million n-grams down to a couple million.  Using a 

Golomb code, each n-gram consumes about 3 

bytes on average. 

With so much Stolcke pruning and lossy com-

pression, there will be losses in precision and re-

call.  Our evaluation finds, not surprisingly, that 

compression matters most when space is tight.  

Although HashTBO outperforms ZipTBO on the 

spelling task over a wide range of memory sizes, 

the difference in recall (at 80% precision) is most 

noticeable at the low end (under 10MBs), and least 

noticeable at the high end (over 100 MBs).  When 

there is plenty of memory (100+ MBs), the differ-

ence vanishes, as both methods asymptote to the 

upper bound (the performance of an uncompressed 

trigram language model with unlimited memory). 

2 Preliminaries 

Both methods start with a TBO (trigrams with 

backoff) LM (language model) in the standard 

ARPA format.  The ARPA format is used by many 

toolkits such as the CMU-Cambridge Statistical 

Language Modeling Toolkit.
2
 

2.1 Katz Backoff 

No matter how much data we have, we never 

have enough.  Nothing has zero probability.  We 

will see n-grams in the test set that did not appear 

in the training set.  To deal with this reality, Katz 

(1987) proposed backing off from trigrams to bi-

grams (and from bigrams to unigrams) when we 

don’t have enough training data.   

Backoff doesn’t have to do much for trigrams 

that were observed during training.  In that case, 

the backoff estimate of  𝑃(𝑤𝑖 |𝑤𝑖−2𝑤𝑖−1)  is simply 

a discounted probability 𝑃𝑑(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1). 

The discounted probabilities steal from the rich 

and give to the poor.  They take some probability 

mass from the rich n-grams that have been seen in 

training and give it to poor unseen n-grams that 
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might appear in test.  There are many ways to dis-

count probabilities.  Katz used Good-Turing 

smoothing, but other smoothing methods such as 

Kneser-Ney are more popular today. 

Backoff is more interesting for unseen trigrams.  

In that case, the backoff estimate is: 

𝛼 𝑤𝑖−2𝑤𝑖−1 𝑃𝑑(𝑤𝑖|𝑤𝑖−1) 

The backoff alphas (α) are a normalization fac-

tor that accounts for the discounted mass.  That is, 

 

𝛼 𝑤𝑖−2𝑤𝑖−1 

=
1 −  𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1)𝑤 𝑖 :𝐶(𝑤 𝑖−2𝑤 𝑖−1𝑤 𝑖)

1 −  𝑃(𝑤𝑖|𝑤𝑖−1)𝑤 𝑖 :𝐶(𝑤 𝑖−2𝑤 𝑖−1𝑤 𝑖)
 

 

where 𝐶 𝑤𝑖−2𝑤𝑖−1𝑤𝑖 > 0  simply says that the 

trigram was seen in training data. 

3 Stolcke Pruning 

Both ZipTBO and HashTBO start with Stolcke 

pruning (1998).
3
   We will refer to the trigram lan-

guage model after backoff and pruning as a pruned 

TBO LM. 

Stolcke pruning looks for n-grams that would 

receive nearly the same estimates via Katz backoff 

if they were removed.  In a practical system, there 

will never be enough memory to explicitly mate-

rialize all n-grams that we encounter during train-

ing.  In this work, we need to compress a large set 

of n-grams (that appear in a large corpus of 6 bil-

lion words) down to a relatively small language 

model of just a couple of megabytes. We prune as 

much as necessary to make the model fit into the 

memory allocation (after subsequent Hash-

TBO/ZipTBO compression).   

Pruning saves space by removing n-grams sub-

ject to a loss consideration: 

1. Select a threshold . 

2. Compute the performance loss due to prun-

ing each trigram and bigram individually us-

ing the pruning criterion. 

3. Remove all trigrams with performance loss 

less than  

4. Remove all bigrams with no child nodes (tri-

gram nodes) and with performance loss less 

than    

5. Re-compute backoff weights. 
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Stolcke pruning uses a loss function based on 

relative entropy.  Formally, let P denote the tri-

gram probabilities assigned by the original un-

pruned model, and let P’ denote the probabilities in 

the pruned model.  Then the relative entropy 

D(P||P’) between the two models is 

 

− 𝑃 𝑤, ℎ [log 𝑃′ 𝑤 ℎ − log 𝑃(𝑤, ℎ)]
𝑤 ,ℎ

 

 

where h is the history.  For trigrams, the history is 

the previous two words.  Stolcke showed that this 

reduces to 

−𝑃 ℎ {𝑃(𝑤|ℎ) 

[log 𝑃 𝑤 ℎ′ + log 𝛼′ ℎ − log 𝑃(𝑤|ℎ)] 

+[log 𝛼′(ℎ) − log 𝛼(ℎ)]  𝑃 𝑤 ℎ 

𝑤 :𝐶 ℎ ,𝑤 >0

} 

 

where 𝛼′(ℎ)  is the revised backoff weight after 

pruning and h’ is the revised history after dropping 

the first word.  The summation is over all the tri-

grams that were seen in training: 𝐶 ℎ, 𝑤 > 0.  

Stolcke pruning will remove n-grams as neces-

sary, minimizing this loss. 

3.1 Compression on Top of Pruning 

After Stolcke pruning, we apply additional com-

pression (either ZipTBO or HashTBO).  ZipTBO 

uses a fairly straightforward data structure, which 

introduces relatively few additional losses on top 

of the pruned TBO model.  A few small losses are 

introduced by quantizing the log likelihoods and 

the backoff alphas, but those losses probably don’t 

matter much.  More serious losses are introduced 

by restricting the vocabulary size, V, to the 64k 

most-frequent words.  It is convenient to use byte 

aligned pointers.   The actual vocabulary of more 

than 300,000 words for English (and more for oth-

er languages) would require 19-bit pointers (or 

more) without pruning.   Byte operations are faster 

than bit operations.  There are other implementa-

tions of ZipTBO that make different tradeoffs, and 

allow for larger V without pruning losses. 

HashTBO is more heroic.  It uses a method in-

spired by McIlroy (1982) in the original Unix Spell 

Program, which squeezed a word list of N=32,000 

words into a PDP-11 address space (64k bytes).  

That was just 2 bytes per word!   

HashTBO uses similar methods to compress a 

couple million n-grams into half a dozen mega-

bytes, or about 3 bytes per n-gram on average (in-

cluding log likelihoods and alphas for backing off).  

ZipTBO is faster, but takes more space (about 4 

bytes per n-gram on average, as opposed to 3 bytes 

per n-gram).  Given a fixed memory budget, 

ZipTBO has to make up the difference with more 

aggressive Stolcke pruning.  More pruning leads to 

larger losses, as we will see, for the spelling appli-

cation.   

Losses will be reported in terms of performance 

on the spelling task.  It would be nice if losses 

could be reported in terms of cross entropy, but the 

values output by the compressed language models 

cannot be interpreted as probabilities due to quan-

tization losses and other compression losses. 

4 McIlroy’s Spell Program 

McIlroy’s spell program started with a hash ta-

ble.  Normally, we store the clear text in the hash 

table, but he didn’t have space for that, so he 

didn’t.   Hash collisions introduce losses. 

McIlroy then sorted the hash codes and stored 

just the interarrivals of the hash codes instead of 

the hash codes themselves.  If the hash codes, h, 

are distributed by a Poisson process, then the inte-

rarrivals, t, are exponentially distributed: 

 

Pr 𝑡 = 𝜆𝑒−𝜆𝑡 ,  

 

where 𝜆 =
𝑁

𝑃
.  Recall that the dictionary contains 

N=32,000 words.  P is the one free parameter, the 

range of the hash function.   McIlroy hashed words 

into a large integer mod P, where P is a large 

prime that trades off space and accuracy.  Increas-

ing P consumes more space, but also reduces 

losses (hash collisions). 

McIlroy used a Golomb (1966) code to store the 

interarrivals.  A Golomb code is an optimal Huff-

man code for an infinite alphabet of symbols with 

exponential probabilities. 

The space requirement (in bits per lexical entry) 

is close to the entropy of the exponential. 

 

𝐻 = −  Pr 𝑡 log2 Pr 𝑡 𝑑𝑡

∞

𝑡=0

 

𝐻 =  
1

log𝑒 2
+  log2

1

𝜆
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 The ceiling operator ⌈ ⌉  is introduced because 

Huffman codes use an integer number of bits to 

encode each symbol. 

We could get rid of the ceiling operation if we 

replaced the Huffman code with an Arithmetic 

code, but it is probably not worth the effort. 

Lookup time is relatively slow.  Technically, 

lookup time is O(N), because one has to start at the 

beginning and add up the interarrivals to recon-

struct the hash codes.  McIlroy actually introduced 

a small table on the side with hash codes and off-

sets so one could seek to these offsets and avoid 

starting at the beginning every time.  Even so, our 

experiments will show that HashTBO is an order 

of magnitude slower than ZipTBO. 

Accuracy is also an issue.  Fortunately, we don’t 

have a problem with dropouts.  If a word is in the 

dictionary, we aren’t going to misplace it.  But two 

words in the dictionary could hash to the same val-

ue.  In addition, a word that is not in the dictionary 

could hash to the same value as a word that is in 

the dictionary.  For McIlroy’s application (detect-

ing spelling errors), the only concern is the last 

possibility.  McIlroy did what he could do to miti-

gate false positive errors by increasing P as much 

as he could, subject to the memory constraint (the 

PDP-11 address space of 64k bytes). 

We recommend these heroics when space domi-

nates other concerns (time and accuracy). 

5 Golomb Coding 

Golomb coding takes advantage of the sparseness 

in the interarrivals between hash codes.  Let’s start 

with a simple recipe.  Let t be an interarrival.   We 

will decompose t into a pair of a quotient (tq) and a 

remainder (tr).  That is, let 𝑡 = 𝑡𝑞𝑚 + 𝑡𝑟  where 

𝑡𝑞 = ⌊𝑡/ 𝑚⌋  and 𝑡𝑟 = 𝑡 mod 𝑚.  We choose m to 

be a power of two near 𝑚 ≈  
𝐸 𝑡 

2
 =  

𝑃

2𝑁
 , where 

E[t] is the expected value of the interarrivals, de-

fined below.  Store tq in unary and tr in binary. 

Binary codes are standard, but unary is not.  To 

encode a number z in unary, simply write out a 

sequence of z-1 zeros followed by a 1.  Thus, it 

takes z bits to encode the number z in unary, as 

opposed to  log2 𝑧 bits in binary. 

This recipe consumes 𝑡𝑞 + log2 𝑚  bits.  The 

first term is for the unary piece and the second 

term is for the binary piece. 

Why does this recipe make sense?  As men-

tioned above, a Golomb code is a Huffman code 

for an infinite alphabet with exponential probabili-

ties.  We illustrate Huffman codes for infinite al-

phabets by starting with a simple example of a 

small (very finite) alphabet with just three sym-

bols: {a, b, c}. Assume that half of the time, we 

see a, and the rest of the time we see b or c, with 

equal probabilities: 

 

Symbol Code Length Pr 

A 0 1 50% 

B 10 2 25% 

C 11 2 25% 

 

The Huffman code in the table above can be read 

off the binary tree below.   We write out a 0 when-

ever we take a left branch and a 1 whenever we 

take a right branch.  The Huffman tree is con-

structed so that the two branches are equally likely 

(or at least as close as possible to equally likely). 

 

 
 

 

Now, let’s consider an infinite alphabet where 

Pr 𝑎 =
1

2
 , Pr 𝑏 =

1

4
  and the probability of the 

t+1
st
 symbol is Pr 𝑡 = (1 − 𝛽)𝛽𝑡  where 𝛽 =

1

2
.  

In this case, we have the following code, which is 

simply t in unary.  That is, we write out 1t  zeros 

followed by a 1. 

 

Symbol Code Length Pr 

A 1 1 2
−1

 

B 01 2 2
−2

 

C 001 3 2
−3
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The Huffman code reduces to unary when the 

Huffman tree is left branching: 

 
 

 

In general, β need not be ½.  Without loss of ge-

nerality, assume Pr 𝑡 =  1 − 𝛽 𝛽𝑡  where 
1

2
≤ 𝛽 < 1 and 𝑡 ≥ 0.  β depends on E[t], the ex-

pected value of the interarrivals: 

 

𝐸 𝑡 =
𝑃

𝑁
=

𝛽

1 − 𝛽
⇒ 𝛽 =

𝐸 𝑡 

1 + 𝐸 𝑡 
 

 

Recall that the recipe above calls for expressing 

t as 𝑚 ∙ 𝑡𝑞 + 𝑡𝑟  where 𝑡𝑞 = ⌊
𝑡

𝑚
⌋  and 𝑡𝑟 =

𝑡 mod 𝑚.  We encode tq in unary and tr
 
in binary.  

(The binary piece consumes log2 𝑚  bits, since tr 

ranges from 0 to m.) 

How do we pick m?   For convenience, let m be 

a power of 2.   The unary encoding makes sense as 

a Huffman code if 𝛽𝑚 ≈
1

2
.   

Thus, a reasonable choice
4
 is 𝑚 ≈  

𝐸 𝑡 

2
 .   If 

𝛽 =
𝐸 𝑡 

1+𝐸 𝑡 
, then 𝛽𝑚 =

𝐸 𝑡 𝑚

 1+𝐸 𝑡  𝑚
≈ 1 −

𝑚

𝐸 𝑡 
.  Set-

ting 𝛽𝑚 ≈
1

2
, means 𝑚 ≈

𝐸 𝑡 

2
. 

                                                 
4
 This discussion follows slide 29 of 

http://www.stanford.edu/class/ee398a/handouts/lectures/

01-EntropyLosslessCoding.pdf.   See (Witten et al, 

6  HashTBO Format 

The HashTBO format is basically the same as McI-

lroy’s format, except that McIlroy was storing 

words and we are storing n-grams.    One could 

store all of the n-grams in a single table, though we 

actually store unigrams in a separate table.  An n-

gram is represented as a key of n integers (offsets 

into the vocabulary) and two values, a log likelih-

ood and, if appropriate, an alpha for backing off.    

We’ll address the keys first. 

6.1 HashTBO Keys 

Trigrams consist of three integers (offsets into 

the Vocabulary): 𝑤1𝑤2𝑤3. These three integers are 

mapped into a single hash between 0 and 𝑃 − 1 in 

the obvious way: 

 

ℎ𝑎𝑠ℎ =  𝑤3𝑉
0 + 𝑤2𝑉

1 + 𝑤1𝑉
2  mod 𝑃  

 

where V is vocabulary size.  Bigrams are hashed 

the same way, except that the vocabulary is padded 

with an extra symbol for NA (not applicable).  In 

the bigram case, 𝑤3 is NA. 

We then follow a simple recipe for bigrams and 

trigrams: 

1. Stolcke prune appropriately 

2. Let N be the number of n-grams 

3. Choose an appropriate P (hash range) 

4. Hash the N n-grams 

5. Sort the hash codes 

6. Take the first differences (which are mod-

eled as interarrivals of a Poisson process) 

7. Golomb code the first differences  

 

We did not use this method for unigrams, since 

we assumed (perhaps incorrectly) that we will have 

explicit likelihoods for most of them and therefore 

there is little opportunity to take advantage of 

sparseness. 

Most of the recipe can be fully automated with a 

turnkey process, but two steps require appropriate 

hand intervention to meet the memory allocation 

for a particular application: 

1. Stolcke prune appropriately, and 

2. Choose an appropriate P  

 

                                                                             
1999) and http://en.wikipedia.org/wiki/Golomb_coding, 

for similar discussion, though with slightly different 

notation.  The primary reference is (Golomb, 1966). 
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Ideally, we’d like to do as little pruning as poss-

ible and we’d like to use as large a P as possible, 

subject to the memory allocation.  We don’t have a 

principled argument for how to balance Stolcke 

pruning losses with hashing losses; this can be ar-

rived at empirically on an application-specific ba-

sis.  For example, to fix the storage per n-gram at 

around 13 bits: 

13 =  
1

log𝑒 2
+ log2

1

𝜆
  

 

If we solve for λ, we obtain 0000,20/1 .  In 

other words, set P to a prime near N000,20 and 

then do as much Stolcke pruning as necessary to 

meet the memory constraint.   Then measure your 

application’s accuracy, and adjust accordingly. 

6.2 HashTBO Values and Alphas 

There are N log likelihood values, one for each 

key.  These N values are quantized into a small 

number of distinct bins.  They are written out as a 

sequence of N Huffman codes.  If there are Katz 

backoff alphas, then they are also written out as a 

sequence of N Huffman codes.  (Unigrams and 

bigrams have alphas, but trigrams don’t.) 

6.3 HashTBO Lookup 

The lookup process is given an n-gram, 

𝑤𝑖−2𝑤𝑖−1𝑤𝑖 , and is asked to estimate a log likelih-

ood, log Pr 𝑤𝑖  𝑤𝑖−2 𝑤𝑖−1) .  Using the standard 

backoff model, this depends on the likelihoods for 

the unigrams, bigrams and trigrams, as well as the 

alphas. 

The lookup routine not only determines if the n-

gram is in the table, but also determines the offset 

within that table.  Using that offset, we can find the 

appropriate log likelihood and alpha.  Side tables 

are maintained to speed up random access. 

7 ZipTBO Format 

ZipTBO is a well-established representation of 

trigrams.  Detailed descriptions can be found in 

(Clarkson and Rosenfeld 1997; Whittaker and Raj 

2001). 

ZipTBO consumes 8 bytes per unigram, 5 bytes 

per bigram and 2.5 bytes per trigram.  In practice, 

this comes to about 4 bytes per n-gram on average. 

Note that there are some important interactions 

between ZipTBO and Stolcke pruning.  ZipTBO is 

relatively efficient for trigrams, compared to bi-

grams.   Unfortunately, aggressive Stolcke pruning 

generates bigram-heavy models, which don’t com-

press well with ZipTBO. 

 

 

probs 

&

weights
bounds

BIGRAM

ids
probs 

& 

weights

W[i-2]w[i-1]

W[i-2]w[i-1]w[i]

ids probsbounds

2 1/2

TRIGRAMUNIGRAM

ids

2 1 2

2 2 4

 

Figure 1.  Tree structure of n-grams in ZipTBO 

format, following Whittaker and Ray (2001) 

 

7.1 ZipTBO Keys 

The tree structure of the trigram model is im-

plemented using three arrays. As shown in Figure 

1, from left to right, the first array (called unigram 

array) stores unigram nodes, each of which 

branches out into bigram nodes in the second array 

(bigram array).  Each bigram node then branches 

out into trigram nodes in the third array (trigram 

array).  

The length of the unigram array is determined 

by the vocabulary size (V).  The lengths of the oth-

er two arrays depend on the number of bigrams 

and the number of trigrams, which depends on how 

aggressively they were pruned.  (We do not prune 

unigrams.) 

We store a 2-byte word id for each unigram, bi-

gram and trigram. 

The unigram nodes point to blocks of bigram 

nodes, and the bigram nodes point to blocks of tri-

gram nodes.  There are boundary symbols between 

blocks (denoted by the pointers in Figure 1).   The 

boundary symbols consume 4 bytes for each uni-

gram and 2 bytes for each bigram. 

In each block, nodes are sorted by their word 

ids. Blocks are consecutive, so the boundary value 
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of an n−1-gram node together with the boundary 

value of its previous n−1-gram node specifies, in 

the n-gram array, the location of the block contain-

ing all its child nodes. To locate a particular child 

node, a binary search of word ids is performed 

within the block. 

 
Figure 3.  The differences between the methods in 

Figure 2 vanish if we adjust for prune size. 

7.2 ZipTBO Values and Alphas 

Like HashTBO, the log likelihood values and 

backoff alphas are quantized to a small number of 

quantization levels (256 levels for unigrams and 16 

levels for bigrams and trigrams).   Unigrams use a 

full byte for the log likelihoods, plus another full 

byte for the alphas.  Bigrams use a half byte for the 

log likelihood, plus another half byte for the al-

phas.  Trigrams use a half byte for the log likelih-

ood.  (There are no alphas for trigrams.) 

7.3 ZipTBO Bottom Line 

1. 8 bytes for each unigram:  

a. 2 bytes for a word id + 

b. 4 bytes for two boundary symbols +  

c. 1 byte for a log likelihood +  

d. 1 byte for an alpha 

2. 5 bytes for each bigram:  

a. 2 bytes for a word id +  

b. 2 bytes for a boundary symbol +  

c. ½ bytes for a log likelihood + 

d. ½ bytes for an alpha 

3. 2.5 bytes for each trigram: 

a. 2 bytes for a word id + 

b. ½ bytes for a log likelihood 

8 Evaluation 

We normally think of trigram language models 

as memory hogs, but Figure 2 shows that trigrams 

can be squeezed down to a megabyte in a pinch.  

Of course, more memory is always better, but it is 

surprising how much can be done (27% recall at 

80% precision) with so little memory. 

Given a fixed memory budget, HashTBO out-

performs ZipTBO which outperforms StdTBO, a 

baseline system with no compression.  Compres-

sion matters more when memory is tight.  The gap 

between methods is more noticeable at the low end 

(under 10 megabytes) and less noticeable at the 

high end (over 100 megabytes), where both me-

thods asymptote to the performance of the StdTBO 

baseline. 

All methods start with Stolcke pruning.   Figure 

3 shows that the losses are largely due to pruning.  

0.25

0.35

0.45

0.55

1 10 100 1000

R
e

ca
ll 

at
 8

0
%

 P
re

ci
si

o
n

Prune Size (MBs)

HashTBO ZipTBO StdTBO

 
Figure 2. When there is plenty of memory, per-

formance (recall @ 80% precision) asymptotes to 

the performance of baseline system with no com-

pression (StdTBO).   When memory is tight, 

HashTBO >> ZipTBO >> StdTBO. 

 

 

 

Figure 4. On average, HashTBO consumes about 

3 bytes per n-gram, whereas ZipTBO consumes 4. 
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All three methods perform about equally well, as-

suming the same amount of pruning.   

The difference is that HashTBO can store more 

n-grams in the same memory and therefore it 

doesn’t have to do as much pruning.  Figure 4 

shows that HashTBO consumes 3 bytes per n-gram 

whereas ZipTBO consumes 4. 

Figure 4 combines unigrams, bigrams and tri-

grams into a single n-gram variable.  Figure 5 drills 

down into this variable, distinguishing bigrams 

from trigrams.  The axes here have been reversed 

so we can see that HashTBO can store more of 

both kinds in less space.  Note that both HashTBO 

lines are above both ZipTBO lines.   

 

Figure 5. HashTBO stores more bigrams and tri-

grams than ZipTBO in less space. 

 

In addition, note that both bigram lines are 

above both trigram lines (triangles).  Aggressively 

pruned models have more bigrams than trigrams!   

Linear regression on this data shows that Hash-

TBO is no better than ZipTBO on trigrams (with 

the particular settings that we used), but there is a 

big difference on bigrams.  The regressions below 

model M (memory in bytes) as a function of bi and 

tri, the number of bigrams and trigrams, respec-

tively.  (Unigrams are modeled as part of the inter-

cept since all models have the same number of un-

igrams.) 

 

𝑀𝐻𝑎𝑠ℎ𝑇𝐵𝑂 = 0.8 + 3.4𝑏𝑖 + 2.6𝑡𝑟𝑖 
𝑀𝑍𝑖𝑝𝑇𝐵𝑂 = 2.6 + 4.9𝑏𝑖 + 2.6𝑡𝑟𝑖 

 

As a sanity check, it is reassuring that ZipTBO’s 

coefficients of 4.9 and 2.6 are close to the true val-

ues of 5 bytes per bigram and 2.5 bytes per tri-

gram, as reported in Section 7.3. 

According to the regression, HashTBO is no 

better than ZipTBO for trigrams.  Both models use 

roughly 2.6 bytes per trigram.  When trigram mod-

els have relatively few trigrams, the other coeffi-

cients matter.  HashTBO uses less space for bi-

grams (3.4 bytes/bigram << 4.9 bytes/bigram) and 

it has a better intercept (0.8 << 2.6). 

We recommend HashTBO if space is so tight 

that it dominates other concerns.  However, if there 

is plenty of space, or time is an issue, then the tra-

deoffs work out differently.   Figure 6 shows that 

ZipTBO is an order of magnitude faster than 

HashTBO.  The times are reported in microseconds 

per n-gram lookup on a dual Xeon PC with a 3.6 

ghz clock and plenty of RAM (4GB).  These times 

were averaged over a test set of 4 million lookups.  

The test process uses a cache.  Turning off the 

cache increases the difference in lookup times. 

 

Figure 6. HashTBO is slower than ZipTBO. 

9 Conclusion 

Trigram language models were compressed 

using HashTBO, a Golomb coding method 

inspired by McIlroy’s original spell program for 

Unix.  McIlroy used the method to compress a 

dictionary of 32,000 words into a PDP-11 address 

space of 64k bytes.  That is just 2 bytes per word! 

We started with a large corpus of 6 billion words 

of English.  With HashTBO, we could compress 

the trigram language model into just a couple of 

megabytes using about 3 bytes per n-gram 

(compared to 4 bytes per n-gram for the ZipTBO 

baseline).  The proposed HashTBO method is not 

fast, and it is not accurate (not lossless), but it is 

hard to beat if space is tight, which was the case 

for the contextual speller in Microsoft Office 2007. 

  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15Memory (MB)

N
g

ra
m

s
 (

M
il

li
o

n
s
)

HashTBO Bigrams HashTBO Trigrams

ZipTBO Bigrams ZipTBO Trigrams

0

1

2

3

4

5

6

7

0 5 10 15

Memory (MB)

T
im

e

HashTBO ZipTBO

206



Acknowledgments 

We would like to thank Dong-Hui Zhang for his 

contributions to ZipTBO. 

References 

Ashok K. Chandra, Dexter C. Kozen, and Larry 

J.Stockmeyer. 1981 Alternation. Journal of the Asso-

ciation for Computing Machinery, 28(1):114-133.  

Church, K., and Gale, W. 1991 Probability Scoring for 

Spelling Correction, Statistics and Computing. 

Clarkson, P. and Robinson, T. 2001 Improved language 

modeling through better language model evaluation 

measures, Computer Speech and  Language, 15:39-

53, 2001. 

Dan Gusfield. 1997 Algorithms on Strings, Trees and 

Sequences. Cambridge University Press, Cambridge, 

UK 

Gao, J. and Zhang, M., 2002 Improving language model 

size reduction using better pruning criteria. ACL 

2002: 176-182. 

Gao, J., Goodman, J., and Miao, J. 2001 The use of 

clustering techniques for language modeling – appli-

cation to Asian languages. Computational Linguis-

tics and Chinese Language Processing, 6:1, pp 27-

60. 

Golding, A. R. and Schabes, Y. 1996 Combining Tri-

gram-based and feature-based methods for context-

sensitive spelling correction,  ACL, pp. 71-78. 

Golomb, S.W. 1966 Run-length encodings IEEE Trans-

actions on Information Theory, 12:3, pp. 399-40. 

Goodman, J. and Gao, J. 2000 Language model size 

reduction by pruning and clustering, ICSLP-2000, 

International Conference on Spoken Language 

Processing, Beijing, October 16-20, 2000. 

Mays, E., Damerau, F. J., and Mercer, R. L. 1991 Con-

text based spelling correction. Inf. Process. Manage. 

27, 5 (Sep. 1991), pp. 517-522.  

Katz, Slava, 1987 Estimation of probabilities from 

sparse data for other language component of a 

speech recognizer. IEEE transactions on Acoustics, 

Speech and Signal Processing,  35:3, pp. 400-401. 

Kukich, Karen, 1992 Techniques for automatically cor-

recting words in text, Computing Surveys, 24:4, pp. 

377-439. 

M. D. McIlroy, 1982 Development of a spelling list, 

IEEE Trans. on Communications 30 pp. 91-99.  

Seymore, K., and Rosenfeld, R. 1996 Scalable backoff 

language models. Proc. ICSLP, Vol. 1, pp.232-235. 

Stolcke, A. 1998 Entropy-based Pruning of Backoff Lan-

guage Models. Proc. DARPA News Transcription and 

Understanding Workshop, 1998, pp. 270--274, Lans-

downe, VA. 

Whittaker, E. and Ray, B. 2001 Quantization-based lan-

guage model compression. Proc. Eurospeech, pp. 

33-36. 

Witten, I. H., Moffat, A., and Bell, T. C. 1999 Manag-

ing Gigabytes (2nd Ed.): Compressing and Indexing 

Documents and Images. Morgan Kaufmann Publish-

ers Inc. 

207


