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Abstract

This paper assesses the role of multi-label
classification in modelling polysemy for lan-
guage acquisition tasks. We focus on the ac-
quisition of semantic classes for Catalan ad-
jectives, and show that polysemy acquisition
naturally suits architectures used for multi-
label classification. Furthermore, we ex-
plore the performance of information drawn
from different levels of linguistic descrip-
tion, using feature sets based on morphol-
ogy, syntax, semantics, andn-gram distribu-
tion. Finally, we demonstrate that ensemble
classifiers are a powerful and adequate way
to combine different types of linguistic ev-
idence: a simple, majority voting ensemble
classifier improves the accuracy from 62.5%
(best single classifier) to 84%.

1 Introduction

This paper reports on a series of experiments to ex-
plore the automatic acquisition of semantic classes
for Catalan adjectives. The most important chal-
lenge of the classification task is to model the assign-
ment of polysemous lexical instances to multiple se-
mantic classes, combining a) a state-of-the-art Ma-
chine Learning architecture forMulti-label Classi-
fication (Schapire and Singer, 2000; Ghamrawi and
McCallum, 2005) and anEnsemble Classifier(Di-
etterich, 2002) with b) the definition of features at
various levels of linguistic description.

A proper treatment of polysemy is essential in the
area of lexical acquisition, since polysemy repre-

sents a pervasive phenomenon in natural language.
However, previous approaches to the automatic ac-
quisition of semantic classes have mostly disre-
garded the problem (cf. Merlo and Stevenson, 2001
and Stevenson and Joanis, 2003 for English seman-
tic verb classes, or Schulte im Walde, 2006 for Ger-
man semantic verb classes). There are a few excep-
tions to this tradition, such as Pereira et al. (1993),
Rooth et al. (1999), Korhonen et al. (2003), who
used soft clustering methods for multiple assign-
ment to verb semantic classes.

Our work addresses the lack of methodology in
modelling a polysemous classification. We imple-
ment a multi-label classification architecture to han-
dle polysemy. This paper concentrates on the clas-
sification of Catalan adjectives, but the general na-
ture of the architecture should allow related tasks to
profit from our insights.

As target classification for the experiments, a set
of 210 Catalan adjectives was manually classified by
experts into three simple and three polysemous se-
mantic classes. We deliberately decided in favour
of a small-scale, broad classification. So far, there
is little work on the semantic classification of adjec-
tives, as opposed to verbal semantic classification.
The semantic classification we propose is a first step
in characterising adjectival meaning, and can be re-
fined and extended in subsequent work.

The experiments also provide a thorough compar-
ison of feature sets based on different levels of lin-
guistic description (morphology, syntax, semantics).
A set of features is defined for each level of descrip-
tion, and its performance is assessed within the se-
ries of experiments. An ensemble classifier comple-
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ments the classification architecture, by optimising
the combination of these different types of linguistic
evidence.

Our task is motivated by the fact that adjectives
play an important role in sentential semantics: they
are crucial in determining the reference of NPs,
and in defining properties of entities. Even using
only three different classes, the information acquired
could be applied to, e.g., identify referents in a given
context in Dialog or Question Answering systems,
and to induce properties of objects within Informa-
tion Extraction tasks. Furthermore, with the seman-
tic classes corresponding to broad sense representa-
tions, they can be exploited for Word Sense Disam-
biguation.

The remainder of this paper is organised as fol-
lows. Section 2 provides background on Catalan ad-
jectives, and Section 3 presents the Gold Standard
classification. Section 4 introduces the methodology
of the multi-label classification experiments, Sec-
tion 5 discusses the results, and the improved en-
semble classifier is presented in Section 6.

2 Catalan adjective classes

The definition and characterisation of our target se-
mantic classification follows the proposal by Raskin
and Nirenburg (1998) within the framework of On-
tological Semantics(Nirenburg and Raskin, 2004).
In Ontological Semantics, an ontology of concepts
modelling the world is explicitly defined, and the
semantics of words are mapped onto elements of
the ontology. The classification pursued in this pa-
per is drawn up based on the ontological sort of ad-
jectival denotation: all adjectives denote properties,
but these properties can be instantiated as simple at-
tributes (basic adjectives), relationships to objects
(object-related adjectives), or relationships to events
(event-related adjectives).

Basic adjectives are the prototypical adjectives
which denote attributes or properties and cannot be
decomposed further (such asbonic ‘beautiful’, gran
‘big’). In Ontological Semantics, these adjectives
are mapped to concepts of typeattribute. For in-
stance, the semantics of the adjectivegran specifies
a mapping to thesize-attributeelement in the onto-
logy. As for event-related adjectives, they have an
event component in their meaning and are therefore

mapped ontoeventconcepts in the ontology. For
instance, the semantics oftangible (‘tangible’) in-
cludes a pointer to the event elementtouch in the
ontology. Similarly, object-related adjectives are
mapped onto object concepts in the ontology:defor-
mació nasal(‘nasal deformity’) can be paraphrased
asdeformity that affects the nose, so nasalevokes
the objectnose.

The semantic distinctions are mirrored at sev-
eral levels of linguistic description, such as mor-
phology, syntax, and semantics. For instance, there
is a clear relationship between morphological type
and semantic class: basic adjectives are typically
non-derived, object adjectives tend to be denomi-
nal, and event adjectives are usually deverbal. This
is the default mapping that one expects from the
morphology-semantics interface. As an example for
syntactic evidence, basic adjectives in Catalan can
be used non-restrictively (in a pre-nominal position)
and also predicatively, while object adjectives typi-
cally cannot.

However, the correspondences between the lin-
guistic properties and the semantic classes are not
one-to-one mappings. Taking the morphological le-
vel as an example, some denominal adjectives are
basic (such asvergonyós‘shy’, from vergonya‘shy-
ness’). Conversely, some object adjectives are not
synchronically denominal (such asbotànic ‘botan-
ical’), and some deverbal adjectives are not event-
related, such asamable(lit. ‘suitable to be loved’;
has evolved to ‘kind, friendly’). In such cases, the
semantic class can be better traced in the distribu-
tional properties, not the morphological properties
of the adjective.

The proposed classification accounts for some
cases of adjectival polysemy. For instance,familiar
has an object reading (related to the Catalan noun
for ‘family’), and a basic reading (corresponding to
the English adjective ‘familiar’):

(1) reunió
meeting

familiar
familiar

/
/
cara
face

familiar
familiar

‘family meeting / familiar face’

Similarly, the participial adjective sabut
(‘known’) has an event-related sense, corre-
sponding to the verbsaber (‘know’), and a basic
sense equivalent to ‘wise’:
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(2) conseqüència
consequence

sabuda
known

/
/
home
man

sabut
wise

‘known consequence / wise man’

The polysemy between our proposed classes, as
exemplified in (1) and (2), is the kind of polysemy
we aim to model in the acquisition experiments re-
ported in this paper.

3 Gold Standard classes

As a Gold Standard for the experiments to fol-
low, 210 Catalan adjectives were classified by three
experts. The adjectives were randomly sampled
from an adjective database (Sanromà, 2003), bal-
ancing three factors of variability: frequency, mor-
phological type, and suffix. An equal number of
adjectives was chosen from three frequency bands
(low, medium, high), from four derivational types
(denominal, deverbal, non-derived, participle), and
from a series of suffixes within each type. The
derivational type and suffix of each adjective were
available in the adjective database, and had been
manually encoded.

Three experts assigned the 210 lemmata to one
out of six classes: each adjective was tagged as ba-
sic (B), event (E), object (O), or as polysemous be-
tween basic and event (BE), between basic and ob-
ject (BO), or between event and object (EO). The
decisions were reached by consensus. The distribu-
tion of the Gold Standard material across classes is
shown in the last column of Table 6 (Section 5.2).

In the acquisition experiments, our aim is to auto-
matically assign a class to each adjective that can be
simple (B, E, O) or complex (BE, BO, EO), in case
of polysemy.

4 Classification method

Adjective classification was performed within a two-
level architecture for multi-label classification: first,
make a binary decision on each of the classes, and
then combine the classifications to achieve a final,
multi-label classification. We therefore decomposed
the global decision on the (possibly polysemous)
class of an adjective into three binary decisions: Is it
basic or not? Is it event-related or not? Is it object-
related or not? The individual decisions were then
combined into an overall classification that included

polysemy. For example, if a lemma was classified
both as basic and as object in each of the binary de-
cisions, it was deemed polysemous (BO). The mo-
tivation behind this approach was that polysemous
adjectives should exhibit properties of all the classes
involved. As a result, positive decisions on each bi-
nary classification can be made by the algorithm,
which can be viewed as implicit polysemous assign-
ments.

This classification architecture is very popu-
lar in Machine Learning for multi-label problems,
cf. (Schapire and Singer, 2000; Ghamrawi and Mc-
Callum, 2005), and has also been applied to NLP
problems such as entity extraction and noun-phrase
chunking (McDonald et al., 2005). The remainder of
this section describes other methodological aspects
of our experiments.

4.1 Classifier: Decision Trees

As classifier for the binary decisions we chose De-
cision Trees, one of the most widely used Ma-
chine Learning techniques for supervised experi-
ments (Witten and Frank, 2005). Decision Trees
provide a transparent representation of the decisions
made by the algorithm, and thus facilitate the in-
spection of results and the error analysis. The ex-
periments were carried out with the freely available
Weka software package. The particular algorithm
chosen, Weka’s J48, is the latest open source ver-
sion of C4.5 (Quinlan, 1993). For an explanation of
decision tree induction and C4.5, see Quinlan (1993)
and Witten and Frank (2005, Sections 4.3 and 6.1).

4.2 Feature definition

Five levels of linguistic description, formalised as
different feature sets, were chosen for our task. They
included evidence from morphology (morph), syn-
tax (func, uni, bi), semantics (sem), plus a combi-
nation of the five levels (all). Table 1 lists the lin-
guistic levels, their explanations, and the number of
features used on each level.1 Morphological fea-
tures (morph) encode the derivational type (denomi-
nal, deverbal, participial, non-derived) and the suffix
(in case the adjective is derived) of each adjective,
and correspond to the manually encoded informa-

1In level all, different features were used for each of the
three classes. Table 1 reports the mean number of features
across the three classes.
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Level Explanation # Features
morph morphological (derivational) properties 2
func syntactic function 4
uni uni-gram distribution 24
bi bi-gram distribution 50
sem distributional cues of semantic properties 18
all combination of the 5 linguistic levels 10.3

Table 1: Linguistic levels as feature sets.

tion from the adjective database. Syntactic and se-
mantic features encode distributional properties of
adjectives. Syntactic features comprise three sub-
types: (i) the syntactic function (levelfunc) of the
adjective, as assigned by a shallow Constraint Gram-
mar (Alsina et al., 2002), distinguishing the modifier
(pre-nominal or post-nominal) and predicative func-
tions; (ii) a unigram distribution (leveluni), inde-
pendently encoding the parts of speech (POS) of the
words preceding and following the adjective, respec-
tively; and (iii) a bigram distribution (levelbi), the
POS bigram around the target adjective, considering
only the 50 most frequent bigrams to avoid sparse
features. Semantic features (levelsem) expand syn-
tactic features with heterogeneous shallow cues of
semantic properties. Table 2 lists the semantic prop-
erties encoded in the features, as well as the number
of heuristic cues defined for each property. As an
example, one of the shallow cues used for gradabil-
ity was the presence of degree adverbs (més‘more’,
menys‘less’) to the left of the target adjectives. The
last set of features,all, combines features from all
levels of description. However, it does not contain
all features, but a selection of the most relevant ones
(further details in Section 4.3).

property #
non-restrictivity 1
predicativity 4
gradability 4
syntactic function of head noun 3
distance to the head noun 1
binaryhood (adjectives with two arguments) 1
agreement properties 2

Table 2: Semantic features.

4.3 Feature selection

Irrelevant features typically decrease performance
by 5 to 10% when using Decision Trees (Witten and
Frank, 2005, p. 288). We therefore applied a fea-
ture selection algorithm. We chose a feature selec-
tion method available in Weka (WrapperSubsetEval)
that selects a subset of the features according to its
performance within the Machine Learning algorithm
used for classification. Accuracy for a given sub-
set of features is estimated by cross-validation over
the training data. Because the number of subsets in-
creases exponentially with the number of features,
this method is computationally very expensive, and
we used a best-first search strategy to alleviate this
problem.

We additionally used the feature selection pro-
cedure to select the features for levelall: for each
class, we used only those features that were selected
by the feature selection algorithm in at least 30% of
the experiments.

4.4 Differences across linguistic levels

One of our goals was to test the strengths and weak-
nesses of each level of linguistic description for the
task of adjective classification. This was done by
comparing the accuracy results obtained with each
of the feature sets in the Machine Learning experi-
ments. Following a standard procedure in Machine
Learning, we created several partitions of the data to
obtain different estimates of the accuracy of each of
the levels, so as to be able to perform a significance
test on the differences in accuracy. We performed
10 experiments with 10-fold cross-validation (10x10
cv for short), so that for each class 100 different bi-
nary decisions were made for each adjective. For the
comparison of accuracies, a standard pairedt-test
could not be used, because of the inflated Type I er-
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ror probability when reusing data (Dietterich, 1998).
Instead, we used thecorrected resampledt-test as
proposed by Nadeau and Bengio (2003).2

5 Classification results

5.1 Accuracy results

The accuracy results for each of the binary deci-
sions (basic/non-basic, event/non-event, object/non-
object) are depicted in Table 3.3 Level bl corre-
sponds to the baseline: the baseline accuracy was
determined by assigning all lemmata to the most fre-
quent class. The remaining levels follow the nomen-
clature in Table 1 above. Each column contains the
mean and the standard deviation (marked by±) of
the accuracy for the relevant level of information
over the 100 results obtained with 10x10 cv.

Basic Event Object
bl 65.2±11.1 76.2±9.9 71.9±9.6

morph 72.5±7.9 89.1±6.0 84.2±7.5

func 73.6±9.3 76.0±9.3 81.7±7.4

uni 66.1±9.4 75.1±10.6 82.2±7.5

bi 67.4±10.6 72.3±10.2 83.0±8.3

sem 72.8±9.0 73.8±9.6 82.3±8.0

all 75.3±7.6 89.4±5.7 85.4±8.7

Table 3: Accuracy results for binary decisions.

As one might have expected, the best results were
obtained with theall level (bold faced in Table 3),
which is the combination of all feature types. This
level achieved a mean improvement of 12.3% over
the baseline. The differences in accuracy results
between most levels of information were, however,
rather small. For the object class, all levels except
for funcanduni achieved a significant improvement
over the baseline. For the basic class, no improve-

2Note that the corrected resampledt-test can only compare
accuracies obtained under two conditions (algorithms or, as is
our case, feature sets); ANOVA would be more adequate. In
the field of Machine Learning, there is no established correc-
tion for ANOVA for the purposes of testing differences in ac-
curacy (Bouckaert, 2004). Therefore, we used multiplet-tests
instead, which increases the overall error probability of the re-
sults for the significance tests.

3The accuracy for each decision was computed indepen-
dently. For instance, aBE adjective was judged correct within
the basic class iff the decision wasbasic; correct within the
event class iff the decision wasevent; and correct within the
object class iff the decision wasnon-object.

ment over the baseline was significant according to
the corrected resampledt-test. And for the event
class, only levelsmorphandall offered a significant
improvement in accuracy; the remaining levels even
obtained a slightly lower accuracy score.

These results concern the three individual binary
decisions. However, our goal was not to obtain three
separate decisions, but a single classification includ-
ing polysemy. Table 4 shows the accuracy results for
the classification obtained by combining the three
individual decisions for each adjective. We report
two accuracy measures, full and partial: full ac-
curacy required the class assignments to be identi-
cal; partial accuracy only required some overlap in
the classification of the Machine Learning algorithm
and the Gold Standard for a given class assignment.
The motivation for calculating partial overlap was
that a class assignment with some overlap with the
Gold Standard (even if they were not identical) is
generally more useful than a class assignment with
no overlap.

Full Partial
bl 51.0±0.0 65.2±0.0

morph 60.6±1.3 87.8±0.4

func 53.5±1.8 79.8±1.3

uni 52.3±1.7 76.7±1.0

bi 52.9±1.9 76.9±1.8

sem 52.0±1.3 78.7±1.7

all 62.3±2.3 90.7±1.6

Table 4: Accuracy results for combined decisions.

Again, the best results were obtained with theall
level. The second best results were obtained with
levelmorph. These results could have been expected
from the results obtained by the individual decisions
(Table 3); however, note that the differences between
the various levels are much clearer in the combined
classification than in the individual binary decisions.

Table 5 shows the two-by-two comparisons of the
accuracy scores. Each cell contains the difference in
accuracy means between two levels of description,
as well as the level of significance of the difference.
The significance is marked as follows: * forp <

0.05, ** for p < 0.01, *** for p < 0.001. If no
asterisk is shown, the difference was not significant.

Under the strictest evaluation condition (full accu-
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agreement level bl morph func uni bi sem

full

morph 9.7***
func 2.5* -7.1***
uni 1.4 -8.3*** -1.1
bi 2.0 -7.7*** -0.6 0.6
sem 1.0 -8.7*** -1.5 -0.4 1.0
all 11.4*** 1.7 8.9*** 10.0*** 9.4*** 10.4***

partial

morph -22.6***
func 14.6*** -8.0***
uni 11.4*** -11.1*** -3.1**
bi 11.7*** -10.9*** -2.9** 0.2
sem 13.4*** -9.1*** -1.1 2.0 1.8
all 25.4*** 2.9* 10.9*** 14.0*** 13.8*** 12.0***

Table 5: Comparison of accuracy scores across linguistic levels.

racy), only levelsmorph, func, andall significantly
improved upon the baseline. Levelsmorphandall
are better than the remaining levels, to a similar ex-
tent. In the partial evaluation condition, all levels
achieved a highly significant improvement over the
baseline (p < 0.001). Therefore, the classifications
obtained with any of the feature levels are more use-
ful than the baseline, in the sense that they present
more overlap with the Gold Standard.

The best result obtained for the full classifica-
tion of adjectives with our methodology achieved a
mean of 62.3% (full accuracy) or 90.7% (partial ac-
curacy), which represents an improvement of 11.3%
and 25.5% over the baselines, respectively. Levels
including morphological information were clearly
superior to levels using only distributional informa-
tion.

These results suggest that morphology is the best
single source of evidence for our task. However, re-
call from Section 3 that the sampling procedure for
the Gold Standard explicitly balanced for morpho-
logical factors. As a result, denominal and particip-
ial adjectives are underrepresented in the Gold Stan-
dard, while non-derived and deverbal adjectives are
overrepresented. Moreover, previous experiments
on different datasets (Boleda et al., 2004; Boleda et
al., 2005) provided some evidence that distributional
information outperforms morphological information
for our task. Therefore, we cannot conclude from
the experiments that morphological features are the
most important information for the classification of

Catalan adjectives in general.

5.2 Error analysis

The error analysis focuses on the two best fea-
ture sets,morphandall. Table 6 compares the er-
rors made by the experiment classifications (based
on the two sets of features) against the Gold Stan-
dard classification. To obtain a unique experiment
classification for each feature level in this compar-
ison, we applied majority voting across the 10 dif-
ferent classifications obtained in the 10 experiment
runs for each of the linguistic levels. The table rows
correspond to the Gold Standard classification and
the columns correspond to the experiment classifi-
cations with the feature levelsall and morph, re-
spectively. The matches (the diagonal elements)
are in italics, and off-diagonal cells representing the
largest numbers of mismatches are boldfaced. The
overall number of mistakes made by both levels with
majority voting is almost the same: 86 (morph) vs.
89 (all). However, the mismatches are qualitatively
quite different.

Levelmorphuniformly mapped denominal adjec-
tives to both basic and object (BO). Because of this
overgeneration of BOs, 31 lemmata that were tagged
as either basic or object in the Gold Standard were
assigned to BO. In contrast, levelall was overly dis-
criminative: most of the BO cases (16 out of 23), as
well as 16 object adjectives, were assigned to basic.
This type of confusion could be explained by the fact
that some non-prototypical basic adjectives were as-
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all morph
B BE BO E EO O B BE BO E EO O Total

GS

B 94 12 0 0 1 0 82 2 10 11 2 0 107
BE 1 6 0 0 0 0 0 1 0 6 0 0 7
BO 16 1 5 1 0 0 5 0 16 2 0 0 23
E 5 23 1 7 1 0 4 7 0 25 1 0 37
EO 0 2 0 0 4 0 0 0 0 6 0 0 6
O 16 1 6 2 0 5 6 0 21 3 0 0 30
Total 132 45 12 10 6 5 97 10 47 53 3 0 210

Table 6: Levelsall andmorphagainst the Gold Standard.

signed to the basic class in the Gold Standard, be-
cause they did not fit the narrower definitions of the
event and object classes, but these adjectives do not
behave like typical basic adjectives.

As for event adjectives, themorphlevel assigned
almost all deverbal adjectives to the event class,
which worked well in most cases (26). However,
this mapping cannot distinguish deverbal adjectives
with a basic meaning (11 basic and 6 BE adjectives
in the Gold Standard). Levelall, including morpho-
logical and distributional cues, also shows difficul-
ties with the event class, but of a different nature.
Feature examination showed that the distributional
differences between basic and event adjectives are
not robust. For instance, according tot-tests per-
formed on the Gold Standard (α = 0.05), only three
of the 18 semantic features exhibit significant mean
differences for classes basic and event. In contrast,
ANOVA across the 6 classes (α = 0.05) yields signif-
icant differences for 16 out of the 18 features, which
indicates that most features serve to distinguish ob-
ject adjectives from basic and event adjectives. As a
result of the lack of robust distributional differences
between basic and event adjectives, 35 basic or event
adjectives were classified as BE when using theall
level as feature set.

Further 23 event adjectives were incorrectly clas-
sified as BE by theall level, but correctly classi-
fied by themorph level, because they are deverbal
adjectives. These cases involved adjectives derived
from stative verbs, such asabundant(‘abundant’) or
preferible (‘preferable’). Feature analysis revealed
that deverbal adjectives derived from stative verbs
are more similar to basic adjectives than those de-
rived from process-denoting verbs.

To sum up, the default morphological mapping
mentioned in Section 2 works well in most cases
but has a clear ceiling, as it cannot account for de-
viations from the expected mapping. Distributional
cues are more sensitive to these deviations, but fail
mostly in the distinction between basic and event,
because the differences in syntactic distribution be-
tween these classes are not robust.

6 An improved classifier

The error analysis in the previous section has shown
that, although the number of mistakes made with le-
vel morphandall is comparable, the kinds of mis-
takes are qualitatively very different. This suggests
that mixing features for the construction of a sin-
gle Decision Tree, as is done in levelall, is not the
optimal way to combine the strengths of each le-
vel of description. An alternative combination can
be achieved with anensemble classifier, a type of
classifier that has received much attention in the Ma-
chine Learning community in the last decade (Diet-
terich, 2002). When building an ensemble classifier,
several class proposals for each item are obtained,
and one of them is chosen on the basis of majority
voting, weighted voting, or more sophisticated deci-
sion methods. It has been shown that in most cases,
the accuracy of the ensemble classifier is higher than
the best individual classifier (Freund and Schapire,
1996; Dietterich, 2000; Breiman, 2001). Within
NLP, ensemble classifiers have been applied, for in-
stance, to genus term disambiguation in machine-
readable dictionaries (Rigau et al., 1997), using a
majority voting scheme upon several heuristics, and
to part of speech tagging, by combining the class
predictions of different algorithms (van Halteren et
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Levels Full Ac. Part. Ac.
morph+func+uni+bi+sem+all 84.0±0.06 95.7±0.02

func+uni+bi+sem 81.5±0.04 95.9±0.01

morph+func+sem+all 72.4±0.03 89.3±0.02

bl 51.0±0.0 65.2±0.0

all 62.3±2.3 90.7±1.6

Table 7: Results for ensemble classifier.

al., 1998). The main reason for the general success
of ensemble classifiers is that they gloss over the bi-
ases introduced by the individual systems.

We implemented an ensemble classifier by using
the different levels of description as different subsets
of features, and applying majority voting across the
class proposals from each level. Intuitively, this ar-
chitecture is analogous to having a team of linguists
and NLP engineers, each contributing their knowl-
edge on morphology,n-gram distribution, syntactic
properties, etc., and have them reach a consensus
classification. We thus established a different classi-
fication for each of the 10 cross-validation runs by
assigning each adjective to the class that received
most votes. To enable a majority vote, at least three
levels have to be combined. Table 7 contains a rep-
resentative selection of the combinations, together
with their accuracies. Also, the accuracies obtained
with the baseline (bl) and the best single level (all)
are included for comparison.

In any of the combinations tested, accuracy im-
proved over 10% with respect to theall level. The
best result, a mean of 84% (full accuracy), was ob-
tained by combining all levels of description. These
results represent a raw improvement over the base-
line of 33%, and 21.7% over the best single classi-
fier. Also note that with this procedure 95.7% of the
classifications obtained with the ensemble classifier
present partial overlap with the class assignments in
the Gold Standard.

These results show that the combination of differ-
ent sources of linguistic evidence is more important
than the type of information used. As an example,
consider the second ensemble classifier in Table 7:
this classifier excludes the two levels that contain
morphological information (morphandall), which
represents the most successful individual source of
information for our dataset. Nevertheless, the com-
bination achieved 19.2/20.9% more accuracy than

levelsall andmorph, respectively.

7 Related work

Adjectives have received less attention than verbs
and nouns within Lexical Acquisition. Work by
Hatzivassiloglou and colleagues (Hatzivassiloglou
and McKeown, 1993; Hatzivassiloglou and McKe-
own, 1997; Hatzivassiloglou and Wiebe, 2000) used
clustering methods to automatically identify adjecti-
val scales from corpora.

Coordination information was used in Bohnet et
al. (2002) for a classification task similar to the task
we pursue, using a bootstrapping approach. The
authors, however, pursued a classification that is
not purely semantic, between quantitative adjectives
(similar to determiners, likeviele ‘many’), referen-
tial adjectives (heutige, ‘of today’), qualitative ad-
jectives (equivalent to basic adjectives), classifica-
tory adjectives (equivalent to object adjectives), and
adjectives of origin (Stuttgarter, ‘from Stuttgart’).

In a recent paper, Yallop et al. (2005) reported
experiments on the acquisition of syntactic subcat-
egorisation patterns for English adjectives.

Apart from the above research with a classifica-
tory flavour, other lines of research exploited lexi-
cal relations among adjectives for Word Sense Dis-
ambiguation (Justeson and Katz, 1995; Chao and
Dyer, 2000). Work by Lapata (2001), contrary to
the studies mentioned so far, focused on the mean-
ing of adjective-noun combinations, not on that of
adjectives alone.

8 Conclusion

This paper has presented an architecture for the se-
mantic classification of Catalan adjectives that ex-
plicitly includes polysemous classes. The focus of
the architecture was on two issues:(i) finding an ap-
propriate set of linguistic features,and(ii) defining
an adequate architecture for the task.The investiga-
tion and comparison of features at various linguis-
tic levels has shown that morphology plays a major
role for the target classification, despite the caveats
raised in the discussion. Morphological features re-
lated to derivational processes are among the sim-
plest types of features to extract, so that the approach
can be straightforwardly extended to languages sim-
ilar to Catalan with no extensive need of resources.
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Furthermore, we have argued that polysemy ac-
quisition naturally suits multi-label classification ar-
chitectures. We have implemented a standard archi-
tecture for this class of problems, and demonstrated
its applicability and success. The general nature of
the architecture should be useful for related tasks
that involve polysemy within the area of automatic
lexical acquisition.

Our work has focused on a broad classification
of the adjectives, similarly to Merlo and Stevenson
(2001), who classified transitive English verbs into
three semantic classes. The small number of classes
might be considered as an over-simplification of ad-
jective semantics, but the simplified setup facilitates
a detailed qualitative evaluation. In addition, as
there has been virtually no work on the acquisition
of semantic classes for adjectives, it seems sensible
to start with a small number of classes and incre-
mentally build upon that. Previous work has demon-
strated that multi-label classification is applicable
also to a large number of classes as used in, e.g., doc-
ument categorisation (Schapire and Singer, 2000).
This potential can be exploited in future work, ad-
dressing a finer-grained adjective classification.

Finally, we have demonstrated that the combina-
tion of different types of linguistic evidence boosts
the performance of the system beyond the best single
type of information: ensemble classifiers are a more
adequate way to combine the linguistic levels of de-
scription than simply merging all features for tree
construction. Using a simple, majority voting en-
semble classifier, the accuracy jumped from 62.5%
(best single classifier) to 84%. This result is im-
pressive by itself, and also in comparison to similar
work such as (Rigau et al., 1997), who achieved a
9% improvement on a similar task. Our insights are
therefore useful in related work which involves the
selection of linguistic features in Machine Learning
experiments.

Future work involves three main lines of re-
search. First, the refinement of the classification
itself, based on the results of the experiments pre-
sented. Second, the use of additional linguistic ev-
idence that contributes to the semantic class dis-
tinctions (e.g., selectional restrictions). Third, the
application of the acquired information to broader
NLP tasks. For example, given that each semantic
class exhibits a particular syntactic behaviour, infor-

mation on the semantic class should improve POS-
tagging for adjective-noun and adjective-participle
ambiguities, probably the most difficult distinctions
both for humans and computers (Marcus et al., 1993;
Brants, 2000). Also, semantic classes might be use-
ful in terminology extraction, where, presumably,
object adjectives participate in terms more often than
basic adjectives.4
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