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Abstract

This paper assesses the role of multi-label
classification in modelling polysemy for lan-
guage acquisition tasks. We focus on the ac-
quisition of semantic classes for Catalan ad-
jectives, and show that polysemy acquisition
naturally suits architectures used for multi-
label classification. Furthermore, we ex-
plore the performance of information drawn
from different levels of linguistic descrip-
tion, using feature sets based on morphol-
ogy, syntax, semantics, andgram distribu-
tion. Finally, we demonstrate that ensemble
classifiers are a powerful and adequate way
to combine different types of linguistic ev-
idence: a simple, majority voting ensemble
classifier improves the accuracy from 62.5%
(best single classifier) to 84%.

Introduction

sents a pervasive phenomenon in natural language.
However, previous approaches to the automatic ac-
quisition of semantic classes have mostly disre-
garded the problem (cf. Merlo and Stevenson, 2001
and Stevenson and Joanis, 2003 for English seman-
tic verb classes, or Schulte im Walde, 2006 for Ger-
man semantic verb classes). There are a few excep-
tions to this tradition, such as Pereira et al. (1993),
Rooth et al. (1999), Korhonen et al. (2003), who
used soft clustering methods for multiple assign-
ment to verb semantic classes.

Our work addresses the lack of methodology in
modelling a polysemous classification. We imple-
ment a multi-label classification architecture to han-
dle polysemy. This paper concentrates on the clas-
sification of Catalan adjectives, but the general na-
ture of the architecture should allow related tasks to
profit from our insights.

As target classification for the experiments, a set
of 210 Catalan adjectives was manually classified by
experts into three simple and three polysemous se-

This paper reports on a series of experiments to efpantic classes. We deliberately decided in favour
plore the automatic acquisition of semantic classe® @ small-scale, broad classification. So far, there
for Catalan adjectives. The most important chalis little work on the semantic classification of adjec-
lenge of the classification task is to model the assigiiives, as opposed to verbal semantic classification.
ment of polysemous lexical instances to multiple sefhe semantic classification we propose is a first step
mantic classes, combining a) a state-of-the-art Mdd characterising adjectival meaning, and can be re-
chine Learning architecture fovlulti-label Classi- fined and extended in subsequent work.
fication (Schapire and Singer, 2000; Ghamrawi and The experiments also provide a thorough compar-
McCallum, 2005) and aiknsemble ClassifiefDi- ison of feature sets based on different levels of lin-
etterich, 2002) with b) the definition of features aguistic description (morphology, syntax, semantics).
various levels of linguistic description. A set of features is defined for each level of descrip-
A proper treatment of polysemy is essential in théion, and its performance is assessed within the se-
area of lexical acquisition, since polysemy repreries of experiments. An ensemble classifier comple-
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ments the classification architecture, by optimisingnapped ontceeventconcepts in the ontology. For
the combination of these different types of linguistidnstance, the semantics tdngible (‘tangible’) in-
evidence. cludes a pointer to the event elemeatichin the
Our task is motivated by the fact that adjective®ntology. Similarly, object-related adjectives are
play an important role in sentential semantics: thegnapped onto object concepts in the ontologgfor-
are crucial in determining the reference of NPsmnacio nasal’'nasal deformity’) can be paraphrased
and in defining properties of entities. Even usings deformity that affects the nosso nasal evokes
only three different classes, the information acquirethe objectnose
could be applied to, e.g., identify referents in a given The semantic distinctions are mirrored at sev-
context in Dialog or Question Answering systemseral levels of linguistic description, such as mor-
and to induce properties of objects within Informaphology, syntax, and semantics. For instance, there
tion Extraction tasks. Furthermore, with the semaris a clear relationship between morphological type
tic classes corresponding to broad sense represerad semantic class: basic adjectives are typically
tions, they can be exploited for Word Sense Disannon-derived, object adjectives tend to be denomi-
biguation. nal, and event adjectives are usually deverbal. This
The remainder of this paper is organised as fols the default mapping that one expects from the
lows. Section 2 provides background on Catalan adrorphology-semantics interface. As an example for
jectives, and Section 3 presents the Gold Standagyntactic evidence, basic adjectives in Catalan can
classification. Section 4 introduces the methodologe used non-restrictively (in a pre-nominal position)
of the multi-label classification experiments, Secand also predicatively, while object adjectives typi-
tion 5 discusses the results, and the improved efally cannot.

semble classifier is presented in Section 6. However, the correspondences between the lin-
guistic properties and the semantic classes are not
2 Catalan adjective classes one-to-one mappings. Taking the morphological le-

vel as an example, some denominal adjectives are
The definition and characterisation of our target sebasic (such agergonyésshy’, from vergonyashy-
mantic classification follows the proposal by Raskimess’). Conversely, some object adjectives are not
and Nirenburg (1998) within the framework of On-synchronically denominal (such &stanic ‘botan-
tological Semantics(Nirenburg and Raskin, 2004jcal’), and some deverbal adjectives are not event-
In Ontological Semantics, an ontology of conceptselated, such aamable(lit. ‘suitable to be loved’;
modelling the world is explicitly defined, and thehas evolved to ‘kind, friendly’). In such cases, the
semantics of words are mapped onto elements gémantic class can be better traced in the distribu-
the ontology. The classification pursued in this pational properties, not the morphological properties
per is drawn up based on the ontological sort of adsf the adjective.
jectival denotation: all adjectives denote properties, The proposed classification accounts for some
but these properties can be instantiated as simple akses of adjectival polysemy. For instarfzeniliar
tributes pasic adjectives relationships to objects has an object reading (related to the Catalan noun
(object-related adjectivesor relationships to events for ‘family’), and a basic reading (corresponding to
(event-related adjectives the English adjective ‘familiar’):

Basic adjectives are the prototypical adjectives

which denote attributes or properties and cannot be(1) reunié familiar / carafamiliar
decomposed further (such asnic ‘beautiful’, gran meetingfamiliar / facefamiliar
‘big’). In Ontological Semantics, these adjectives ‘family meeting / familiar face’
are mapped to concepts of typ#tribute For in-
stance, the semantics of the adjectivan specifies Similarly, the participial adjective sabut
a mapping to theize-attributeelement in the onto- (‘known’) has an event-related sense, corre-
logy. As for event-related adjectives, they have asponding to the verlsaber (‘know’), and a basic
event component in their meaning and are therefosense equivalent to ‘wise’:
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(2) consequencisabudd homesabut polysemy. For example, if a lemma was classified
consequenc&known/ man wise both as basic and as object in each of the binary de-

cisions, it was deemed polysemous (BO). The mo-

tivation behind this approach was that polysemous

The polysemy between our proposed classes, gdiectives should exhibit properties of all the classes
exemplified in (1) and (2), is the kind of polysemyinvolved. As a r_esult, positive decisions on eac_h bi-
we aim to model in the acquisition experiments refary classification can be made by the algorithm,

‘known consequence / wise man’

ported in this paper. which can be viewed as implicit polysemous assign-
ments.
3 Gold Standard classes This classification architecture is very popu-

i lar in Machine Learning for multi-label problems,
As a Gold Standar_d ff" the expenm_e_nts to fo'bf. (Schapire and Singer, 2000; Ghamrawi and Mc-
low, 210 Catalan adjectives were classified by thre&allum 2005), and has also been applied to NLP
experts. The adjectives were randomly sample roblems such as entity extraction and noun-phrase

”0".‘ an adjective databas.e (_S.ar?roma, 2003), b hunking (McDonald et al., 2005). The remainder of
ancmg_three factors of vgrlab|llty. frequency, MOThis section describes other methodological aspects
phological type, and suffix. An equal number of f our experiments

adjectives was chosen from three frequency bands '

(low, medium, high), from four derivational types4.1 Classifier: Decision Trees

1(Edenom|nal', dev?rbaflf,_ non-d'izrrll'ved, pﬁri'c'ple)'_l?hngs classifier for the binary decisions we chose De-
rom a series of sullixes within each type. ecision Trees, one of the most widely used Ma-

derivational type and suffix of each adjective Were, i e Learning techniques for supervised experi-

available in the adjective database, and had be?ﬁ‘ents (Witten and Frank, 2005). Decision Trees
manually encoded. ’

Th ) ianed the 210 | ta t I%rovide a transparent representation of the decisions
ree experts assigne € emmata 10 ofig, ye by the algorithm, and thus facilitate the in-

out of six classes: each adjective was tagged as b?ﬁection of results and the error analysis. The ex-
sic (B), event (E), object (O), or as polysemous be-

) basi q ¢ (BEY. betw basi q &?rimentswere carried out with the freely available
ween basic and event (BE), between basic and o Veka software package. The particular algorithm

ject (BO), or between event and object (EO). Th%hosen, Weka'’s J48, is the latest open source ver-

decisions were reached by consensus. The distrib&bn of C4.5 (Quinlan, 1993). For an explanation of
tion of the Gold Standard material across classes [§, ..o, trée inductior,l and C.4 5, see Quinlan (1993)

shown in the I_a'sf[ column 9f Table 6 (Sgcnpn 5.2). and Witten and Frank (2005, Sections 4.3 and 6.1).
In the acquisition experiments, our aim is to auto-

matically assign a class to each adjective that can ae2  Feature definition
simple (B, E, O) or complex (BE, BO, EO), in case

Five levels of linguistic description, formalised as
of polysemy.

different feature sets, were chosen for our task. They
included evidence from morphologm6rph), syn-
tax (func uni, bi), semanticsgen), plus a combi-
Adjective classification was performed within a two-nation of the five levelsall). Table 1 lists the lin-
level architecture for multi-label classification: first,guistic levels, their explanations, and the number of
make a binary decision on each of the classes, afiehtures used on each levelMorphological fea-
then combine the classifications to achieve a finalures (morph encode the derivational type (denomi-
multi-label classification. We therefore decomposedal, deverbal, participial, non-derived) and the suffix
the global decision on the (possibly polysemousjin case the adjective is derived) of each adjective,
class of an adjective into three binary decisions: Is #ind correspond to the manually encoded informa-
basic or not? Is it event-related or not? Is it object————
e . In level all, different features were used for each of the
related or not? The individual decisions were theﬂwree classes. Table 1 reports the mean number of features
combined into an overall classification that includeccross the three classes.

4 Classification method
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Level Explanation # Features

morph morphological (derivational) properties 2
func syntactic function 4
uni uni-gram distribution 24

bi bi-gram distribution 50
sem distributional cues of semantic properties 18
all combination of the 5 linguistic levels 10.3

Table 1: Linguistic levels as feature sets.

tion from the adjective database. Syntactic and sd-3 Feature selection
mantic features encode distributional properties ];relevant features typically decrease performance
adjectives. Syntactic features comprise three su%y 5 to 10% when using Decision Trees (Witten and
types: (i) the syntactic function (levéling of the Frank, 2005, p. 288). We therefore applied a fea-
adjective, as assigned by a shallow ConstraintGrarpdre sélectio’n algorithm. We chose a feature selec-

mar (AIsma etal,, 2002), @stmgwshmg '.[he .mOd'f'ertion method available in Wek&\(rapperSubsetEvpal
(pre-nominal or post-nominal) and predicative func: . .
: . ) S o that selects a subset of the features according to its
tions; (ii) a unigram distribution (levelni), inde-

. erformance within the Machine Learning algorithm
pendently encoding the parts of speech (POS) of tﬁ)e e galg
. . . used for classification. Accuracy for a given sub-
words preceding and following the adjective, respec- . . e
. . o . Set of features is estimated by cross-validation over
tively; and (iii) a bigram distribution (levebi), the

. - ... the training data. Because the number of subsets in-
POS bigram around the target adjective, considerin . .
eases exponentially with the number of features,

only the 50 most frequent bigrams to avoid SPASKis method is computationally very expensive, and

feat.ures. Semanpc features (lesel) expand syn- we used a best-first search strategy to alleviate this
tactic features with heterogeneous shallow cues o blem

semantic properties. Table 2 lists the semantic prop- . .
prop P We additionally used the feature selection pro-

erties encoded in the features, as well as the number
cedure to select the features for lead for each

of heuristic cues defined for each property. As an
class, we used only those features that were selected
example, one of the shallow cues used for gradabil-

) ) : o
ity was the presence of degree advernggmore’, by the feature selection algorithm in at least 30% of

menysless’) to the left of the target adjectives. Thethe experiments.

last set of featuresall, combines features from all : S

- . . 4.4 Differences across linguistic levels
levels of description. However, it does not contain
all features, but a selection of the most relevant onégne of our goals was to test the strengths and weak-
(further details in Section 4.3). nesses of each level of linguistic description for the
task of adjective classification. This was done by
comparing the accuracy results obtained with each

property _ # of the feature sets in the Machine Learning experi-
non-restrictivity 1 ments. Following a standard procedure in Machine
predlcqt!V|ty 4 Learning, we created several partitions of the data to
gradability 4 obtain different estimates of the accuracy of each of
syntactic function of head noun 3 the levels, so as to be able to perform a significance
distance to the head noun 1 test on the differences in accuracy. We performed
binaryhood (adjectives with two arguments) 1 14 gyperiments with 10-fold cross-validatiaro&10
agreement properties 2

cv for short), so that for each class 100 different bi-
nary decisions were made for each adjective. For the
comparison of accuracies, a standard pairéelst
could not be used, because of the inflated Type | er-

Table 2: Semantic features.
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ror probability when reusing data (Dietterich, 1998)ment over the baseline was significant according to
Instead, we used theorrected resampledrtestas the corrected resampledtest. And for the event

proposed by Nadeau and Bengio (2093). class, only levelsnorphandall offered a significant
- improvement in accuracy; the remaining levels even
5 Classification results obtained a slightly lower accuracy score.

These results concern the three individual binary
decisions. However, our goal was not to obtain three
The accuracy results for each of the binary decieparate decisions, but a single classification includ-
sions (basic/non-basic, event/non-event, object/nom—g polysemy. Table 4 shows the accuracy results for
object) are depicted in Table®3.Level bl corre-  the classification obtained by combining the three
sponds to the baseline: the baseline accuracy Wagjividual decisions for each adjective. We report
determined by assigning all lemmata to the most frgy,q accuracy measures, full and partial: full ac-
guent class. The remaining levels follow the noMenyyracy required the class assignments to be identi-
clature in Table 1 above. Each column contains th@a“ partial accuracy only required some overlap in
mean and the standard deviation (markedihyof  he classification of the Machine Learning algorithm
the accuracy for the relevant level of informationy, g the Gold Standard for a given class assignment.
over the 100 results obtained with 10x10 cv. The motivation for calculating partial overlap was
that a class assignment with some overlap with the
Gold Standard (even if they were not identical) is
generally more useful than a class assignment with

5.1 Accuracy results

Basic Event Object
bl 65.2+11.1 76.249.9 71.9+96
morph 72.5+79 89.1+6.0 84.2475

func 73.6+9.3 76.0493 81.7+7.4 no overlap.
uni 66.1+9.4 75.14+106 82.2+75 =1 Partial
bi 67.4+106 72.3+102 83.0+83
bl 51.0+0.0 65.2+0.0
sem 72.8+9.0 73.8+9.6 82.3+8.0
all 75.3+76 89.4457 85.4+87 morph  60.6+1.3  87.8104
- : - : - : func 53.54+1.8 79.8+1.3
Table 3: Accuracy results for binary decisions. uni 52.3+1.7 76.7£1.0
bi 529419 76.9+1.8
) sem 52.0+1.3 78.7+1.7
As one might have expected, the best results were all 6234123 90.7416

obtained with theall level (bold faced in Table 3),
which is the combination of all feature types. This Table 4: Accuracy results for combined decisions.
level achieved a mean improvement of 12.3% over

the baseline. The differences in accuracy results Again, the best results were obtained with #le

between most levels of information were, howevelig | The second best results were obtained with
rather small. For the object class, all levels exceptyeimorph These results could have been expected
for funcanduni achieved a significant improvementsm the results obtained by the individual decisions
over the baseline. For the basic class, no improvgrape 3): however, note that the differences between
2Note that the corrected resampletest can only compare the various levels are much clearer in the combined
accuracies obtained under two conditions (algorithms or, as @assification than in the individual binary decisions.
our case, feature sets); ANOVA would be more adequate. In o .
the field of Machine Learning, there is no established correc- Table 5 shows the two-by-two gomparls_ons of the_
tion for ANOVA for the purposes of testing differences in ac-accuracy scores. Each cell contains the difference in
Quracxzj (BOhQCEaert, 2004)-hTheref0|rIe, we usett)lI Eﬂ_:{”tfﬂitf%sas accuracy means between two levels of description,
instead, which increases the overall error probal IItyO the re- . . pe .
sults for the significance tests. as weI_I as _the Ieve_l of significance of the difference.
3The accuracy for each decision was computed indeper-he significance is marked as follows: * for <
dently. For instance, BE adjective was judged correct within (0 05, ** for p < 0.01, *** for p < 0.001. If no

the basic class iff the decision wassic correct within the L . .
event class iff the decision wasvenf and correct within the asterisk is shown, the difference was not Slgnlflcant.

object class iff the decision wamn-object Under the strictest evaluation condition (full accu-
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agreement level bl morph func uni bi sem
morph Q.7 ***

func 2.5* ST i
ull uni 14 -8.3%* .11
bi 2.0 -7.77* -0.6 0.6
sem 1.0 -8.7%* .15 -0.4 1.0
all 11.4%x* 1.7 8.9%** 10.0***  9.4** 10.4***
morph  -22.6***
func 14.6***  -8.0***
partial uni 11.4%*  -11.1%*  -3.1**
bi 11.7%*  -10.9%*  -2.9%* 0.2
sem 13.4%* 9 1** 11 2.0 1.8
all 25.4xx* 2.9* 10.9%**  14.0*%* 13.8*** 12.0***

Table 5: Comparison of accuracy scores across linguistic levels.

racy), only levelamorph fung andall significantly Catalan adjectives in general.
improved upon the baseline. Levetsoorphandall

are better than the remaining levels, to a similar ex6.2  Error analysis

tent. In the partial evaluation condition, all levels

achieved a highly significant improvement over th?ure setsmorphandall. Table 6 compares the er-

base]mep < 0.001). Therefore, the classifications rors made by the experiment classifications (based
obtained with any_of th_e feature levels are more US&- the two sets of features) against the Gold Stan-
ful than the bas_,ellne, in the sense that they prese(rjwérd classification. To obtain a unique experiment
more overlap with the Gold Standard. classification for each feature level in this compar-
The best result obtained for the full CIaSSiﬁca-iSon’ we applied majority voting across the 10 dif-
tion of adjectives with our methodology achieved gerent classifications obtained in the 10 experiment
mean of 62.3% (full accuracy) or 90.7% (partial acruns for each of the linguistic levels. The table rows
curacy), which represents an improvement of 11.3%orrespond to the Gold Standard classification and
and 25.5% over the baselines, respectively. Levelfe columns correspond to the experiment classifi-
including morphological information were clearly cations with the feature levekll and morph re-
superior to levels using only distributional informa-spectively. The matches (the diagonal elements)
tion. are in italics, and off-diagonal cells representing the
These results suggest that morphology is the begrgest numbers of mismatches are boldfaced. The
single source of evidence for our task. However, reaverall number of mistakes made by both levels with
call from Section 3 that the sampling procedure fomajority voting is almost the same: 866rph vs.
the Gold Standard explicitly balanced for morpho89 (@ll). However, the mismatches are qualitatively
logical factors. As a result, denominal and participquite different.
ial adjectives are underrepresented in the Gold Stan-Levelmorphuniformly mapped denominal adjec-
dard, while non-derived and deverbal adjectives atéves to both basic and object (BO). Because of this
overrepresented. Moreover, previous experimentergeneration of BOs, 31 lemmata that were tagged
on different datasets (Boleda et al., 2004; Boleda ais either basic or object in the Gold Standard were
al., 2005) provided some evidence that distributionassigned to BO. In contrast, leval was overly dis-
information outperforms morphological informationcriminative: most of the BO cases (16 out of 23), as
for our task. Therefore, we cannot conclude fromvell as 16 object adjectives, were assigned to basic.
the experiments that morphological features are thenis type of confusion could be explained by the fact
most important information for the classification ofthat some non-prototypical basic adjectives were as-

The error analysis focuses on the two best fea-
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all morph

B BE BO E EO O] B BE BO E EO O] Total

B 94 12 0 O 1 0/8 2 10 11 2 0] 107

BE 1 6 0 O 0O 0] 0 1 0 6 0 O 7

GS BO 16 1 5 1 0O 0 5 0 16 2 0 O 23
E 5 23 1 7 1 0] 4 7 025 1 O 37

EO 0o 2 O 0 4 0/, 0 O 0O 6 0 O 6

@) 16 1 6 2 0O 5/ 6 0 21 3 0 O 30
Total 132 45 12 10 6 597 10 47 53 3 0| 210

Table 6: Levelsall andmorphagainst the Gold Standard.

signed to the basic class in the Gold Standard, be- To sum up, the default morphological mapping
cause they did not fit the narrower definitions of thenentioned in Section 2 works well in most cases
event and object classes, but these adjectives do it has a clear ceiling, as it cannot account for de-
behave like typical basic adjectives. viations from the expected mapping. Distributional
As for event adjectives, theorphlevel assigned CU€S are more sensitive to these deviations, but fail

almost all deverbal adjectives to the event cIas§‘,‘°5“y in the distinction between basic and event,

which worked well in most cases (26). Howeverbecause the differences in syntactic distribution be-

this mapping cannot distinguish deverbal adjective¥/€€n these classes are not robust.
with a basic meaning (11 basic and 6 BE adjectives
in the Gold Standard). Levall, including morpho-

logical and distributional cues, also shows difficul-rne error analysis in the previous section has shown
ties with the event class, but of a different naturey,a¢ aithough the number of mistakes made with le-
Feature examination showed that the dIS'[I’IbUtIOI’IQ)e| morphandall is comparable, the kinds of mis-

differences between basic and event adjectives gifqs are qualitatively very different. This suggests

not robust. For instance, according #9ests per- yhay mixing features for the construction of a sin-
formed on the Gold Standard € 0.05), only three 46 pecision Tree, as is done in lewal, is not the

of the 18 semantic features exhibit significant meaftimal way to combine the strengths of each le-
differences for classes basic and event. In contragly| of gescription. An alternative combination can
ANOVA across the 6 classes € 0.05) yields signif- - e 4chieved with aensemble classifier type of
icant differences for 16 out of the 18 features, whicly,ssifier that has received much attention in the Ma-
indicates that most features serve to distinguish oby,ie Learning community in the last decade (Diet-
ject adjectives from basic and event adjectives. Ast"érich, 2002). When building an ensemble classifier,
result of the lack of robust distributional differencesyg,eral class proposals for each item are obtained,
between basic and event adjectives, 35 basic or evelllq one of them is chosen on the basis of majority
adjectives were classified as BE when usingdiie qiing \weighted voting, or more sophisticated deci-
level as feature set. sion methods. It has been shown that in most cases,
Further 23 event adjectives were incorrectly clasthe accuracy of the ensemble classifier is higher than
sified as BE by thall level, but correctly classi- the best individual classifier (Freund and Schapire,
fied by themorphlevel, because they are deverball996; Dietterich, 2000; Breiman, 2001). Within
adjectives. These cases involved adjectives derivétlP, ensemble classifiers have been applied, for in-
from stative verbs, such abundan{‘abundant’) or stance, to genus term disambiguation in machine-
preferible (‘preferable’). Feature analysis revealedeadable dictionaries (Rigau et al., 1997), using a
that deverbal adjectives derived from stative verbsajority voting scheme upon several heuristics, and
are more similar to basic adjectives than those dée part of speech tagging, by combining the class
rived from process-denoting verbs. predictions of different algorithms (van Halteren et

An improved classifier
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Levels Full Ac. Part. Ac. levelsall andmorph respectively.
morph+func+uni+bi+sem+all 84.0 006 95.7 +0.02

func+uni+bi+sem 81.5+004 95.9+001 7 Related work

morph-+unc+sem-+al 72.41005 89.3+002 Adjectives have received less attention than verbs
bl 51.0:+00  65.2:00 and nouns within Lexical Acquisition. Work b

all 62.3+23 90.7+16 q ) y

Hatzivassiloglou and colleagues (Hatzivassiloglou

Table 7: Results for ensemble classifier. ~ and McKeown, 1993; Hatzivassiloglou and McKe-
own, 1997; Hatzivassiloglou and Wiebe, 2000) used

clustering methods to automatically identify adjecti-

al., 1998). The main reason for the general success
val scales from corpora.

of ensemble classifiers is that they gloss over the bi- Coordination information was used in Bohnet et

ases introduced by the individual systems. al. (2002) for a classification task similar to the task

We implemented an ensemble classifier by usin\%e pursue, using a hootstrapping approach. The

the different levels of description as different subsets L .
: o . authors, however, pursued a classification that is

of features, and applying majority voting across the ; L S
" . not purely semantic, between quantitative adjectives

class proposals from each level. Intuitively, this ar; .~ " . Lo ,
%smllar to determiners, likeiele ‘many’), referen-

chitecture is analogous to having a team of IinguistIal adjectives Keutige ‘of today’), qualitative ad-
and NLP engineers, each contributing their knowl: J 9 y). g

edae on morpholoavi-aram distribution. svntactic jectives (equivalent to basic adjectives), classifica-
g P 9y1-9 Y to§y adjectives (equivalent to object adjectives), and

properties, etc., and have them reach a consensu Sectives of origin Stuttgarter from Stuttgart).

. : . a

classification. We thus established a different classi-

o I In a recent paper, Yallop et al. (2005) reported

fication for each of the 10 cross-validation runs by ; o .
e&perlments on the acquisition of syntactic subcat-

assigning each adjective to the class that receive L . 0
gning ) eegorlsatlon patterns for English adjectives.

most votes. To enable a majority vote, at least thre . o
levels have to be combined. Table 7 contains a rep- Apart from the apove research with a C.IaSS'f'C?'
resentative selection of the combinations, togeth pry flavour, other lines of research exploited lexi-

with their accuracies. Also, the accuracies obtaine%laI relations among adjectives for Word Sense Dis-

with the baselinelfl) and the best single levehl() gmblg;gg(())n (\\]/l\;stﬁsk())n fnd tKatgbolf%; Cthao ?nd
are included for comparison. yer, ). Work by Lapata ( ), contrary to

In any of the combinations tested, accuracy imEhe studies mentioned so far, focused on the mean-

proved over 10% with respect to tiadl level. The ing of adjective-noun combinations, not on that of

best result, a mean of 84% (full accuracy), was oba-‘djeCt'Ves alone.

tained by combining all Igvels of description. Thesg3 Conclusion

results represent a raw improvement over the base-

line of 33%, and 21.7% over the best single classithis paper has presented an architecture for the se-

fier. Also note that with this procedure 95.7% of thamantic classification of Catalan adjectives that ex-

classifications obtained with the ensemble classifigilicitly includes polysemous classes. The focus of

present partial overlap with the class assignments the architecture was on two issuéfinding an ap-

the Gold Standard. propriate set of linguistic featuregnd (ii) defining
These results show that the combination of differan adequate architecture for the taskae investiga-

ent sources of linguistic evidence is more importartion and comparison of features at various linguis-

than the type of information used. As an exampldjc levels has shown that morphology plays a major

consider the second ensemble classifier in Table ible for the target classification, despite the caveats

this classifier excludes the two levels that containaised in the discussion. Morphological features re-

morphological informationrborphandall), which lated to derivational processes are among the sim-

represents the most successful individual source pfest types of features to extract, so that the approach

information for our dataset. Nevertheless, the conean be straightforwardly extended to languages sim-

bination achieved 19.2/20.9% more accuracy thaitar to Catalan with no extensive need of resources.
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Furthermore, we have argued that polysemy aecnation on the semantic class should improve POS-
quisition naturally suits multi-label classification ar-tagging for adjective-noun and adjective-participle
chitectures. We have implemented a standard arclambiguities, probably the most difficult distinctions
tecture for this class of problems, and demonstratdazbth for humans and computers (Marcus et al., 1993;
its applicability and success. The general nature &rants, 2000). Also, semantic classes might be use-
the architecture should be useful for related tasKsil in terminology extraction, where, presumably,
that involve polysemy within the area of automaticmbject adjectives participate in terms more often than
lexical acquisition. basic adjectives.
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