
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 141–150, Prague, June 2007. c©2007 Association for Computational Linguistics

Structured Prediction Models via the Matrix-Tree Theorem

Terry Koo, Amir Globerson, Xavier Carreras and Michael Collins
MIT CSAIL, Cambridge, MA 02139, USA

{maestro,gamir,carreras,mcollins}@csail.mit.edu

Abstract

This paper provides an algorithmic frame-
work for learning statistical models involv-
ing directed spanning trees, or equivalently
non-projective dependency structures. We
show how partition functions and marginals
for directed spanning trees can be computed
by an adaptation of Kirchhoff’s Matrix-Tree
Theorem. To demonstrate an application of
the method, we perform experiments which
use the algorithm in training both log-linear
and max-margin dependency parsers. The
new training methods give improvements in
accuracy over perceptron-trained models.

1 Introduction

Learning with structured data typically involves
searching or summing over a set with an exponen-
tial number of structured elements, for example the
set of all parse trees for a given sentence. Meth-
ods for summing over such structures include the
inside-outside algorithm for probabilistic context-
free grammars (Baker, 1979), the forward-backward
algorithm for hidden Markov models (Baum et
al., 1970), and the belief-propagation algorithm for
graphical models (Pearl, 1988). These algorithms
compute marginal probabilities and partition func-
tions, quantities which are central to many meth-
ods for the statistical modeling of complex struc-
tures (e.g., the EM algorithm (Baker, 1979; Baum
et al., 1970), contrastive estimation (Smith and Eis-
ner, 2005), training algorithms for CRFs (Lafferty et
al., 2001), and training algorithms for max-margin
models (Bartlett et al., 2004; Taskar et al., 2004a)).

This paper describes inside-outside-style algo-
rithms for the case of directed spanning trees. These
structures are equivalent to non-projective depen-
dency parses (McDonald et al., 2005b), and more
generally could be relevant to any task that involves
learning a mapping from a graph to an underlying

spanning tree. Unlike the case for projective depen-
dency structures, partition functions and marginals
for non-projective trees cannot be computed using
dynamic-programming methods such as the inside-
outside algorithm. In this paper we describe how
these quantities can be computed by adapting a well-
known result in graph theory: Kirchhoff’s Matrix-
Tree Theorem (Tutte, 1984). A naı̈ve application of
the theorem yields O(n4) and O(n6) algorithms for
computation of the partition function and marginals,
respectively. However, our adaptation finds the par-
tition function and marginals in O(n3) time using
simple matrix determinant and inversion operations.

We demonstrate an application of the new infer-
ence algorithm to non-projective dependency pars-
ing. Specifically, we show how to implement
two popular supervised learning approaches for this
task: globally-normalized log-linear models and
max-margin models. Log-linear estimation criti-
cally depends on the calculation of partition func-
tions and marginals, which can be computed by
our algorithms. For max-margin models, Bartlett
et al. (2004) have provided a simple training al-
gorithm, based on exponentiated-gradient (EG) up-
dates, that requires computation of marginals and
can thus be implemented within our framework.
Both of these methods explicitly minimize the loss
incurred when parsing the entire training set. This
contrasts with the online learning algorithms used in
previous work with spanning-tree models (McDon-
ald et al., 2005b).

We applied the above two marginal-based train-
ing algorithms to six languages with varying de-
grees of non-projectivity, using datasets obtained
from the CoNLL-X shared task (Buchholz and
Marsi, 2006). Our experimental framework com-
pared three training approaches: log-linear models,
max-margin models, and the averaged perceptron.
Each of these was applied to both projective and
non-projective parsing. Our results demonstrate that
marginal-based training yields models which out-

141

perform those trained using the averaged perceptron.
In summary, the contributions of this paper are:

1. We introduce algorithms for inside-outside-
style calculations for directed spanning trees, or
equivalently non-projective dependency struc-
tures. These algorithms should have wide
applicability in learning problems involving
spanning-tree structures.

2. We illustrate the utility of these algorithms in
log-linear training of dependency parsing mod-
els, and show improvements in accuracy when
compared to averaged-perceptron training.

3. We also train max-margin models for depen-
dency parsing via an EG algorithm (Bartlett
et al., 2004). The experiments presented here
constitute the first application of this algorithm
to a large-scale problem. We again show im-
proved performance over the perceptron.

The goal of our experiments is to give a rigorous
comparative study of the marginal-based training al-
gorithms and a highly-competitive baseline, the av-
eraged perceptron, using the same feature sets for
all approaches. We stress, however, that the purpose
of this work is not to give competitive performance
on the CoNLL data sets; this would require further
engineering of the approach.

Similar adaptations of the Matrix-Tree Theorem
have been developed independently and simultane-
ously by Smith and Smith (2007) and McDonald and
Satta (2007); see Section 5 for more discussion.

2 Background
2.1 Discriminative Dependency Parsing
Dependency parsing is the task of mapping a sen-
tence x to a dependency structure y. Given a sen-
tence x with n words, a dependency for that sen-
tence is a tuple (h,m) where h ∈ [0 . . . n] is the
index of the head word in the sentence, and m ∈
[1 . . . n] is the index of a modifier word. The value
h = 0 is a special root-symbol that may only ap-
pear as the head of a dependency. We use D(x) to
refer to all possible dependencies for a sentence x:
D(x) = {(h,m) : h ∈ [0 . . . n],m ∈ [1 . . . n]}.

A dependency parse is a set of dependencies
that forms a directed tree, with the sentence’s root-
symbol as its root. We will consider both projective

Projective Non-projective

Single
Root 1 30 2

Heroot saw her

1 30 2

Heroot saw her

Multi
Root 1 30 2

Heroot saw her

1 30 2

Heroot saw her

Figure 1: Examples of the four types of dependency struc-
tures. We draw dependency arcs from head to modifier.

trees, where dependencies are not allowed to cross,
and non-projective trees, where crossing dependen-
cies are allowed. Dependency annotations for some
languages, for example Czech, can exhibit a signifi-
cant number of crossing dependencies. In addition,
we consider both single-root and multi-root trees. In
a single-root tree y, the root-symbol has exactly one
child, while in a multi-root tree, the root-symbol has
one or more children. This distinction is relevant
as our training sets include both single-root corpora
(in which all trees are single-root structures) and
multi-root corpora (in which some trees are multi-
root structures).

The two distinctions described above are orthog-
onal, yielding four classes of dependency structures;
see Figure 1 for examples of each kind of structure.
We use T s

p (x) to denote the set of all possible pro-
jective single-root dependency structures for a sen-
tence x, and T s

np(x) to denote the set of single-root
non-projective structures for x. The sets T m

p (x) and
T m

np (x) are defined analogously for multi-root struc-
tures. In contexts where any class of dependency
structures may be used, we use the notation T (x) as
a placeholder that may be defined as T s

p (x), T s
np(x),

T m
p (x) or T m

np (x).
Following McDonald et al. (2005a), we use a dis-

criminative model for dependency parsing. Fea-
tures in the model are defined through a function
f(x, h,m) which maps a sentence x together with
a dependency (h,m) to a feature vector in Rd. A
feature vector can be sensitive to any properties of
the triple (x, h,m). Given a parameter vector w,
the optimal dependency structure for a sentence x is

y∗(x;w) = argmax
y∈T (x)

∑
(h,m)∈y

w · f(x, h,m) (1)

where the set T (x) can be defined as T s
p (x), T s

np(x),
T m

p (x) or T m
np (x), depending on the type of parsing.

142

The parameters w will be learned from a train-
ing set {(xi, yi)}N

i=1 where each xi is a sentence and
each yi is a dependency structure. Much of the pre-
vious work on learning w has focused on training lo-
cal models (see Section 5). McDonald et al. (2005a;
2005b) trained global models using online algo-
rithms such as the perceptron algorithm or MIRA.
In this paper we consider training algorithms based
on work in conditional random fields (CRFs) (Laf-
ferty et al., 2001) and max-margin methods (Taskar
et al., 2004a).

2.2 Three Inference Problems
This section highlights three inference problems
which arise in training and decoding discriminative
dependency parsers, and which are central to the ap-
proaches described in this paper.

Assume that we have a vector θ with values
θh,m ∈ R for all (h,m) ∈ D(x); these values cor-
respond to weights on the different dependencies in
D(x). Define a conditional distribution over all de-
pendency structures y ∈ T (x) as follows:

P (y |x;θ) =
exp

{∑
(h,m)∈y θh,m

}
Z(x;θ)

(2)

Z(x;θ) =
∑

y∈T (x)

exp

 ∑
(h,m)∈y

θh,m

 (3)

The function Z(x;θ) is commonly referred to as the
partition function.

Given the distribution P (y |x;θ), we can define
the marginal probability of a dependency (h,m) as

µh,m(x;θ) =
∑

y∈T (x) : (h,m)∈y

P (y |x;θ)

The inference problems are then as follows:

Problem 1: Decoding:
Find argmaxy∈T (x)

∑
(h,m)∈y θh,m

Problem 2: Computation of the Partition Func-
tion: Calculate Z(x;θ).

Problem 3: Computation of the Marginals:
For all (h,m) ∈ D(x), calculate µh,m(x;θ).

Note that all three problems require a maximiza-
tion or summation over the set T (x), which is ex-
ponential in size. There is a clear motivation for

being able to solve Problem 1: by setting θh,m =
w · f(x, h,m), the optimal dependency structure
y∗(x;w) (see Eq. 1) can be computed. In this paper
the motivation for solving Problems 2 and 3 arises
from training algorithms for discriminative models.
As we will describe in Section 4, both log-linear and
max-margin models can be trained via methods that
make direct use of algorithms for Problems 2 and 3.

In the case of projective dependency structures
(i.e., T (x) defined as T s

p (x) or T m
p (x)), there are

well-known algorithms for all three inference prob-
lems. Decoding can be carried out using Viterbi-
style dynamic-programming algorithms, for exam-
ple the O(n3) algorithm of Eisner (1996). Com-
putation of the marginals and partition function can
also be achieved in O(n3) time, using a variant of
the inside-outside algorithm (Baker, 1979) applied
to the Eisner (1996) data structures (Paskin, 2001).

In the non-projective case (i.e., T (x) defined as
T s

np(x) or T m
np (x)), McDonald et al. (2005b) de-

scribe how the CLE algorithm (Chu and Liu, 1965;
Edmonds, 1967) can be used for decoding. How-
ever, it is not possible to compute the marginals
and partition function using the inside-outside algo-
rithm. We next describe a method for computing
these quantities in O(n3) time using matrix inverse
and determinant operations.

3 Spanning-tree inference using the
Matrix-Tree Theorem

In this section we present algorithms for computing
the partition function and marginals, as defined in
Section 2.2, for non-projective parsing. We first re-
iterate the observation of McDonald et al. (2005a)
that non-projective parses correspond to directed
spanning trees on a complete directed graph of n
nodes, where n is the length of the sentence. The
above inference problems thus involve summation
over the set of all directed spanning trees. Note that
this set is exponentially large, and there is no obvi-
ous method for decomposing the sum into dynamic-
programming-like subproblems. This section de-
scribes how a variant of Kirchhoff’s Matrix-Tree
Theorem (Tutte, 1984) can be used to evaluate the
partition function and marginals efficiently.

In what follows, we consider the single-root set-
ting (i.e., T (x) = T s

np(x)), leaving the multi-root

143

case (i.e., T (x) = T m
np (x)) to Section 3.3. For a

sentence x with n words, define a complete directed
graph G on n nodes, where each node corresponds
to a word in x, and each edge corresponds to a de-
pendency between two words in x. Note thatG does
not include the root-symbol h = 0, nor does it ac-
count for any dependencies (0,m) headed by the
root-symbol. We assign non-negative weights to the
edges of this graph, yielding the following weighted
adjacency matrix A(θ) ∈ Rn×n, for h,m = 1 . . . n:

Ah,m(θ) =

{
0, if h = m
exp {θh,m} , otherwise

To account for the dependencies (0,m) headed by
the root-symbol, we define a vector of root-selection
scores r(θ) ∈ Rn, for m = 1 . . . n:

rm(θ) = exp {θ0,m}

Let the weight of a dependency structure y ∈ T s
np(x)

be defined as:

ψ(y;θ) = rroot(y)(θ)
∏

(h,m)∈y : h 6=0

Ah,m(θ)

Here, root(y) = m : (0,m) ∈ y is the child of the
root-symbol; there is exactly one such child, since
y ∈ T s

np(x). Eq. 2 and 3 can be rephrased as:

P (y |x;θ) =
ψ(y;θ)
Z(x;θ)

(4)

Z(x;θ) =
∑

y∈T s
np(x)

ψ(y;θ) (5)

In the remainder of this section, we drop the nota-
tional dependence on x for brevity.

The original Matrix-Tree Theorem addressed the
problem of counting the number of undirected span-
ning trees in an undirected graph. For the models
we study here, we require a sum of weighted and
directed spanning trees. Tutte (1984) extended the
Matrix-Tree Theorem to this case. We briefly sum-
marize his method below.

First, define the Laplacian matrix L(θ) ∈ Rn×n

of G, for h,m = 1 . . . n:

Lh,m(θ) =

{ ∑n
h′=1Ah′,m(θ) if h = m

−Ah,m(θ) otherwise

Second, for a matrix X , let X(h,m) be the minor of
X with respect to row h and column m; i.e., the

determinant of the matrix formed by deleting row h
and column m from X . Finally, define the weight of
any directed spanning tree of G to be the product of
the weights Ah,m(θ) for the edges in that tree.
Theorem 1 (Tutte, 1984, p. 140). Let L(θ) be the
Laplacian matrix of G. Then L(m,m)(θ) is equal to
the sum of the weights of all directed spanning trees
of G which are rooted at m. Furthermore, the mi-
nors vary only in sign when traversing the columns
of the Laplacian (Tutte, 1984, p. 150):

∀h,m : (−1)h+mL(h,m)(θ) = L(m,m)(θ) (6)

3.1 Partition functions via matrix determinants
From Theorem 1, it directly follows that

L(m,m)(θ) =
∑

y∈U(m)

∏
(h,m)∈y : h 6=0

Ah,m(θ)

where U(m) = {y ∈ T s
np : root(y) = m}. A

naı̈ve method for computing the partition function is
therefore to evaluate

Z(θ) =
n∑

m=1

rm(θ)L(m,m)(θ)

The above would require calculating n determinants,
resulting in O(n4) complexity. However, as we
show below Z(θ) may be obtained in O(n3) time
using a single determinant evaluation.

Define a new matrix L̂(θ) to beL(θ) with the first
row replaced by the root-selection scores:

L̂h,m(θ) =

{
rm(θ) h = 1
Lh,m(θ) h > 1

This matrix allows direct computation of the parti-
tion function, as the following proposition shows.
Proposition 1 The partition function in Eq. 5 is
given by Z(θ) = |L̂(θ)|.
Proof: Consider the row expansion of |L̂(θ)| with
respect to row 1:

|L̂(θ)| =
n∑

m=1

(−1)1+mL̂1,m(θ)L̂(1,m)(θ)

=
n∑

m=1

(−1)1+mrm(θ)L(1,m)(θ)

=
n∑

m=1

rm(θ)L(m,m)(θ) = Z(θ)

The second line follows from the construction of
L̂(θ), and the third line follows from Eq. 6.

144

3.2 Marginals via matrix inversion
The marginals we require are given by

µh,m(θ) =
1

Z(θ)

∑
y∈T s

np : (h,m)∈y

ψ(y;θ)

To calculate these marginals efficiently for all values
of (h,m) we use a well-known identity relating the
log partition-function to marginals

µh,m(θ) =
∂ logZ(θ)
∂θh,m

Since the partition function in this case has a closed-
form expression (i.e., the determinant of a matrix
constructed from θ), the marginals can also obtained
in closed form. Using the chain rule, the derivative
of the log partition-function in Proposition 1 is

µh,m(θ) =
∂ log |L̂(θ)|
∂θh,m

=
n∑

h′=1

n∑
m′=1

∂ log |L̂(θ)|
∂L̂h′,m′(θ)

∂L̂h′,m′(θ)
∂θh,m

To perform the derivative, we use the identity

∂ log |X|
∂X

=
(
X−1

)T

and the fact that ∂L̂h′,m′(θ)/∂θh,m is nonzero for
only a few h′,m′. Specifically, when h = 0, the
marginals are given by

µ0,m(θ) = rm(θ)
[
L̂−1(θ)

]
m,1

and for h > 0, the marginals are given by

µh,m(θ) = (1− δ1,m)Ah,m(θ)
[
L̂−1(θ)

]
m,m

−

(1− δh,1)Ah,m(θ)
[
L̂−1(θ)

]
m,h

where δh,m is the Kronecker delta. Thus, the com-
plexity of evaluating all the relevant marginals is
dominated by the matrix inversion, and the total
complexity is therefore O(n3).

3.3 Multiple Roots
In the case of multiple roots, we can still compute
the partition function and marginals efficiently. In
fact, the derivation of this case is simpler than for
single-root structures. Create an extended graph G′

which augments G with a dummy root node that has
edges pointing to all of the existing nodes, weighted
by the appropriate root-selection scores. Note that
there is a bijection between directed spanning trees
ofG′ rooted at the dummy root and multi-root struc-
tures y ∈ T m

np (x). Thus, Theorem 1 can be used to
compute the partition function directly: construct a
Laplacian matrix L(θ) for G′ and compute the mi-
nor L(0,0)(θ). Since this minor is also a determi-
nant, the marginals can be obtained analogously to
the single-root case. More concretely, this technique
corresponds to defining the matrix L̂(θ) as

L̂(θ) = L(θ) + diag(r(θ))

where diag(v) is the diagonal matrix with the vector
v on its diagonal.

3.4 Labeled Trees

The techniques above extend easily to the case
where dependencies are labeled. For a model with
L different labels, it suffices to define the edge
and root scores as Ah,m(θ) =

∑L
`=1 exp {θh,m,`}

and rm(θ) =
∑L

`=1 exp {θ0,m,`}. The partition
function over labeled trees is obtained by operat-
ing on these values as described previously, and
the marginals are given by an application of the
chain rule. Both inference problems are solvable in
O(n3 + Ln2) time.

4 Training Algorithms

This section describes two methods for parameter
estimation that rely explicitly on the computation of
the partition function and marginals.

4.1 Log-Linear Estimation

In conditional log-linear models (Johnson et al.,
1999; Lafferty et al., 2001), a distribution over parse
trees for a sentence x is defined as follows:

P (y |x;w) =
exp

{∑
(h,m)∈y w · f(x, h,m)

}
Z(x;w)

(7)

where Z(x;w) is the partition function, a sum over
T s

p (x), T s
np(x), T m

p (x) or T m
np (x).

We train the model using the approach described
by Sha and Pereira (2003). Assume that we have a
training set {(xi, yi)}N

i=1. The optimal parameters

145

are taken to be w∗ = argminw L(w) where

L(w) = −C
N∑

i=1

logP (yi |xi;w) +
1
2
||w||2

The parameterC > 0 is a constant dictating the level
of regularization in the model.

Since L(w) is a convex function, gradient de-
scent methods can be used to search for the global
minimum. Such methods typically involve repeated
computation of the loss L(w) and gradient ∂L(w)

∂w ,
requiring efficient implementations of both func-
tions. Note that the log-probability of a parse is

logP (y |x;w) =
∑

(h,m)∈y

w · f(x, h,m)− logZ(x;w)

so that the main issue in calculating the loss func-
tion L(w) is the evaluation of the partition functions
Z(xi;w). The gradient of the loss is given by

∂L(w)
∂w

= w − C
N∑

i=1

∑
(h,m)∈yi

f(xi, h,m)

+ C
N∑

i=1

∑
(h,m)∈D(xi)

µh,m(xi;w)f(xi, h,m)

where

µh,m(x;w) =
∑

y∈T (x) : (h,m)∈y

P (y |x;w)

is the marginal probability of a dependency (h,m).
Thus, the main issue in the evaluation of the gradient
is the computation of the marginals µh,m(xi;w).

Note that Eq. 7 forms a special case of the log-
linear distribution defined in Eq. 2 in Section 2.2.
If we set θh,m = w · f(x, h,m) then we have
P (y |x;w) = P (y |x;θ), Z(x;w) = Z(x;θ), and
µh,m(x;w) = µh,m(x;θ). Thus in the projective
case the inside-outside algorithm can be used to cal-
culate the partition function and marginals, thereby
enabling training of a log-linear model; in the non-
projective case the algorithms in Section 3 can be
used for this purpose.

4.2 Max-Margin Estimation

The second learning algorithm we consider is
the large-margin approach for structured prediction
(Taskar et al., 2004a; Taskar et al., 2004b). Learning
in this framework again involves minimization of a

convex function L(w). Let the margin for parse tree
y on the i’th training example be defined as

mi,y(w) =
∑

(h,m)∈yi

w·f(xi, h,m)−
∑

(h,m)∈y

w·f(xi, h,m)

The loss function is then defined as

L(w) = C
N∑

i=1

max
y∈T (xi)

(Ei,y −mi,y(w)) +
1
2
||w||2

where Ei,y is a measure of the loss—or number of
errors—for parse y on the i’th training sentence. In
this paper we take Ei,y to be the number of incorrect
dependencies in the parse tree y when compared to
the gold-standard parse tree yi.

The definition of L(w) makes use of the expres-
sion maxy∈T (xi) (Ei,y −mi,y(w)) for the i’th train-
ing example, which is commonly referred to as the
hinge loss. Note that Ei,yi = 0, and also that
mi,yi(w) = 0, so that the hinge loss is always non-
negative. In addition, the hinge loss is 0 if and only
ifmi,y(w) ≥ Ei,y for all y ∈ T (xi). Thus the hinge
loss directly penalizes margins mi,y(w) which are
less than their corresponding losses Ei,y.

Figure 2 shows an algorithm for minimizing
L(w) that is based on the exponentiated-gradient al-
gorithm for large-margin optimization described by
Bartlett et al. (2004). The algorithm maintains a set
of weights θi,h,m for i = 1 . . . N, (h,m) ∈ D(xi),
which are updated example-by-example. The algo-
rithm relies on the repeated computation of marginal
values µi,h,m, which are defined as follows:1

µi,h,m =
∑

y∈T (xi) : (h,m)∈y

P (y |xi) (8)

P (y |xi) =
exp

{∑
(h,m)∈y θi,h,m

}
∑

y′∈T (xi) exp
{∑

(h,m)∈y′ θi,h,m

}
A similar definition is used to derive marginal val-
ues µ′i,h,m from the values θ′i,h,m. Computation of
the µ and µ′ values is again inference of the form
described in Problem 3 in Section 2.2, and can be

1Bartlett et al. (2004) write P (y |xi) as αi,y . The αi,y vari-
ables are dual variables that appear in the dual objective func-
tion, i.e., the convex dual of L(w). Analysis of the algorithm
shows that as the θi,h,m variables are updated, the dual vari-
ables converge to the optimal point of the dual objective, and
the parameters w converge to the minimum of L(w).

146

Inputs: Training examples {(xi, yi)}N
i=1.

Parameters: Regularization constant C, starting point β,
number of passes over training set T .

Data Structures: Real values θi,h,m and li,h,m for i =
1 . . . N, (h, m) ∈ D(xi). Learning rate η.

Initialization: Set learning rate η = 1
C

. Set θi,h,m = β for
(h, m) ∈ yi, and θi,h,m = 0 for (h, m) /∈ yi. Set li,h,m = 0
for (h, m) ∈ yi, and li,h,m = 1 for (h, m) /∈ yi. Calculate
initial parameters as

w = C
∑

i

∑
(h,m)∈D(xi)

δi,h,mf(xi, h, m)

where δi,h,m = (1− li,h,m −µi,h,m) and the µi,h,m values
are calculated from the θi,h,m values as described in Eq. 8.

Algorithm: Repeat T passes over the training set, where
each pass is as follows:

Set obj = 0

For i = 1 . . . N
• For all (h, m) ∈ D(xi):
θ′i,h,m = θi,h,m + ηC (li,h,m + w · f(xi, h, m))

• For example i, calculate marginals µi,h,m

from θi,h,m values, and marginals µ′
i,h,m

from θ′i,h,m values (see Eq. 8).

• Update the parameters:
w = w + C

∑
(h,m)∈D(xi)

δi,h,mf(xi, h, m)

where δi,h,m = µi,h,m − µ′
i,h,m,

• For all (h, m) ∈ D(xi), set θi,h,m = θ′i,h,m

• Set obj = obj + C
∑

(h,m)∈D(xi)
li,h,mµ′

i,h,m

Set obj = obj − ||w||2
2

. If obj has decreased
compared to last iteration, set η = η

2
.

Output: Parameter values w.

Figure 2: The EG Algorithm for Max-Margin Estimation.
The learning rate η is halved each time the dual objective func-
tion (see (Bartlett et al., 2004)) fails to increase. In our experi-
ments we chose β = 9, which was found to work well during
development of the algorithm.

achieved using the inside-outside algorithm for pro-
jective structures, and the algorithms described in
Section 3 for non-projective structures.

5 Related Work

Global log-linear training has been used in the con-
text of PCFG parsing (Johnson, 2001). Riezler et al.
(2004) explore a similar application of log-linear
models to LFG parsing. Max-margin learning

has been applied to PCFG parsing by Taskar et al.
(2004b). They show that this problem has a QP
dual of polynomial size, where the dual variables
correspond to marginal probabilities of CFG rules.
A similar QP dual may be obtained for max-margin
projective dependency parsing. However, for non-
projective parsing, the dual QP would require an ex-
ponential number of constraints on the dependency
marginals (Chopra, 1989). Nevertheless, alternative
optimization methods like that of Tsochantaridis et
al. (2004), or the EG method presented here, can still
be applied.

The majority of previous work on dependency
parsing has focused on local (i.e., classification of
individual edges) discriminative training methods
(Yamada and Matsumoto, 2003; Nivre et al., 2004;
Y. Cheng, 2005). Non-local (i.e., classification of
entire trees) training methods were used by McDon-
ald et al. (2005a), who employed online learning.

Dependency parsing accuracy can be improved
by allowing second-order features, which consider
more than one dependency simultaneously. McDon-
ald and Pereira (2006) define a second-order depen-
dency parsing model in which interactions between
adjacent siblings are allowed, and Carreras (2007)
defines a second-order model that allows grandpar-
ent and sibling interactions. Both authors give poly-
time algorithms for exact projective parsing. By
adapting the inside-outside algorithm to these mod-
els, partition functions and marginals can be com-
puted for second-order projective structures, allow-
ing log-linear and max-margin training to be ap-
plied via the framework developed in this paper.
For higher-order non-projective parsing, however,
computational complexity results (McDonald and
Pereira, 2006; McDonald and Satta, 2007) indicate
that exact solutions to the three inference problems
of Section 2.2 will be intractable. Exploration of ap-
proximate second-order non-projective inference is
a natural avenue for future research.

Two other groups of authors have independently
and simultaneously proposed adaptations of the
Matrix-Tree Theorem for structured inference on di-
rected spanning trees (McDonald and Satta, 2007;
Smith and Smith, 2007). There are some algorithmic
differences between these papers and ours. First, we
define both multi-root and single-root algorithms,
whereas the other papers only consider multi-root

147

parsing. This distinction can be important as one
often expects a dependency structure to have ex-
actly one child attached to the root-symbol, as is the
case in a single-root structure. Second, McDonald
and Satta (2007) propose an O(n5) algorithm for
computing the marginals, as opposed to the O(n3)
matrix-inversion approach used by Smith and Smith
(2007) and ourselves.

In addition to the algorithmic differences, both
groups of authors consider applications of the
Matrix-Tree Theorem which we have not discussed.
For example, both papers propose minimum-risk
decoding, and McDonald and Satta (2007) dis-
cuss unsupervised learning and language model-
ing, while Smith and Smith (2007) define hidden-
variable models based on spanning trees.

In this paper we used EG training methods only
for max-margin models (Bartlett et al., 2004). How-
ever, Globerson et al. (2007) have recently shown
how EG updates can be applied to efficient training
of log-linear models.

6 Experiments on Dependency Parsing

In this section, we present experimental results
applying our inference algorithms for dependency
parsing models. Our primary purpose is to estab-
lish comparisons along two relevant dimensions:
projective training vs. non-projective training, and
marginal-based training algorithms vs. the averaged
perceptron. The feature representation and other rel-
evant dimensions are kept fixed in the experiments.

6.1 Data Sets and Features

We used data from the CoNLL-X shared task
on multilingual dependency parsing (Buchholz and
Marsi, 2006). In our experiments, we used a subset
consisting of six languages; Table 1 gives details of
the data sets used.2 For each language we created
a validation set that was a subset of the CoNLL-X

2Our subset includes the two languages with the lowest ac-
curacy in the CoNLL-X evaluations (Turkish and Arabic), the
language with the highest accuracy (Japanese), the most non-
projective language (Dutch), a moderately non-projective lan-
guage (Slovene), and a highly projective language (Spanish).
All languages but Spanish have multi-root parses in their data.
We are grateful to the providers of the treebanks that constituted
the data of our experiments (Hajič et al., 2004; van der Beek et
al., 2002; Kawata and Bartels, 2000; Džeroski et al., 2006; Civit
and Martı́, 2002; Oflazer et al., 2003).

language %cd train val. test
Arabic 0.34 49,064 5,315 5,373
Dutch 4.93 178,861 16,208 5,585

Japanese 0.70 141,966 9,495 5,711
Slovene 1.59 22,949 5,801 6,390
Spanish 0.06 78,310 11,024 5,694
Turkish 1.26 51,827 5,683 7,547

Table 1: Information for the languages in our experiments.
The 2nd column (%cd) is the percentage of crossing dependen-
cies in the training and validation sets. The last three columns
report the size in tokens of the training, validation and test sets.

training set for that language. The remainder of each
training set was used to train the models for the dif-
ferent languages. The validation sets were used to
tune the meta-parameters (e.g., the value of the reg-
ularization constantC) of the different training algo-
rithms. We used the official test sets and evaluation
script from the CoNLL-X task. All of the results that
we report are for unlabeled dependency parsing.3

The non-projective models were trained on the
CoNLL-X data in its original form. Since the pro-
jective models assume that the dependencies in the
data are non-crossing, we created a second train-
ing set for each language where non-projective de-
pendency structures were automatically transformed
into projective structures. All projective models
were trained on these new training sets.4 Our feature
space is based on that of McDonald et al. (2005a).5

6.2 Results

We performed experiments using three training al-
gorithms: the averaged perceptron (Collins, 2002),
log-linear training (via conjugate gradient descent),
and max-margin training (via the EG algorithm).
Each of these algorithms was trained using pro-
jective and non-projective methods, yielding six
training settings per language. The different
training algorithms have various meta-parameters,
which we optimized on the validation set for
each language/training-setting combination. The

3Our algorithms also support labeled parsing (see Section
3.4). Initial experiments with labeled models showed the same
trend that we report here for unlabeled parsing, so for simplicity
we conducted extensive experiments only for unlabeled parsing.

4The transformations were performed by running the pro-
jective parser with score +1 on correct dependencies and -1 oth-
erwise: the resulting trees are guaranteed to be projective and to
have a minimum loss with respect to the correct tree. Note that
only the training sets were transformed.

5It should be noted that McDonald et al. (2006) use a richer
feature set that is incomparable to our features.

148

Perceptron Max-Margin Log-Linear
p np p np p np

Ara 71.74 71.84 71.74 72.99 73.11 73.67
Dut 77.17 78.83 76.53 79.69 76.23 79.55
Jap 91.90 91.78 92.10 92.18 91.68 91.49
Slo 78.02 78.66 79.78 80.10 78.24 79.66
Spa 81.19 80.02 81.71 81.93 81.75 81.57
Tur 71.22 71.70 72.83 72.02 72.26 72.62

Table 2: Test data results. The p and np columns show results
with projective and non-projective training respectively.

Ara Dut Jap Slo Spa Tur AV
P 71.74 78.83 91.78 78.66 81.19 71.70 79.05
E 72.99 79.69 92.18 80.10 81.93 72.02 79.82
L 73.67 79.55 91.49 79.66 81.57 72.26 79.71

Table 3: Results for the three training algorithms on the differ-
ent languages (P = perceptron, E = EG, L = log-linear models).
AV is an average across the results for the different languages.

averaged perceptron has a single meta-parameter,
namely the number of iterations over the training set.
The log-linear models have two meta-parameters:
the regularization constant C and the number of
gradient steps T taken by the conjugate-gradient
optimizer. The EG approach also has two meta-
parameters: the regularization constant C and the
number of iterations, T .6 For models trained using
non-projective algorithms, both projective and non-
projective parsing was tested on the validation set,
and the highest scoring of these two approaches was
then used to decode test data sentences.

Table 2 reports test results for the six training sce-
narios. These results show that for Dutch, which is
the language in our data that has the highest num-
ber of crossing dependencies, non-projective train-
ing gives significant gains over projective training
for all three training methods. For the other lan-
guages, non-projective training gives similar or even
improved performance over projective training.

Table 3 gives an additional set of results, which
were calculated as follows. For each of the three
training methods, we used the validation set results
to choose between projective and non-projective
training. This allows us to make a direct com-
parison of the three training algorithms. Table 3

6We trained the perceptron for 100 iterations, and chose the
iteration which led to the best score on the validation set. Note
that in all of our experiments, the best perceptron results were
actually obtained with 30 or fewer iterations. For the log-linear
and EG algorithms we tested a number of values for C, and for
each value of C ran 100 gradient steps or EG iterations, finally
choosing the best combination of C and T found in validation.

shows the results of this comparison.7 The results
show that log-linear and max-margin models both
give a higher average accuracy than the perceptron.
For some languages (e.g., Japanese), the differences
from the perceptron are small; however for other
languages (e.g., Arabic, Dutch or Slovene) the im-
provements seen are quite substantial.

7 Conclusions

This paper describes inference algorithms for
spanning-tree distributions, focusing on the funda-
mental problems of computing partition functions
and marginals. Although we concentrate on log-
linear and max-margin estimation, the inference al-
gorithms we present can serve as black-boxes in
many other statistical modeling techniques.

Our experiments suggest that marginal-based
training produces more accurate models than per-
ceptron learning. Notably, this is the first large-scale
application of the EG algorithm, and shows that it is
a promising approach for structured learning.

In line with McDonald et al. (2005b), we confirm
that spanning-tree models are well-suited to depen-
dency parsing, especially for highly non-projective
languages such as Dutch. Moreover, spanning-tree
models should be useful for a variety of other prob-
lems involving structured data.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their constructive comments. In addi-
tion, the authors gratefully acknowledge the follow-
ing sources of support. Terry Koo was funded by
a grant from the NSF (DMS-0434222) and a grant
from NTT, Agmt. Dtd. 6/21/1998. Amir Glober-
son was supported by a fellowship from the Roth-
schild Foundation - Yad Hanadiv. Xavier Carreras
was supported by the Catalan Ministry of Innova-
tion, Universities and Enterprise, and a grant from
NTT, Agmt. Dtd. 6/21/1998. Michael Collins was
funded by NSF grants 0347631 and DMS-0434222.

7We ran the sign test at the sentence level to measure the
statistical significance of the results aggregated across the six
languages. Out of 2,472 sentences total, log-linear models gave
improved parses over the perceptron on 448 sentences, and
worse parses on 343 sentences. The max-margin method gave
improved/worse parses for 500/383 sentences. Both results are
significant with p ≤ 0.001.

149

References
J. Baker. 1979. Trainable grammars for speech recognition. In

97th meeting of the Acoustical Society of America.

P. Bartlett, M. Collins, B. Taskar, and D. McAllester. 2004. Ex-
ponentiated gradient algorithms for large–margin structured
classification. In NIPS.

L.E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970. A max-
imization technique occurring in the statistical analysis of
probabilistic functions of markov chains. Annals of Mathe-
matical Statistics, 41:164–171.

S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on
multilingual dependency parsing. In Proc. CoNLL-X.

X. Carreras. 2007. Experiments with a higher-order projective
dependency parser. In Proc. EMNLP-CoNLL.

S. Chopra. 1989. On the spanning tree polyhedron. Oper. Res.
Lett., pages 25–29.

Y.J. Chu and T.H. Liu. 1965. On the shortest arborescence of a
directed graph. Science Sinica, 14:1396–1400.

M. Civit and Ma A. Martı́. 2002. Design principles for a Span-
ish treebank. In Proc. of the First Workshop on Treebanks
and Linguistic Theories (TLT).

M. Collins. 2002. Discriminative training methods for hidden
markov models: Theory and experiments with perceptron al-
gorithms. In Proc. EMNLP.

S. Džeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Žabokrtsky, and
A. Žele. 2006. Towards a Slovene dependency treebank. In
Proc. of the Fifth Intern. Conf. on Language Resources and
Evaluation (LREC).

J. Edmonds. 1967. Optimum branchings. Journal of Research
of the National Bureau of Standards, 71B:233–240.

J. Eisner. 1996. Three new probabilistic models for depen-
dency parsing: An exploration. In Proc. COLING.

A. Globerson, T. Koo, X. Carreras, and M. Collins. 2007. Ex-
ponentiated gradient algorithms for log-linear structured pre-
diction. In Proc. ICML.

J. Hajič, O. Smrž, P. Zemánek, J. Šnaidauf, and E. Beška. 2004.
Prague Arabic dependency treebank: Development in data
and tools. In Proc. of the NEMLAR Intern. Conf. on Arabic
Language Resources and Tools, pages 110–117.

M. Johnson, S. Geman, S. Canon, Z. Chi, and S. Riezler. 1999.
Estimators for stochastic unification-based grammars. In
Proc. ACL.

M. Johnson. 2001. Joint and conditional estimation of tagging
and parsing models. In Proc. ACL.

Y. Kawata and J. Bartels. 2000. Stylebook for the Japanese
treebank in VERBMOBIL. Verbmobil-Report 240, Seminar
für Sprachwissenschaft, Universität Tübingen.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditonal ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In Proc. ICML.

R. McDonald and F. Pereira. 2006. Online learning of approx-
imate dependency parsing algorithms. In Proc. EACL.

R. McDonald and G. Satta. 2007. On the complexity of non-
projective data-driven dependency parsing. In Proc. IWPT.

R. McDonald, K. Crammer, and F. Pereira. 2005a. Online
large-margin training of dependency parsers. In Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. 2005b.
Non-projective dependency parsing using spanning tree al-
gorithms. In Proc. HLT-EMNLP.

R. McDonald, K. Lerman, and F. Pereira. 2006. Multilingual
dependency parsing with a two-stage discriminative parser.
In Proc. CoNLL-X.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based depen-
dency parsing. In Proc. CoNLL.

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür. 2003.
Building a Turkish treebank. In A. Abeillé, editor, Tree-
banks: Building and Using Parsed Corpora, chapter 15.
Kluwer Academic Publishers.

M.A. Paskin. 2001. Cubic-time parsing and learning algo-
rithms for grammatical bigram models. Technical Report
UCB/CSD-01-1148, University of California, Berkeley.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference (2nd edition). Mor-
gan Kaufmann Publishers.

S. Riezler, R. Kaplan, T. King, J. Maxwell, A. Vasserman, and
R. Crouch. 2004. Speed and accuracy in shallow and deep
stochastic parsing. In Proc. HLT-NAACL.

F. Sha and F. Pereira. 2003. Shallow parsing with conditional
random fields. In Proc. HLT-NAACL.

N.A. Smith and J. Eisner. 2005. Contrastive estimation: Train-
ing log-linear models on unlabeled data. In Proc. ACL.

D.A. Smith and N.A. Smith. 2007. Probabilistic models of
nonprojective dependency trees. In Proc. EMNLP-CoNLL.

B. Taskar, C. Guestrin, and D. Koller. 2004a. Max-margin
markov networks. In NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning.
2004b. Max-margin parsing. In Proc. EMNLP.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
2004. Support vector machine learning for interdependent
and structured output spaces. In Proc. ICML.

W. Tutte. 1984. Graph Theory. Addison-Wesley.

L. van der Beek, G. Bouma, R. Malouf, and G. van Noord.
2002. The Alpino dependency treebank. In Computational
Linguistics in the Netherlands (CLIN).

Y. Matsumoto Y. Cheng, M. Asahara. 2005. Machine learning-
based dependency analyzer for chinese. In Proc. ICCC.

H. Yamada and Y. Matsumoto. 2003. Statistical dependency
analysis with support vector machines. In Proc. IWPT.

150

