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Abstract

Shallow semantic parsing, the automatic
identification and labeling of sentential con-
stituents, has recently received much atten-
tion. Our work examines whether seman-
tic role information is beneficial to question
answering. We introduce a general frame-
work for answer extraction which exploits
semantic role annotations in the FrameNet
paradigm. We view semantic role assign-
ment as an optimization problem in a bipar-
tite graph and answer extraction as an in-
stance of graph matching. Experimental re-
sults on the TREC datasets demonstrate im-
provements over state-of-the-art models.

1 Introduction

Recent years have witnessed significant progress in
developing methods for the automatic identification
and labeling of semantic roles conveyed by senten-
tial constituents.1 The success of these methods, of-
ten referred to collectively as shallow semantic pars-
ing (Gildea and Jurafsky, 2002), is largely due to the
availability of resources like FrameNet (Fillmore et
al., 2003) and PropBank (Palmer et al., 2005), which
document the surface realization of semantic roles in
real world corpora.

More concretely, in the FrameNet paradigm, the
meaning of predicates (usually verbs, nouns, or ad-
jectives) is conveyed by frames, schematic repre-
sentations of situations. Semantic roles (or frame

1The approaches are too numerous to list; we refer the inter-
ested reader to Carreras and Màrquez (2005) for an overview.

elements) are defined for each frame and corre-
spond to salient entities present in the evoked situ-
ation. Predicates with similar semantics instantiate
the same frame and are attested with the same roles.
The FrameNet database lists the surface syntactic
realizations of semantic roles, and provides anno-
tated example sentences from the British National
Corpus. For example, the frame Commerce Sell has
three core semantic roles, namely Buyer, Goods, and
Seller — each expressed by an indirect object, a di-
rect object, and a subject (see sentences (1a)–(1c)).
It can also be attested with non-core (peripheral)
roles (e.g., Means, Manner, see (1d) and (1e)) that
are more generic and can be instantiated in sev-
eral frames, besides Commerce Sell. The verbs sell,
vend, and retail can evoke this frame, but also the
nouns sale and vendor.

(1) a. [Lee]Seller sold a textbook [to
Abby]Buyer.

b. [Kim]Seller sold [the sweater]Goods.
c. [My company]Seller has sold [more

than three million copies]Goods.
d. [Abby]Seller sold [the car]Goods [for

cash]Means.
e. [He]Seller [reluctanctly]Manner sold

[his rock]Goods.

By abstracting over surface syntactic configura-
tions, semantic roles offer an important first step to-
wards deeper text understanding and hold promise
for a range of applications requiring broad cover-
age semantic processing. Question answering (QA)
is often cited as an obvious beneficiary of semantic
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role labeling (Gildea and Jurafsky, 2002; Palmer et
al., 2005; Narayanan and Harabagiu, 2004). Faced
with the question Q: What year did the U.S. buy
Alaska? and the retrieved sentence S: . . .before Rus-
sia sold Alaska to the United States in 1867, a hypo-
thetical QA system must identify that United States
is the Buyer despite the fact that it is attested in one
instance as a subject and in another as an object.
Once this information is known, isolating the correct
answer (i.e., 1867 ) can be relatively straightforward.

Although conventional wisdom has it that seman-
tic role labeling ought to improve answer extraction,
surprising little work has been done to this effect
(see Section 2 for details) and initial results have
been mostly inconclusive or negative (Sun et al.,
2005; Kaisser, 2006). There are at least two good
reasons for these findings. First, shallow semantic
parsers trained on declarative sentences will typi-
cally have poor performance on questions and gen-
erally on out-of-domain data. Second, existing re-
sources do not have exhaustive coverage and recall
will be compromised, especially if the question an-
swering system is expected to retrieve answers from
unrestricted text. Since FrameNet is still under de-
velopment, its coverage tends to be more of a prob-
lem in comparison to other semantic role resources
such as PropBank.

In this paper we propose an answer extraction
model which effectively incorporates FrameNet-
style semantic role information. We present an auto-
matic method for semantic role assignment which is
conceptually simple and does not require extensive
feature engineering. A key feature of our approach
is the comparison of dependency relation paths at-
tested in the FrameNet annotations and raw text. We
formalize the search for an optimal role assignment
as an optimization problem in a bipartite graph. This
formalization allows us to find an exact, globally op-
timal solution. The graph-theoretic framework goes
some way towards addressing coverage problems re-
lated with FrameNet and allows us to formulate an-
swer extraction as a graph matching problem. As a
byproduct of our main investigation we also exam-
ine the issue of FrameNet coverage and show how
much it impacts performance in a TREC-style ques-
tion answering setting.

In the following section we provide an overview
of existing work on question answering systems that

exploit semantic role-based lexical resources. Then
we define our learning task and introduce our ap-
proach to semantic role assignment and answer ex-
traction in the context of QA. Next, we present our
experimental framework and data. We conclude the
paper by presenting and discussing our results.

2 Related Work

Question answering systems have traditionally de-
pended on a variety of lexical resources to bridge
surface differences between questions and potential
answers. WordNet (Fellbaum, 1998) is perhaps the
most popular resource and has been employed in
a variety of QA-related tasks ranging from query
expansion, to axiom-based reasoning (Moldovan et
al., 2003), passage scoring (Paranjpe et al., 2003),
and answer filtering (Leidner et al., 2004). Besides
WordNet, recent QA systems increasingly rely on
syntactic information as a means of abstracting over
word order differences and structural alternations
(e.g., passive vs. active voice). Most syntax-based
QA systems (Wu et al., 2005) incorporate some
means of comparison between the tree representing
the question with the subtree surrounding the answer
candidate. The assumption here is that appropriate
answers are more likely to have syntactic relations
in common with their corresponding question. Syn-
tactic structure matching has been applied to pas-
sage retrieval (Cui et al., 2005) and answer extrac-
tion (Shen and Klakow, 2006).

Narayanan and Harabagiu (2004) were the first
to stress the importance of semantic roles in an-
swering complex questions. Their system identifies
predicate argument structures by merging semantic
role information from PropBank and FrameNet. Ex-
pected answers are extracted by performing proba-
bilistic inference over the predicate argument struc-
tures in conjunction with a domain specific topic
model. Sun et al. (2005) incorporate semantic analy-
sis in their TREC05 QA system. They use ASSERT
(Pradhan et al., 2004), a publicly available shallow
semantic parser trained on PropBank, to generate
predicate-argument structures which subsequently
form the basis of comparison between question and
answer sentences. They find that semantic analysis
does not boost performance due to the low recall
of the semantic parser. Kaisser (2006) proposes a
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Figure 1: Architecture of answer extraction

question paraphrasing method based on FrameNet.
Questions are assigned semantic roles by matching
their dependency relations with those attested in the
FrameNet annotations. The assignments are used to
create question reformulations which are submitted
to Google for answer extraction. The semantic role
assignment module is not probabilistic, it relies on
strict matching, and runs into severe coverage prob-
lems.

In line with previous work, our method exploits
syntactic information in the form of dependency re-
lation paths together with FrameNet-like semantic
roles to smooth lexical and syntactic divergences be-
tween question and answer sentences. Our approach
is less domain dependent and resource intensive than
Narayanan and Harabagiu (2004), it solely employs
a dependency parser and the FrameNet database. In
contrast to Kaisser (2006), we model the semantic
role assignment and answer extraction tasks numer-
ically, thereby alleviating the coverage problems en-
countered previously.

3 Problem Formulation

We briefly summarize the architecture of the QA
system we are working with before formalizing the
mechanics of our FrameNet-based answer extraction
module. In common with previous work, our over-
all approach consists of three stages: (a) determining
the expected answer type of the question, (b) retriev-
ing passages likely to contain answers to the ques-
tion, and (c) performing a match between the ques-
tion words and retrieved passages in order to extract
the answer. In this paper we focus on the last stage:
question and answer sentences are normalized to a
FrameNet-style representation and answers are re-
trieved by selecting the candidate whose semantic
structure is most similar to the question.

The architecture of our answer extraction mod-

ule is shown in Figure 1. Semantic structures for
questions and sentences are automatically derived
using the model described in Section 4 (Model I). A
semantic structure SemStruc = 〈p,Set(SRA)〉 con-
sists of a predicate p and a set of semantic role as-
signments Set(SRA). p is a word or phrase evok-
ing a frame F of FrameNet. A semantic role assign-
ment SRA is a ternary structure 〈w,SR,s〉, consist-
ing of frame element w, its semantic role SR, and
score s indicating to what degree SR qualifies as a
label for w.

For a question q, we generate a semantic struc-
ture SemStrucq. Question words, such as what, who,
when, etc., are considered expected answer phrases
(EAPs). We require that EAPs are frame elements
of SemStrucq. Likely answer candidates are ex-
tracted from answer sentences following some pre-
processing steps detailed in Section 6. For each
candidate ac, we derive its semantic structure
SemStrucac and assume that ac is a frame ele-
ment of SemStrucac. Question and answer seman-
tic structures are compared using a model based on
graph matching detailed in Section 5 (Model II).
We calculate the similarity of all derived pairs
〈SemStrucq,SemStrucac〉 and select the candidate
with the highest value as an answer for the question.

4 Semantic Structure Generation

Our method crucially exploits the annotated sen-
tences in the FrameNet database together with the
output of a dependency parser. Our guiding assump-
tion is that sentences that share dependency rela-
tions will also share semantic roles as long as they
evoke the same or related frames. This is motivated
by much research in lexical semantics (e.g., Levin
(1993)) hypothesizing that the behavior of words,
particularly with respect to the expression and in-
terpretation of their arguments, is to a large ex-
tent determined by their meaning. We first describe
how predicates are identified and then introduce our
model for semantic role labeling.

Predicate Identification Predicate candidates are
identified using a simple look-up procedure which
compares POS-tagged tokens against FrameNet en-
tries. For efficiency reasons, we make the simplify-
ing assumption that questions have only one predi-
cate which we select heuristically: (1) verbs are pre-
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ferred to other parts of speech, (2) if there is more
than one verb in the question, preference is given to
the verb with the highest level of embedding in the
dependency tree, (3) if no verbs are present, a noun
is chosen. For example, in Q: Who beat Floyd Pat-
terson to take the title away?, beat, take away, and
title are identified as predicate candidates and beat
is selected the main predicate of the question. For
answer sentences, we require that the predicate is ei-
ther identical or semantically related to the question
predicate (see Section 5).

In the example given above, the predicate beat
evoques a single frame (i.e., Cause harm). However,
predicates often have multiple meanings thus evo-
quing more than one frame. Knowing which is the
appropriate frame for a given predicate impacts the
semantic role assignment task; selecting the wrong
frame will unavoidably result in erroneous semantic
roles. Rather than disambiguiting polysemous pred-
icates prior to semantic role assignment, we perform
the assignment for each frame evoqued by the pred-
icate.

Semantic Role Assignment Before describing
our approach to semantic role labeling we define
dependency relation paths. A relation path R is a
relation sequence 〈r1,r2, ...,rL〉, in which rl (l =
1,2, ...,L) is one of predefined dependency relations
with suffix of traverse direction. An example of a
relation path is R = 〈sub jU ,ob jD〉, where the sub-
scripts U and D indicate upward and downward
movement in trees, respectively. Given an unanno-
tated sentence whose roles we wish to label, we as-
sume that words or phrases w with a dependency
path connecting them to p are frame elements. Each
frame element is represented by an unlabeled depen-
dency path Rw which we extract by traversing the
dependency tree from w to p. Analogously, we ex-
tract from the FrameNet annotations all dependency
paths RSR that are labeled with semantic role infor-
mation and correspond to p. We next measure the
compatibility of labeled and unlabeled paths as fol-
lows:

s(w,SR) =
maxRSR∈M [sim(Rw,RSR) ·P(RSR)]

(2)

where M is the set of dependency relation paths
for SR in FrameNet, sim(Rw,RSR) the similarity be-
tween paths Rw and RSR weighted by the relative

w SRw SR

(a) (b)

Figure 2: Sample original bipartite graph (a) and its
subgraph with edge covers (b). In each graph, the
left partition represents frame elements and the right
partition semantic roles.

frequency of RSR in FrameNet (P(RSR)). We con-
sider both core and non-core semantic roles instan-
tiated by frames with at least one annotation in
FrameNet. Core roles tend to have more annotations
in Framenet and consequently are considered more
probable.

We measure sim(Rw,RSR), by adapting a string
kernel to our task. Our hypothesis is that the more
common substrings two dependency paths have,
the more similar they are. The string kernel we
used is similar to Leslie (2002) and defined as
the sum of weighted common dependency rela-
tion subsequences between Rw and RSR. For effi-
ciency, we consider only unigram and bigram sub-
sequences. Subsequences are weighted by a metric
akin to t f · id f which measures the degree of asso-
ciation between a candidate SR and the dependency
relation r present in the subsequence:

weightSR(r) = fr · log
(

1+
N
nr

)
(3)

where fr is the frequency of r occurring in SR; N is
the total number of SRs evoked by a given frame;
and nr is the number of SRs containing r.

For each frame element we thus generate a set
of semantic role assignments Set(SRA). This initial
assignment can be usefully represented as a com-
plete bipartite graph in which each frame element
(word or phrase) is connected to the semantic roles
licensed by the predicate and vice versa. (see Fig-
ure 2a). Edges are weighted and represent how com-
patible the frame elements and semantic roles are
(see equation (2)). Now, for each frame element w
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Q: Who discovered prions?
S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...
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Figure 3: Semantic structures induced by our model
for a question and answer sentence

we could simply select the semantic role with the
highest score. However, this decision procedure is
local, i.e., it yields a semantic role assignment for
each frame element independently of all other ele-
ments. We therefore may end up with the same role
being assigned to two frame elements or with frame
elements having no role at all. We remedy this short-
coming by treating the semantic role assignment as
a global optimization problem.

Specifically, we model the interaction between all
pairwise labeling decisions as a minimum weight
bipartite edge cover problem (Eiter and Mannila,
1997; Cormen et al., 1990). An edge cover is a sub-
graph of a bipartite graph so that each node is linked
to at least one node of the other partition. This yields
a semantic role assignment for all frame elements
(see Figure 2b where frame elements and roles are
adjacent to an edge). Edge covers have been success-
fully applied in several natural language processing
tasks, including machine translation (Taskar et al.,
2005) and annotation projection (Padó and Lapata,
2006).

Formally, optimal edge cover assignments are so-
lutions of following optimization problem:

max
E is edge cover

∏
(ndw,ndSR)∈E

s(ndw,ndSR)(4)

where, s(ndw,ndSR) is the compatibility score be-

tween the frame element node ndw and semantic role
node ndSR. Edge covers can be computed efficiently
in cubic time using algorithms for the equivalent
linear assignment problem. Our experiments used
Jonker and Volgenant’s (1987) solver.2

Figure 3 shows the semantic role assignments
generated by our model for the question Q: Who
discovered prions? and the candidate answer sen-
tence S: 1997: Stanley B. Prusiner, United States,
discovery of prions. . . Here we identify two predi-
cates, namely discover and discovery. The expected
answer phrase (EAP) who and the answer candi-
date Stanley B. Prusiner are assigned the COGNIZER

role. Note that frame elements can bear multiple se-
mantic roles. By inducing a soft labeling we hope to
render the matching of questions and answers more
robust, thereby addressing to some extent the cover-
age problems associated with FrameNet.

5 Semantic Structure Matching

We measure the similarity between a question and
its candidate answer by matching their predicates
and semantic role assignments. Since SRs are frame-
specific, we prioritize frame matching to SR match-
ing. Two predicates match if they evoke the same
frame or one of its hypernyms (or hyponyms). The
latter are expressed by the Inherits From and Is In-
herited By relations in the frame definitions. If the
predicates match, we examine whether the assigned
semantic roles match. Since we represent SR assign-
ments as graphs with edge covers, we can also for-
malize SR matching as a graph matching problem.

The similarity between two graphs is measured
as the sum of similarities between their subgraphs.
We first decompose a graph into subgraphs consist-
ing of one frame element node w and a set of SR
nodes connected to it. The similarity between two
subgraphs SubG1, and SubG2 is then formalized as:

(5)
Sim(SubG1,SubG2) =

∑
ndSR

1 ∈ SubG1
ndSR

2 ∈ SubG2
ndSR

1 = ndSR
2

1
|s(ndw,ndSR

1 )− s(ndw,ndSR
2 )|+1

where, ndSR
1 and ndSR

2 are semantic role nodes con-
nected to a frame element node ndw in SubG1 and

2The software is available from http://www.magiclogic.
com/assignment.html .
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Figure 4: Distribution of Numbers of Predicates and
annotated sentences; each sub-pie, lists the number
of predicates (above) with their corresponding range
of annotated sentences (below)

SubG2, respectively. s(ndw,ndsr
1 ) and s(ndw,ndSR

2 )
are edge weights between two nodes in correspond-
ing subgraphs (see (2)). Our intuition here is that
the more semantic roles two subgraphs share for a
given frame element, the more similar they are and
the closer their corresponding edge weights should
be. Edge weights are normalized by dividing by the
sum of all edges in a subgraph.

6 Experimental Setup

Data All our experiments were performed on the
TREC02–05 factoid questions. We excluded NIL
questions since TREC doesn’t supply an answer for
them. We used the FrameNet V1.3 lexical database.
It contains 10,195 predicates grouped into 795 se-
mantic frames and 141,238 annotated sentences.
Figure 4 shows the number of annotated sentences
available for different predicates. As can be seen,
there are 3,380 predicates with no annotated sen-
tences and 1,175 predicates with less than 5 anno-
tated sentences. All FrameNet sentences, questions,
and answer sentences were parsed using MiniPar
(Lin, 1994), a robust dependency parser.

As mentioned in Section 4 we extract depen-
dency relation paths by traversing the dependency
tree from the frame element node to the predicate
node. We used all dependency relations provided
by MiniPar (42 in total). In order to increase cov-
erage, we combine all relation paths for predicates

that evoke the same frame and are labeled with the
same POS tag. For example, found and establish
are both instances of the frame Intentionally create
but the database does not have any annotated sen-
tences for found.v. In default of not assigning any
role labels for found.v, our model employs the rela-
tion paths for the semantically related establish.v.

Preprocessing Here we summarize the steps of
our QA system preceding the assignment of seman-
tic structure and answer extraction. For each ques-
tion, we recognize its expected answer type (e.g., in
Q: Which record company is Fred Durst with? we
would expect the answer to be an ORGANIZA-
TION ). Answer types are determined using classi-
fication rules similar to Li and Roth (2002). We also
reformulate questions into declarative sentences fol-
lowing the strategy proposed in Brill et al. (2002).

The reformulated sentences are submitted as
queries to an IR engine for retrieving sentences with
relevant answers. Specifically, we use the Lemur
Toolkit3, a state-of-the-art language model-driven
search engine. We work only with the 50 top-ranked
sentences as this setting performed best in previ-
ous experiments of our QA system. We also add to
Lemur’s output gold standard sentences, which con-
tain and support an answer for each question. Specif-
ically, documents relevant for each question are re-
trieved from the AQUAINT Corpus4 according to
TREC supplied judgments. Next, sentences which
match both the TREC provided answer pattern and
at least one question key word are extracted and their
suitability is manually judged by humans. The set of
relevant sentences thus includes at least one sentence
with an appropriate answer as well as sentences that
do not contain any answer specific information. This
setup is somewhat idealized, however it allows us to
evaluate in more detail our answer extraction mod-
ule (since when an answer is not found, we know it
is the fault of our system).

Relevant sentences are annotated with their
named entities using Lingpipe5, a MUC-based
named entity recognizer. When we successfully
classify a question with an expected answer type

3See http://www.lemurproject.org/ for details.
4This corpus consists of English newswire texts and is used

as the main document collection in official TREC evaluations.
5The software is available from www.alias-i.com/

lingpipe/
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(e.g., ORGANIZATION in the example above), we
assume that all NPs attested in the set of relevant
sentences with the same answer type are candidate
answers; in cases where no answer type is found
(e.g., as in Q: What are prions made of? ), all NPs
in the relevant answers set are considered candidate
answers.

Baseline We compared our answer extraction
method to a QA system that exploits solely syntac-
tic information without making use of FrameNet or
any other type of role semantic annotations. For each
question, the baseline identifies key phrases deemed
important for answer identification. These are verbs,
noun phrases, and expected answer phrases (EAPs,
see Section 3). All dependency relation paths con-
necting a key phrase and an EAP are compared to
those connecting the same key phrases and an an-
swer candidate. The similarity of question and an-
swer paths is computed using a simplified version
of the similarity measure6 proposed in Shen and
Klakow (2006).

Our second baseline employs Shalmaneser (Erk
and Padó, 2006), a publicly available shallow se-
mantic parser7, for the role labeling task instead of
the graph-based model presented in Section 4. The
software is trained on the FrameNet annotated sen-
tences using a standard feature set (see Carreras and
Màrquez (2005) for details). We use Shalmaneser
to parse questions and answer sentences. The parser
makes hard decisions about the presence or absence
of a semantic role. Unfortunately, this prevents us
from using our method for semantic structure match-
ing (see Section 5) which assumes a soft labeling.
We therefore came up with a simple matching strat-
egy suitable for the parser’s output. For question
and answer sentences matching in their frame as-
signment, phrases bearing the same semantic role as
the EAP are considered answer candidates. The lat-
ter are ranked according to word overlap (i.e., iden-
tical phrases are ranked higher than phrases with no

6Shen and Klakow (2006) use a dynamic time warping al-
gorithm to calculate the degree to which dependency relation
paths are correlated. Correlations for individual relations are es-
timated from training data whereas we assume a binary value (1
for identical relations and 0 otherwise). The modification was
necessary to render the baseline system comparable to our an-
swer extraction model which is unsupervised.

7The software is available from http://www.coli.
uni-saarland.de/projects/salsa/shal/ .

overlap at all).

7 Results

Our evaluation was motivated by the following ques-
tions: (1) How does the incompleteness of FrameNet
impact QA performance on the TREC data sets? In
particular, we wanted to examine whether there are
questions for which in principle no answer can be
found due to missing frame entries or missing an-
notated sentences. (2) Are all questions and their
corresponding answers amenable to a FrameNet-
style analysis? In other words, we wanted to assess
whether questions and answers often evoke the same
or related frames (with similar roles). This is a pre-
requisite for semantic structure matching and ulti-
mately answer extraction. (3) Do the graph-based
models introduced in this paper bring any perfor-
mance gains over state-of-the-art shallow semantic
parsers or more conventional syntax-based QA sys-
tems? Recall that our graph-based models were de-
signed especially for the QA answer extraction task.

Our results are summarized in Tables 1–3. Table 1
records the number of questions to be answered for
the TREC02–05 datasets (Total). We also give infor-
mation regarding the number of questions which are
in principle unanswerable with a FrameNet-style se-
mantic role analysis.

Column NoFrame shows the number of questions
which don’t have an appropriate frame or predicate
in the database. For example, there is currently no
predicate entry for sponsor or sink (e.g., Q: Who
is the sponsor of the International Criminal Court?
and Q: What date did the Lusitania sink? ). Column
NoAnnot refers to questions for which no semantic
role labeling is possible because annotated sentences
for the relevant predicates are missing. For instance,
there are no annotations for win (e.g., Q: What divi-
sion did Floyd Patterson win? ) or for hit (e.g., Q:
What was the Beatles’ first number one hit? ). This
problem is not specific to our method which admit-
tedly relies on FrameNet annotations for performing
the semantic role assignment (see Section 4). Shal-
low semantic parsers trained on FrameNet would
also have trouble assigning roles to predicates for
which no data is available.

Finally, column NoMatch reports the number of
questions which cannot be answered due to frame
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Data Total NoFrame NoAnnot NoMatch Rest
TREC02 444 87 (19.6) 29 (6.5) 176 (39.6) 152 (34.2)
TREC03 380 55 (14.5) 30 (7.9) 183 (48.2) 112 (29.5)
TREC04 203 47 (23.1) 14 (6.9) 67 (33.0) 75 (36.9)
TREC05 352 70 (19.9) 23 (6.5) 145 (41.2) 114 (32.4)

Table 1: Number of questions which cannot be answered using a FrameNet style semantic analysis; numbers
in parentheses are percentages of Total (NoFrame: frames or predicates are missing; NoAnnot: annotated
sentences are missing, NoMatch: questions and candidate answers evoke different frames.

mismatches. Consider Q: What does AARP stand
for? whose answer is found in S: The American
Association of Retired Persons (AARP) qualify for
discounts. . .. The answer and the question evoke dif-
ferent frames; in fact here a semantic role analysis is
not relevant for locating the right answer. As can be
seen NoMatch cases are by far the most frequent.
The number of questions remaining after excluding
NoFrame, NoAnnot, and NoMatch are shown under
the Rest heading in Table 1.

These results indicate that FrameNet-based se-
mantic role analysis applies to approximately 35%
of the TREC data. This means that an extraction
module relying solely on FrameNet will have poor
performance, since it will be unable to find answers
for more than half of the questions beeing asked. We
nevertheless examine whether our model brings any
performance improvements on this limited dataset
which is admittedly favorable towards a FrameNet
style analysis. Table 2 shows the results of our an-
swer extraction module (SemMatch) together with
two baseline systems. The first baseline uses only
dependency relation path information (SynMatch),
whereas the second baseline (SemParse) uses Shal-
maneser, a state-of-the-art shallow semantic parser
for the role labeling task. We consider an answer
correct if it is returned with rank 1. As can be seen,
SemMatch is significantly better than both Syn-
Match and SemParse, whereas the latter is signifi-
cantly worse than SynMatch.

Although promising, the results in Table 2 are not
very informative, since they show performance gains
on partial data. Instead of using our answer extrac-
tion model on its own, we next combined it with the
syntax-based system mentioned above (SynMatch,
see also Section 6 for details). If FrameNet is indeed
helpful for QA, we would expect an ensemble sys-

Model TREC02 TREC03 TREC04 TREC05
SemParse 13.16 8.92 17.33 13.16
SynMatch 35.53∗ 33.04∗ 40.00∗ 36.84∗

SemMatch 53.29∗† 49.11∗† 54.67∗† 59.65∗†

Table 2: System Performance on subset of TREC
datasets (see Rest column in Table 1); ∗: signifi-
cantly better than SemParse; †: significantly better
than SynMatch (p < 0.01, using a χ2 test).

Model TREC02 TREC03 TREC04 TREC05
SynMatch 32.88∗ 30.70∗ 35.95∗ 34.38∗

+SemParse 25.23 23.68 28.57 26.70
+SemMatch 38.96∗† 35.53∗† 42.36∗† 41.76∗†

Table 3: System Performance on TREC datasets (see
Total column in Table 1); ∗: significantly better than
+SemParse; †: significantly better than SynMatch
(p < 0.01, using a χ2 test).

tem to yield better performance over a purely syn-
tactic answer extraction module. The two systems
were combined as follows. Given a question, we first
pass it to our FrameNet model; if an answer is found,
our job is done; if no answer is returned, the ques-
tion is passed on to SynMatch. Our results are given
in Table 3. +SemMatch and +SemParse are ensem-
ble systems using SynMatch together with the QA
specific role labeling method proposed in this pa-
per and Shalmaneser, respectively. We also compare
these systems against SynMatch on its own.

We can now attempt to answer our third ques-
tion concerning our model’s performance on the
TREC data. Our experiments show that a FrameNet-
enhanced answer extraction module significantly
outperforms a similar module that uses only syn-
tactic information (compare SynMatch and +Sem-
Match in Table 3). Another interesting finding is that
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the shallow semantic parser performs considerably
worse in comparison to our graph-based models and
the syntax-based system. Inspection of the parser’s
output highlights two explanations for this. First, the
shallow semantic parser has difficulty assigning ac-
curate semantic roles to questions (even when they
are reformulated as declarative sentences). And sec-
ondly, it tends to favor precision over recall, thus re-
ducing the number of questions for which answers
can be found. A similar finding is reported in Sun et
al. (2005) for a PropBank trained parser.

8 Conclusion

In this paper we assess the contribution of semantic
role labeling to open-domain factoid question an-
swering. We present a graph-based answer extrac-
tion model which effectively incorporates FrameNet
style role semantic information and show that it
achieves promising results. Our experiments show
that the proposed model can be effectively combined
with a syntax-based system to obtain performance
superior to the latter when used on its own. Fur-
thermore, we demonstrate performance gains over a
shallow semantic parser trained on the FrameNet an-
notated corpus. We argue that performance gains are
due to the adopted graph-theoretic framework which
is robust to coverage and recall problems.

We also provide a detailed analysis of the appro-
priateness of FrameNet for QA. We show that per-
formance can be compromised due to incomplete
coverage (i.e., missing frame or predicate entries
as well as annotated sentences) but also because of
mismatching question-answer representations. The
question and the answer may evoke different frames
or the answer simply falls outside the scope of a
given frame (i.e., in a non predicate-argument struc-
ture). Our study shows that mismatches are rela-
tively frequent and motivates the use of semantically
informed methods in conjunction with syntax-based
methods.

Important future directions lie in evaluating the
contribution of alternative semantic role frameworks
(e.g., PropBank) to the answer extraction task and
developing models that learn semantic roles di-
rectly from unannotated text without the support
of FrameNet annotations (Grenager and Manning,
2006). Beyond question answering, we also plan to

investigate the potential of our model for shallow
semantic parsing since our experience so far has
shown that it achieves good recall.
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