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Abstract  

This paper reports on the ESPRIT project 
MELISSA (Mefllods and Tools for Natural- 
Language Interfacing with Standard Software 
Applications) 1. MELISSA aims at developing 
the technology and tools enabling end users to 
interface with computer applications, using natu- 
ral-language (NL), and to obtain a pre- 
competitive product validated in selected end- 
user applications. This paper gives an overview 
of the approach to solving (NL) interfacing 
problem and outlines some of the methods and 
software components developed in the project. 

Introduct ion 

The nmjor goal of MELISSA is to provide the 
technology and tools enabling software develop- 
ers to provide a Natural Language (NL) interface 
for new products, as well as for legacy applica- 
tions. The project is based on the conviction that 
NL is the most user friendly interface for specific 
software applications and for a specific kind of 
users. NL is 'generic' requiring little or no train- 
ing. Integrated with speech recognition and speech 
generation the NL interface is optimally conven- 
ient and allows for easy access to software systems 
by all kinds of (non-expert) users as well as for 
users with specific disabilities (e.g. visual, motor). 
MELISSA will deliver three main components: a 
core of linguistic processing machinery and ge- 
neric linguistic resources for Spanish, English and 
German; a set of methods and tools for acquiring 
and representing the knowledge about the host 
application and specific linguistic resources re- 
quired for this application; a set of methods and 

1 This project is sponsored by the Commission of the EU under 
ESPRIT-22252. Project partners are Software AG, Espana, SEMA, 
France/Spain, Anite-Systems, Luxembourg, IAI, Germany, ONCE, 
Spain and the City of Cologne. 

tools for integrating the MELISSA core, the appli- 
cation knowledge, and the host application using 
the CORBA interoperability standard. The overall 
architecture of a MELISSA-based NL interface 
consists of the following software modules: 
• Speech Recognition Module (SRM), which is 

a commercial product, providing a continuous 
speech interface for the other NL modules 

• Linguistic Processing Module (LPM) consisting 
of tile linguistic processing machinery and the 
linguistic resources 

• Semantic Analysis Module (SAM) interpreting 
LPM output using application knowledge 

• Function Generator Module (FGM) converting 
SAM output into executable function calls 

• Application Knowledge Repository (AKR) con- 
taining all the relevant application specific 
knowledge being used by SAM and FGM 

• Front-End Module (FEM) responsible for in- 
voking requested operations in the application 

• Controller Module (CTR) co-ordinating the co- 
operation between the previous modules 

• End-User Interface (EUI) in which the user types 
or dictates his NL queries to target application 

The focus of MELISSA is on understanding NL. 
In that, MELISSA addresses problems from 
knowledge representation and linguistic process- 
ing. In the following we concentrate on the design 
and the interrelation of the linguistic and knowl- 
edge-based modules (SRM, LPM, SAM, AKR). 
The MELISSA tools are designed to be generic 
such that they support development of NL inter- 
faces for a broad range of software applications. 
This requires an application independent encoding 
of linguistic resources, and an elaborate 
modularization scheme supporting flexible con- 
figuration of these resources for different software 
applications. 
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Furthermore, successful NL interface must meet 
with user acceptance requirements regarding re- 
sponse time. This poses a major challenge on the 
deployment of sophisticated, competence-grammar 
based NLP technologies as envisaged in 
MELISSA. One aspect of ensuring efficient per- 
formance of a NL interface consists in limiting its 
capabilities in terms of linguistic coverage. To 
avoid false (positive or negative) expectations such 
restrictions must be obvious to the user. In addi- 
tion, any restriction in terms of linguistic resources 
must warrant naturalness of expression. 

1 The  Speech Recogni t ion  Module  

Speech is the most natural form of comnmnication 
for people and is felt to greatly extend the range of 
potential applications suitable for an NL interface. 
MELISSA currently adopts a 'black-box' approach 
to speech recognition, viz., speech is just an alter- 
native to a keyboard. The results of speech recog- 
nition are stored and can be retrieved by sending a 
request to the component. The speech component 
itself can be controlled by voice commands. Be- 
fore using the SRM, speakers have to 'train' it in 
order to adjust the general voice model to the spe- 
cific speaker's voice characteristics. 
The speech interface sends recognized utterances 
as strings to other MELISSA components, but is 
not able to interact on a higher level with those 
components. In a subsequent phase the feedback 
and co-operation between the MELISSA core 
components and the SRM will be addressed. 

2 The  Linguist ic Processing Modu le  

The core of the LPM is based on the Advanced 
Language Engineering Platform (ALEP), the EU 
Commission's standard NLP development platform 
[Simpkins 94]. ALEP provides the functionality 
for efficient NLP: a 'lean' linguistic formalism 
(with term unification) providing typed feature 
structures (TFSs), an efficient head scheme based 
parser, rule indexation mechanisms, a number of 
devices supporting nmdularization and configura- 
tion of linguistic resources, e.g. an interface format 
supporting information flow from SGML-encoded 
data structures to TFSs (thus enabling straightfor- 
ward integration of 'low-level' processing with 
deep linguistic analysis), the refinement facility 
allowing for separating parsing and 'semantic 
decoration', and the specifier mechanism allowing 
for nmlti-dimensional partitioning of linguistic 
resources into specialized sub-modules. 
For the first time ALEP is used in an industrial 
context. In the first place, core components of 

ALEP (parser, feature interpreter, linguistic for- 
malism) are used as the basis of the MELISSA 
LPM. In the second place, ALEP is used as the 
development platform for the MELISSA lingware. 
The coverage of the linguistic resources for the 
first MELISSA prototype was determined by a 
thorough user needs analysis. The application dealt 
with was an administrative purchase and acquisi- 
tion handling system at the Spanish organization of 
blind people, ONCE. 
The following is an outline of solutions realized in 
the LPM for text handling, linguistic analysis and 
semantic representation. 

2.1 Text Handling 
The TH modules for MELISSA (treating phenom- 
ena like dates, measures, codes (pro-nr. 123/98-al- 
T4), abbreviations, but also multiple word units 
and fixed phrases come as independent Perl pre- 
processors for pattern recognition, resulting in a 
drastic improvement of efficiency and a dramatic 
expansion of coverage. 
Within the general mark up strategy for words a 
module has been added which allows the treatment 
of specific sequences of words building units. 
Once those patterns have been recognized and 
concatenated into one single unit, it is easy to con- 
vert them to some code required by the applica- 
tion. Precisely this latter information is then deliv- 
ered to the grammar for further processing. For 
one application in MELISSA it is, for example, 
required to recognize distinct types of proposals 
and to convert them into numeric codes (e.g. 
'brdenes de viaje' into the number '2019'.) 
The TH components allow for an expansion of the 
coverage of the NLP components. Experiments 
have already been made in integrating simple 
POS-tagging components and in passing this in- 
formation to the ALEP system [Declerck & Maas 
97]. Unknown words predictable for their syntactic 
behaviour can be identified, marked and repre- 
sented by a single default lexical entry in the 
ALEP lexicon. In one practical experiment, this 
meant the deletion of thousands of lexical entries. 
The default mechanism in ALEP works as follows, 
during parsing ALEP applies the result of  lexical 
look-up to each of the terminal nodes; if this fails 
then ALEP will look at lexical entries which con- 
tain a default specifier to see whether any of them 
matches (typically these are underspecifed for 
string value, but fully specified for syntactic cate- 
gory etc.). Clearly without valency information 
such an approach is limited (but nevertheless use- 
ful). Future work will focus on the (semi)- 
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automatic identification of this information in the 
pre-processing. 
The modular design of the TH components (dis- 
tinction of application specific TH phenomena and 
general ones) allows for a controlled extension to 
other languages mid other applications. 

2.2 Linguistic Analysis 

Based on experiences from previous projects 
[Schmidt ct al. 96], mainstream linguistic concepts 
such as HPSG are adopted and combined with 
strategies from the 'lean fornmlism paradigm'. 
For MELISSA, a major issue is to design linguistic 
resources which are transparent, flexible and easily 
adaptable to specific applications. In order to 
minimize configuration and extension costs, ling- 
ware for different languages is designed according 
to the same strategies, guaranteeing maximal uni- 
formity. This is realized in semantics. All language 
modules use the same type and feature system. 
Macros provide an important means of supporting 
modularity and transparency. They are extensively 
used for encoding lexical entries as well as struc- 
tural rules. Structural macros mostly encode 
HPSG-like ID schemes spelled out in category- 
specific grammar rules. Structural macros are 
largely language-independent, but also lexical 
macros will be 'standardized' in order to support 
transparency and easy maintenance. 
The second major issue in linguistic analysis is 
efficiency of linguistic processing. Efficiency is 
achieved e.g. by exploiting the lingware partition- 
ing mechanisms of ALEP. Specifier feature struc- 
tures encode which subpart of the lingware a rule 
belongs to. Thus for each processing step, only the 
appropriate subset of rules is activated. 

Efficient processing of NL input is also supported 
by separation of the 'analysis' stage and one or 
several 'refinement' stages. During the analysis 
stage, a structural representation of the NL input is 
built by a cf. grammar, while the refinement 
stage(s) enriches the representation with additional 
information. Currently, this is implemented as a 
two-step approach, where the analysis stage com- 
putes purely syntactic information, and the refine- 
ment adds semantic infornmtion (keeping syntactic 
and semantic ambiguities separate). In the future 
we will use further refinement steps for adding 
application-specific linguistic information. 

2.3 Semantic Representation 

During linguistic analysis, compositional semantic 
representations are simultaneously encoded by 
recursive enthedding of semantic feature structures 

as well as by a number of features encoding dis- 
tinct types of semantic facts (e.g. predications, 
argument relations) in terms of a unique wrapper 
data type, so called 'sf-terms' (SFs). Links be- 
tween semantic facts are established through vari- 
able sharings as (2) shows: 
(i) Elaborate new proposal 
(2) t sem: { 

indx :> sf(indx(event,E) ), 
pred -> sf(pred(elaborate,E,A,B) ), 
arg2 => t sem: { 

arg :> sf(arg(theme,E,B)), 
pred => sf(pred(proposal,B) }, 
mods :> [ t sem: { 

mod => sfTmod(quality, B,M} ), 
pred => sf(pred(new, M))} ] }} 

Tile flat list of all SFs representing the meaning of 
an NL input expression is the input data structure 
for the SAM. 
Besides predicate argument structure and modifi- 
cation, the semantic model includes functional 
semantic information (negation, determination, 
quantification, tense and aspect) and lexical se- 
mantics. The SF-encoding scheme carries over to 
these facets of semantic information as well. 
Special data types which are recognized and 
marked up during TH and which typically corre- 
spond to basic data types in the application func- 
tionality model, are diacritically encoded by the 
special wrapper-type 'type', as illustrated in (4) for 
an instance of a code expression: 
(3) proposal of type 2019 
(4) t sem:{ 

pred => sf(pred(proposal, P) ), 
mods :> [ t sem: { 

rood => sf(mod(concern, P,M) ), 
pred => sf(type(proptype(2Ol9),M))} ] } 

3 Modelling of Application Knowledge 
Two distinct but related models of the host appli- 
cation are required within MELISSA. On the one 
hand, MELISSA has to understand which (if any) 
function the user is trying to execute. On the other 
hand, MELISSA needs to know whether such a 
functional request c a n  be executed at that instant. 
The basic ontological assumption underpinning 
each model is that any application comprises a 
number of functions, each of which requires zero 
or more parameters. 

3.1 The SAM Model 

The output of the LPM is basically application 
independent. The SAM has to interpret the seman- 
tic output of the LPM in terms of a specific appli- 
cation. Fragments of NL are inherently ambiguous. 
Thus, in general, this LPM output will consist of a 
number of possible interpretations. The goal of the 
SAM is to identify a unique function call for the 
specific application. This is achieved by a (do- 
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main-independent) matching process, which at- 
tempts to unify each of the LPM results with one 
or more so-called mapping rules. Heuristic criteria, 
embodied within the SAM algorithm, enable the 
best interpretation to be identified. An example 
criterion is the principle of 'Maximal Consump- 
tion', by which rules matching a greater proportion 
of the SFs in an LPM result are preferred. 
Analysis of the multiple, application-independent 
semantic interpretations depends on the matching 
procedure performed by the SAM, and on the 
mapping rules. (5) is a mapping rule: 
(5) rule(elaborate(3), -- (a) 

[elaborate, elaboration, make, create, 
creation, introduce], -- (b) 

[arg (agent, elaborate, ), 
arg(theme, elaborate, proposal), 
mod(concern, proposal, 

type (proptype (PropType) ) ) ] , -- (c) 
[ new_proposal_type ( 

proptype(PropType))] ) . -- (d) 

Each mapping rule consists of an identifier (a), a 
list of normalised function-word synonyms (b), a 
list of  SFs (c), and finally, a simple term repre- 
senting the application function to be called, to- 
gether with its parameters (d). 
The SAM receives a list of SF lists from the LPM. 
Each list is considered in turn, and the best inter- 
pretation sought for each. All of the individual 
'best results' are assessed, and the overall best 
result returned. This overall best is passed on to the 
FGM, which can either execute, or start a dialogue. 
The SFs embody structural semantic information, 
but also very important constraint information, 
derived from the text-handling. Thus in the exam- 
pie rule above, it can clearly be seen that the value 
of 'PropType' must already have been identified 
(i.e. during text handling) as being of the type 
'proptype'. In particular cases this allows for dis- 
ambiguation. 

3.2 The Application State Model 
It is obvious that NL interfaces have to respond in 
a manner as intelligent as possible. Clearly, certain 
functions can only be called if the application is in 
a certain state (e.g. it is a precondition of the func- 
tion call 'print_file' that the relevant file exists and 
is printable). These 'application states' provide a 
means for assessing whether or not a function call 
is currently permitted. 
A standard application can reasonably be described 
as a deterministic finite state automaton. A state 
can only be changed by the execution of one of the 
functions of the application. This allows for mod- 
elling an application in a monotonic fashion and 
thus calls for a representation in terms of the 
predicate calculus. From amongst a number of 

alternatives, the New Event Calculus (NEC) was 
chosen [Sadri & Kowalski 95] as an appropriately 
powerful formalism for supporting this state mod- 
elling. NEC allows for the representation of 
events, preconditions, postconditions and time 
intervals between events. NEC is appropriate for 
modelling concurrent, event-driven transitions 
between states. However, for single-user applica- 
tions, without concurrent functionality, a much 
simpler formalism, such as, for example, STRIPS- 
like operators, will be perfectly adequate. 
In terms of implementation methodology, the work 
to be done is to specify the application specific 
predicates. The state model of the application 
contains as components a set of functions which 
comprise the application, a set of preconditions 
that must be fulfilled in order to allow the execu- 
tion of each function, and a set of consequences 
that results from the execution of a function. 
Both preconditions and consequences are com- 
posed of a subset of the set of propositions which 
comprise the current application state. There exists 
a set of relations between the components: A 
function must fulfil preconditions and produces a 
set of consequences. The set of preconditions is- 
composed-of facts. The same holds for the set of 
consequences and the application state. (6) gives a 
summary for a simple text editor. ( 'F' = some file). 
(6) Preconditions: 

create(F), [not(exists(F))] ) . 
open(F), [exists(F) ,not (open{F))] ) . 
close(F), [exists(F) ,open(F) ] ) . 
delete(F), [exists(F)] ) . 
edit(F), [exists (F) , open (F) ] ) . 
save(F), [exists(F),open(F),modified(F)] ) . 
spell_check(F), [exists(F),open(F) ] ) . 

a) Postconditions: Facts to be added 

add (create(F), [exists(F)] ) . 
add(open(F), [open (f') ] ) . 
add(close(F), [] ). 
add(delete[F], []). 
add (edit (F) , [modified (F) ] ) . 
add(save(F), [saved(F]] ). 
add(spell_check(F), [modified(F)] ) . 

b) Postconditions: Facts to be deleted 

del (create(F}, [] ). 
del (open(F), [] ) . 
del[close(F), [open(F) ] ) . 
del[delete(F), [exists(F)] ) . 
del (edit (F) , [] ). 
del(save(F), [modified(F)] ). 
del (spell_check (F) , []). 

A simple planner can be used to generate remedial 
suggestion to the user, in cases where the desired 
function is currently disabled. 

4 Adop ted  Solutions 

4.1 Standardisation and Methodologies 
Throughout the design phase of the project an 
object oriented approach has been followed using 
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the Unified Modelling Language [Booth et al. 97] 
as a suitable notation. It is equally foreseen to 
actually propose an extension to this standard no- 
tation with linguistic and knowledge related as- 
pects. This activity covers part of the 'Methodol- 
ogy and Standards' aspects of the project. 
Other activities related to this aspect are concerned 
with 'knowledge engineering', 'knowledge mod- 
elling', and 'language engineering' (e.g. linguistic 
coverage analysis). Methodologies are being de- 
veloped that define the steps (and how to carry 
them out) from a systematic application analysis (a 
kind of reverse-engineering) to the implementation 
of a usable (logical and physical) model of the 
application. This model can be directly exploited 
by the MELISSA software components. 

4.2 lnteroperabili ty 
As stated in the introduction, CORBA [Ben-Natan 
1995] is used as the interoperability standard in 
order for the different components to co-operate. 
The component approach, together with CORBA, 
allows a very flexible (e.g. distributed) deployment 
of the MELISSA system. CORBA allows software 
components to invoke methods (functionality) in 
remote objects (applications) regardless of the 
machine and architecture the called objects reside 
on. This is particularly relevant for calling func- 
tions in the 'hosting' application. The NL input 
processing by the MELISSA core components 
(themselves communicating through CORBA) 
must eventually lead to the invoking of some 
function in the targeted application. In many cases 
this can be achieved through CORBA 
interoperability techniques (e.g. object wrapping). 
This approach will enable developers to provide 
existing (legacy) applications with an NL interface 
without having to re-implement or reverse engi- 
neer such applications. New applications, devel- 
oped with components and distributed processing 
in mind, can integrate MELISSA components with 
little development effort. 

4.3 Design and Implementat ion 
The software design of all components has fol- 
lowed the object-oriented paradigm. The SRM for 
example is implemented based on a hierarchical 
collection of classes. These classes cover for in- 
stances software structures focused on speech 
recognition and distributed computing using 
CORBA. In particular the speech recognition 
classes were implemented to be independent of 
various speech recognition programming inter- 
faces, and are expandable. Vocabularies, diction- 
aries and user specific settings are handled by 

specific classes to support the main speech appli- 
cation class. Commands can easily be mapped to 
the desired functionality. Speech recognition re- 
sults are stored in conjunction with scores, con- 
firmed words and their alternatives. Other 
MELISSA components can access these results 
flwough CORBA calls. 

5 Conclusions 

MELISSA represents a unique combination of 
high quality NLP and state-of-the-art software- and 
knowledge-engineering techniques. It potentially 
provides a solution to the problem of re-using 
legacy applications. The project realizes a system- 
atic approach to solving the problems of NL inter- 
facing: define a methodology, provide tools and 
apply them to build NL interfaces. The production 
of the first working prototype has proven the 
soundness of the concept. 
MELISSA addresses a highly relevant area wrt. 
future developments in human-computer interac- 
tion, providing users with an intuitive way of ac- 
cessing the functionalities of computers. 
Future work will focus on refinement of method- 
ologies, production of knowledge acquisition tools, 
improvement and extension of the SAM function- 
ality, robustness and extension of the LPM output. 
Contonuous user assessment will guide the devel- 
opment. 
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