
Building Accurate Semantic Taxonomies from 
Monolingual MRDs 

German Rigau and Horacio Rodrlguez 
Departament de LSI. 

Universitat Polit6cnica de Catalunya. 
Barcelona. Catalonia. 

{g.rigau, horacio}@lsi.upc.es 

Eneko Agirre 
Lengoia eta Informatikoak saila. 

Euskal Erriko Universitatea. 
Donostia, Basque Country. 

jibagbee@si.ehu.es 

Abstract 

This paper  presents a method that 
conbines a set of unsupervised algorithms in 
order to accurately build large taxonomies 
from any machine-readable  dict ionary 
(MRD). Our aim is to profi t  from 
convent ional  MRDs, with no explicit 
semantic coding. We propose a system that 
1) performs fully automatic extraction of 
taxonomic links from MRD entries and 2) 
ranks the extracted relations in a way that 
selective manual  refinement is allowed. 
Tested accuracy can reach around 100% 
depending  on the degree of coverage 
selected, showing that taxonomy building 
is not limited to structured dictionaries 
such as LDOCE. 

1 Introduct ion  

There is no doubt about the increasing need of 
owning accurate and broad coverage general 
lexical /semantic resources for developing NL 
applications. These resources include Lexicons, 
Lexical Databases, Lexical Knowledge Bases 
(LKBs), Ontologies, etc. Many researchers believe 
that for effective NLP it is necessary to build a 
LKB which contain class/subclass relations and 
mechanisms for the inheritance of properties as 
well as other inferences. The work presented here 
attempts to lay out some solutions to overcome or 
al leviate the "lexical bot t leneck" problem 
(Briscoe 91) providing a methodology to build 
large scale LKBs from conventional dictionaries, 
in any language. Starting with the seminal work 
of (Amsler 81) many systems have followed this 
approach (e.g., Bruce et al. 92; Richardson 97). 
Why should we propose another one? 

Regarding the resources used, we must point out 
that most of the systems built until now refer to 
English only and use rather rich, well structured, 
controlled and explicitly semantically coded 
dictionaries (e.g. LDOCE 87). This is not the case 
for most of the available sources for languages 

other than English. Our aim is to use conventional 
MRDs, with no explicit semantic coding, to obtain 
a comparable accuracy. 

The system we propose is capable of 1) 
performing fully automatic extraction (with a 
counterpart in terms of both recall and precision 
fall) of taxonomic links of dictionary senses and 2) 
ranking the extracted relations in a way that 
selective manual refinement is allowed. 

Section 2 shows that applying a conventional 
pure  descr ip t ive  approach  the resu l t ing  
taxonomies are not useful for NLP. Our approach 
is presented in the rest of the paper. Section 3 
deals with the automatic selection of the main 
semantic primitives present  in Diccionario 
General llustrado de la Lengua Espa~ola (DGILE 
87), and for each of these, section 4 shows the 
m e t h o d  for the se lec t ion of its mos t  
representative genus terms. Section 5 is devoted to 
the automatic acquisition of large and accurate 
taxonomies from DGILE. Finally, some conclusions 
are drawn. 

2 Acquir ing  taxonomies  from M R D s  

A stra ightforward way to obtain a LKB 
acquiring taxonomic relations from dictionary 
definitions can be done following a purely bottom 
up strategy with the following steps: 1) parsing 
each definit ion for obtaining the genus, 2) 
performing a genus disarnbiguation procedure, and 
3) building a natural classification of the concepts 
as a concept t axonomy with  several tops. 
Following this purely descriptive methodology,  
the semantic primitives of the LKB could be 
obtained by collecting those dictionary senses 
appearing at the top of the complete taxonomies 
derived from the dictionary. By characterizing 
each of these tops, the complete LKB could be 
produced. For DGILE, the complete noun taxonomy 
was derived following the automatic method 
described by (Rigau et al. 97) 1.. 

1This taxonomy contains 111,624 dictionary senses and 
has only 832 dictionary senses which are tops of the 
taxonomy (these top dictionary senses have no 
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However,  several problems arise a) due to the 
source (i.e, circularity, errors, inconsistencies, 
omitted genus, etc.) and b) the limitation of the 
genus sense disambiguation techniques applied: 
i.e, (Bruce et al. 92) report 80% accuracy using 
automatic techniques, while (Rigau et al. 97) 
report  83%. Furthermore,  the top dict ionary 
senses do not usual ly represent the semantic 
subsets that the LKB needs to characterize in 
order to represent  useful  knowledge for NLP 
systems. In other words ,  there is a mismatch 
between the knowledge directly derived from an 
MRD and the knowledge needed by a LKB. 

To illustrate the problem we are facing, let us 
suppose we plan to place the FOOD concepts in 
the LKB. Nei ther  collecting the taxonomies 
derived from a top dictionary sense (or selecting a 
subset  of the top dictionary senses of DGILE) 
closest to FOOD concepts  (e.g., substancia 
-substance-), nor collecting those subtaxonomies 
starting from closely related senses (e.g., bebida 
-drinkable liquids- and alimento -food-) we are 
able to collect exactly the FOOD concepts present 
in the MRD. The first are too general (they would 
cover non-FOOD concepts) and the second are too 
specific ( they w o u l d  not cover  all FOOD 
dictionary senses because FOODs are described in 
many ways). 

All these problems can be solved using a mixed 
methodology.  That is, by attaching selected top 
concepts  (and its de r ived  taxonomies)  to 
prescribed semantic primitives represented in the 
LKB. Thus, first, we prescribe a minimal ontology 
(represented by  the semantic primitives of the 
LKB) capable of representing the whole lexicon 
derived from the MRD, and second, following a 
descr ip t ive  approach,  we collect, for every 
semantic  pr imi t ive  placed in the LKB, its 
subtaxonomies .  Finally, those subtaxonomies  
selected for a semantic primitive are attached to 
the corresponding LKB semantic category. 

Several prescribed sets of semantic primitives 
have been created as Ontological Knowledge 
Bases: e.g. Penman Upper  Model (Bateman 90), 
CYC (Lenat & Guha 90), WordNet  (Miller 90). 
Depending on the application and theoretical 
tendency of the LKB different sets of semantic 
pr imit ives  can be of interest. For instance, 
WordNet  noun  top unique beginners are 24 
semantic categories. (Yarowsky 92) uses the 1,042 
major categories of Roget 's thesaurus, (Liddy & 
Paik 92) use the 124 major subject areas of LDOCE, 

hypernyms), and 89,458 leaves (which have no 
hyponyms). That is, 21,334 definitions are placed 
between the top nodes and the leaves. 
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(Hearst & Sch6tze, 95) convert the hierarchical 
structure of WordNet  into a flat system of 726 
semantic categories. 

In the work presented in this paper we used as 
semantic primitives the 24 lexicographer's files 
(or semantic files) into which the 60,557 noun 
synsets (87,641 nouns) of WordNet  1.5 (WN1.5) 
are classified 2. Thus, we considered the 24 
semantic tags of WordNet  as the main LKB 
semantic primitives to which all d ic t ionary 
senses must be attached. In order to overcome the 
l anguage  gap we also used  a b i l ingua l  
Spanish/English dictionary. 

3 A t t a c h i n g  D G I L E  d i c t i o n a r y  s e n s e s  to 
s e m a n t i c  p r i m i t i v e s  

In order to classify all nominal DGILE senses 
with respect to WordNet  semantic files, we used 
a similar  approach  to that  sugges t ed  by  
(Yarowsky 92). Rather than collect evidence from 
a blurred corpus (words belonging to a Roget's 
category are used as seeds to collect a subcorpus for 
that category; that is, a window context produced 
by a seed can be placed in several subcorpora), we 
collected evidence from dictionary senses labelled 
by a conceptual  distance method (that is, a 
definition is placed in one semantic file only). 

This task is divided into three fully automatic 
consecutive subtasks. First, we tag a subset (due to 
the difference in size between the monolingual  
and the b i l ingual  dict ionaries)  of DGILE 
dictionary senses by means of a process that uses 
the conceptual  distance formula; second, we 
collect salient words  for each semantic file; and 
third, we enrich each DGILE dictionary sense 
with a semantic tag collecting evidence from the 
salient words previously computed. 

3.1 Attach WordNet synsets  to DGILE 
headwords. 

For each DGILE definition, the conceptual 
distance between headword and genus has been 
computed using WN1.5 as a semantic net. We 
obtained results only for those definitions having 
English translations for both h e a d w o r d  and 
genus. By computing the conceptual  distance 
between two words (Wl,W2) we are also selecting 
those concepts (Cli,C2j) which represent them and 
seem to be closer with respect to the semantic net 

2One could use other semantic classifications because 
using this methodology a minimal set of informed seeds 
are needed. These seeds can be collected from MRDs, 
thesauri or even by introspection, see (Yarowsky 95). 



used. Conceptual  distance is computed using 
formula (1). 

1 
(1) d i s t ( w ~ , w 2 ) =  nfin Y ,  

c,, ~ ~ . , ,  ) depth  (c t ) 
t22i E ~l~ 2 ¢;k E P a l t K  ¢~li 'C2 i 

That is, the conceptual distance between two 
concepts depends on the length of the shortest 
path  3 that connects them and the specificity of 
the concepts in the path. 

Noun definitions 

Noun definitions with genus 

93,394 

92,693 

GealUS terms 14,131 

Genus terms with bilingual translation 7,610 

Genus terms with WN1.5 translation .... 7,319 

Headwords 53,455 

Headwords  with bilingual ~ 'iranslation 11,407 

Headwords  with WN1.5 translation 10,667 

Definitions with bilingual translation 30,446 

Definitions with WN1.5 translation 28,995 
Table 1, data of first attachment using conceptual 

distance. 

As the b i l i n g u a l  d i c t i o n a r y  is not  
disambiguated with respect to WordNet synsets 
(every Spanish word has been assigned to all 
possible connections to WordNet  synsets), the 
degree of po lysemy has increased from 1.22 
(WN1.5) to 5.02, and obviously, many of these 
connections are not correct. This is one of the 
reasons w h y  af ter  p rocess ing  the whole  
dictionary we obtained only an accuracy of 61% at 
a sense (synset) level (that is, correct synsets 
attached to Spanish headwords and genus terms) 
and 64% at a file level (that is, correct WN1.5 
lexicographer's file assigned to DGILE dictionary 
senses) 'C We processed 32,2085 dic t ionary  
definit ions,  obta ining 29,205 with a synset 
assigned to the genus (for the rest we did not 
obtain a bilingual-WordNet relation between the 
headword and the genus, see Table 1). 

In this way,  we obtained a prel iminary 
vers ion  of 29,205 d i c t i ona ry  def in i t ions  
semantical ly labelled (that is, with Wordnet  
lexicographer's files) with an accuracy of 64%. 
~fhat is, a corpus (collection of dictionary senses) 

3We only consider hypo/hypermym relations. 
4To evaluate this process, we select at random a test set 
with 391 noun senses that give a confidence rate of 95%. 
5The difference with 30,446 is accounted for by repeated 
headword and genus for an entry. 
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classified in 24 partitions (each one corresponding 
to a semantic category). Table 2 compares the 
distribution of these DGILE dictionary senses (see 
column a) with respect to WordNet  semantic 
categories. The greatest differences appear with 
the classes ANIMAL and PLANT, which  
cor respond  to large taxonomic  scientif ic  
classifications occurring in WN1.5 but which do 
not usually appear in a bilingual dictionary. 

3.2 Collect the salient words for every semantic 
primitive.  

Once we have obtained the first DGILE 
version with semantically labelled definitions, 
we can collect the salient words (that is, those 
representative words for a particular category) 
using a Mutual  Information-like formula (2), 
where w means word and SC semantic class. 

(2) A R ( w ,  SC)  = P r ( w l S C ) l o g  2 
P r ( w l S C )  

Pr(w) 

In tu i t ive ly ,  a sa l ien t  w o r d  6 a p p e a r s  
significantly more often in the context of a 
semantic category than at other points in the 
whole corpus, and hence is a better than average 
indicator for that semantic category. The words 
selected are those most relevant to the semantic 
category, where relevance is def ined as the 
product of salience and local frequency. That is to 
say, important words should be distinctive and 
frequent. 

We performed the training process considering 
only the content word forms from dictionary 
definitions and we discarded those salient words 
with a negative score. Thus, we derived a lexicon 
of 23,418 salient words (one word can be a salient 
word for many semantic categories, see Table 2, 
columns b and c). 

3.3 Enrich DGILE def ini t ions  with  WordNet  
semantic primitives. 

Using the salient words per category (or 
semantic class) gathered in the previous step we 
labelled the DGILE dictionary definitions again. 

When any of the salient words appears in a 
definition, there is evidence that the word  
belongs to the category indicated. If several of 
these words  appear,  the evidence grows. 

6Instead of word lemmas, this study has been carried out 
using word forms because word forms rather than 
lemmas are representative of typical usages of the 
sublanguage used in dictionaries. 



Semantic file 

03 tops 
04 act 
05 animal 
06 artifact 
07attribute 
08 body 

#DGILE 
senses (a) 

77 (0.2%) 
3,138 (10.7%) 

712 (2.4%) 
6,915 (23.7%) 

2,078 (7.1%) 
621 (2.1%) 

#Content 
words(b) 

540 
16,963 
6,191 

#Salient 
words(c) 

2,593 
849 

#DGILE 
senses (d) 

4,188 (4.8%) 
4,544 (5.2%) 

#WordNet  
synsets 

35 (0.0%) 
4895 (8.0%) 

7,112 (11.7%) 
45,988 4,515 12,958 (14.9%) 9,101 (15.0%) 
11,069 1,571 4,146 (4.8%) 2,526 (4.2%) 

665 3,208 (3.6%) 4,285 1,370 (2.3%) 
09 cos~ition 1,556 (5.3%) 
10 communication 4,076 (13.9%) 
11 event 541 (1.8%) 
12 feelinF 306 (1.0%) 
13 food 749 (2.5%) 
14 ~'roup 661 (2.2%) 
15 place 416 (1.4%) 
16 motive 15 (0.0%) 
17 object 437 (1.5%) 
18 person 3,279 (11.2%) 
19 phenomenon 147 (0.5%) 
20 plant 581 (2.0%) 
21 possession 287 (1.0%) 

9,699 1,362 3,672 (4.2%) 2,007 (3.3%) 
24,633 3,301 6,012 (6.9%) 4,115 (6.8%) 

3,071 477 1,544 (1.7%) 752 (1.2%) 
1,623 263 1,016 (1.2%) 397 (0.6%) 
4,679 717 2,614 (3.0%) 2,290 (3.8%) 
4,338 647 3,074 (3.5%) 1,661 (2.7%) 
2,587 402 2,073 (2.4%) 1,755 (2.9%) 

87 9 22 (0.0%) 28 (0.0%) 
2,733 412 1,645 (1.9%) 839 (1.4%) 

19,273 2,304 13,901 (16.0%) 5,563 (9.1%) 
784 114 425 (0.4%) 452 (0.7%) 

700 4,965 
1,712 278 

4,234 (4.9%) 
1,033 (1.2%) 

7,971 (13.2%) 
829 (1.4%) 

22 process 
23 quantity 
24 relation 

!25 shape 
26 state 
27 substance 
28 time 

Total 

211 (0.7%) 
344 (1.2%) 

987 

(1.2%) 

2,179 
177 
317 

2,172 

6948 (8.0%) 
1,502 (1.7%) 

445 (o.7%) 
1,050 (1.7%) 

102 (0.3%) 600 76 288 (0.3%) 343 (0.6%) 
165 (0.6%) 1,040 172 677 (0.8%) 284 (0.4%) 
805 (2.7%) 4,469 712 1,973 (2.3%) 1,870 (3.0%) 
642 (2.2%) 5,002 734 3,518 (4.0%) 2,068 (3.4%) 
344 321 799 

32,208 

1,544 (1.8%) 

82,759 
Table 2, comparison of the two labelling 

181,669 23,418 

(1.3%) 

60,557 
~rocess (and salient words per context) with to res ~ect WN1.5 semantic tags. 

We add together their weights, over all words 
in the definition, and determine the category for 
which the sum is greatest, using formula (3). 

(3) W(SC) = Z AR(w, SC) 
w~definition 

Thus, we obtained a second semantically 
labelled version of DGILE (see table 2, column d). 
This version has 86,759 labelled definitions 
(covering more than 93% of all noun definitions) 
with an accuracy rate of 80% (we have gained, 
since the previous labelled version, 62% coverage 
and 16% accuracy). 

The main differences appear (apart from the 
classes ANIMAL and PLANT) in the classes ACT 
and PROCESS. This is because during the first 
automatic labelling many  dictionary definitions 
with genus acci6n (act or action) or efecto (effect) 
were classified erroneously as ACT or PROCESS. 

These results are difficult to compare with 
those of [Yarowsky 92]. We are using a smaller 
context window (the noun dictionary definitions 
have 9.68 words on average) and a microcorpus 
(181,669 words). By training salient words from a 
labelled dictionary (only 64% correct) rather than 
a raw corpus we expected to obtain less noise. 

Although we used the 24 lexicographer's files 
of WordNet as semantic primitives, a more fine- 
grained classification could be made. For example, 
all FOOD synsets are classified under  < f o o d ,  
nut r ien t>  synset in file 13. However,  FOOD 
concepts are themselves  classified into 11 
subclasses (i.e., < y o l k > ,  < g a s t r o n o m y > ,  
<comestible, edible, eatable . . . .  >, etc.). Thus, if 
the LKB we are planning to build needs to 
represent <beverage, drink, potable> separately 
from the concepts <comestible,  edible,  eatable, 
...> a finer set of semantic primitives should be 
chosen, for instance, considering each direct 
hyponym of a synset belonging to a semantic file 
also as a new semm~tic primitive or even selecting 
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for each semantic file the level of abstraction we 
need. 

A further experiment could be to iterate the 
process by collecting from the second labelled 
dictionary (a bigger corpus) a new set of salient 
words and reestimating again the semantic tags 
for all dictionary senses (a similar approach is 
used in Riloff & Shepherd 97). 

4 Selecting the main top beginners for a 
semantic primitive 

This section is devoted to the location of the 
main top dictionary sense taxonomies for a given 
semantic primitive in order to correctly attach all 
these taxonomies to the correct semantic primitive 
in the LKB. 

In order to illustrate this process we will locate 
the main top beginners for the FOOD dictionary 
senses. However, we must consider that many of 
these top beginners are structured. That is, some of 
them belong to taxonomies derived from other 
ones, and then cannot be directly placed within 
the FOOD type. This is the case of vino (wine), 
which is azumo (juice). Both are top beginners for 
FOOD and one is a hyponym of the other. 

First, we collect all genus terms from the whole 
set of DGILE dictionary senses labelled in the 
previous section with the FOOD tag (2,614 
senses), producing a lexicon of 958 different genus 
terms (only 309, 32%, appear more than once in the 
FOOD subset of dictionary senses7). 

As the automatic dictionary sense labelling is 
not free of errors (around 80% accuracy) 8 we can 
discard some senses by using filtering criteria. 

* Filter 1 (F1) removes all FOOD genus terms 
not assigned to the FOOD semantic file during the 
mapping process between the bilingual dictionary 
and WordNet. 

. Filter 2 (F2) selects only those genus terms 
which appear more times as genus terms in the 
FOOD category. That is, those genus terms which 
appear more frequently in dictionary definitions 
belonging to other semantic tags are discarded. 

° Filter 3 (F3) discards those genus terms 
which appear with a low frequency as genus terms 
in the FOOD semant ic  category.  That is, 
infrequent genus terms (given a certain threshold) 
are removed. Thus, F3>1 means that the filtering 
criteria have d iscarded  those genus terms 

7We select this group of genus for the test set. 
8Most of them are not really errors. For instance, all 
fishes must be ANIMALs, but some of them are edible 
(that is, FOODs). Nevertheless, all fishes labelled as 
FOOD have been considered mistakes. 
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appearing in the FOOD subset of dict ionary 
definitions less than twice. 

Table 4 shows the first 10 top beginners for 
FOOD. Bold face is used for those genus terms 
removed by filter 2. Thus, pez -fish- is an 
ANIMAL. 

bebida (drink) 48 pasta (pasta,. etc. ) ] 
vino (wine) 40 pan (bread) [ 
pez (fish) 39 plato (dish) [ 
comida ( food)  33 guisado (casserole) ] 
came (meat) 32 salsa (souce) ] 

Table 4, frequency of main top beginners for FOOD. 

90 
86 
78 
56 
55 

Table 5 shows the performance of the second 
labelling with respect to filter 3 (genus frequency) 
varying the threshold. From left to right, filter, 
number of genus terms selected (#GT), accuracy 
(A), number  of def ini t ions (#D) and their 
respective accuracy. 

,LABEL 2+ F3 I I A I#D [ A 

F3>9 32 89% 908 88% 
F3>8 37 90% 953 88% 
F3>7 39 88% 969 87% 
F3>6 45 88% 1 ,011  87% 
F3>5 " " 51 87% 1,047 82% 
F3>4 ' 62 85% 1,102 86% 
F3>3 ' 73 78% 1,i46 84% 
F3>2 99 69% 1,224 80% 
F3>1 151 62% 1,328 77% 

Table 5. performance of filter 3. 

LABEL2 + F1 I #GT I A I#D [ A I 

F1+F3>9 31 94% 895 90% 
F1'+F3>8' 35 95% 931 90% 
F1+F3>7 37 91% 947 89°)o 
Fl+F3>6 43 92% 989 90% 
Fl+F3>5 '" 49 92%i 1,025 90% 
F1+F3>4 55 91% 1,055 90% 
F1+F3>3 64 85% 1 ,091 88% 
F1+F3>'2 '85 82% 1,152 87% 
'F1+F3>1 125 78% 1,234 866~o 

Table 6, performance of filter 1 variying filter 3. 

Tables 6 and 7 show that at the same level of 
genus frequency, filter 2 (removing genus terms 
which are more frequent  in other semantic 
categories) is more accurate  that  filter 1 
(removing all genus terms the translation of 
which cannot be FOOD). For instance, no error 
appears when selecting those genus terms which 



appear 10 or more times (F3) and are more frequent 
in that category than in any other (F2). 

Table 8 shows the coverage of correct genus 
terms selected by criteria F1 and F2 to respect 
criteria F3. Thus, for genus terms appearing 10 or 
more times, by using either of the two criteria we 
are collecting 97% of the correct ones. That is, in 
both cases the criteria discards less than 3% of 
correct genus terms. 

LABEL2 + F2 I nGT [ A] #D [ A 

F2+F3>9 31 100% 893 100% 
F2+F3>8 35 100% 929 100% 
F2+F3>7 37 95% 945 98% 
F2+F3>6 41 94% 973 98% 
F2+F3>5 47 92% 1,009 97% 
F2+F3>4 56 91% 1,054 96% 
F2+F3>3 65 87% 1,090 95% 
F2+F3>2 82 83% 1,141 93% 
F2+F3>l 123 82% 1,223 92% 

Table 7, performance of filter 2 varying filter 3. 

[Covera[je vs F1 ]Coverage vs F2 

F3>9 97% 97% 
F3>8 '95% 95% 
F3>7 95% 95% 
F3>6 
F3>5 
F3>4 
F3>3 

96% 
96% 

91% 
92% 

89% 9O% 
90% 89% 

F3>2 86% 83% 
F3>1 83% 81% 
Table 8, coverage of second labelling with respect to filter 
1 and 2 varying filter 3. 

5 Bui ld ing  automatically large scale 
t a x o n o m i e s  f r o m  D G I L E  

The automatic Genus Sense Disambiguation 
task in DGILE has been performed following 
(Rigau et al. 97). This method reports 83% 
accuracy when selecting the correct hypernym by 
combining eight different heuristics using several 
methods  and types of knowledge. Using this 
combined technique the selection of the correct 
hypernym from DGILE had better performance 
than those reported by (Bruce et al. 92) using 
LDOCE. 

Once the main top beginners (relevant genus 
terms) of a semantic category are selected and 
e v e r y  d i c t i o n a r y  d e f i n i t i o n  has been 
disambiguated, we collect all those pairs labelled 
with the semantic category we are working on 
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having one of the genus terms selected. Using 
these pairs we finally build up the complete 
taxonomy for a given semantic primitive. That is, 
in order to build the complete taxonomy for a 
semantic primitive we fit the lower senses using 
the second labelled lexicon and the genus selected 
from this labelled lexicon. 

Table 9 summarizes the sizes of the FOOD 
taxonomies acquired from DGILE with respect to 
fi l tering criteria and the results  manua l ly  
obtained by (Castell6n 93) 9 where 1) is (Castell6n 
93), (2) F2 + F3 > 9 and (3) F2 + F3 > 4. 

FOOD 
Genus terms 
Dictiqna,ry senses 
Levels 
Senses in level 1 
Senses 'in level 2 
Senses in level 3 
Senses in level 4 
Senses in level 5 
Senses in level 6 

(1) (2) (3) 
62 33 68 

392 952 1,242 
6 5 6 
2 18 48 

67 490 604 
88 379 452 
67 44 65 
87 21 60 

6 0 13 
Table 9, comparison of FOOD taxonomies. 

Using the first set of criteria (F2+F3>9), we 
acquire a FOOD taxonomy with 952 senses (more 
than two times larger than if it is done manually). 
Using the second one (F2+F3>4), we obtain 
another taxonomy with 1,242 (more than three 
times larger). While using the first set of criteria, 
the 33 genus terms selected produce a taxonomic 
structure with only 18 top beginners, the second 
set, with 68 possible genus terms, produces another 
taxonomy with 48 top beginners. However, both 
final taxonomic structures produce more flat 
taxonomies than if the task is done manually.  
This is because we are restricting the inner 
taxonomic genus terms to those selected by the 
criteria (33 and 68 respectively). Consider the 
fol lowing taxonomic chain, obta ined in a 
semiautomatic way by (Castell6n 93): 

bebida 1 3 <- l l q u i d o  1 6 <- zumo 1 1 <- 
vino 1 1 <- rueda  1 1 

As liquido -liquid- was not selected as a 
possible genus (by the criteria described above), 
the taxonomic chain for that sense is: 

zumo 1 1 <-vino 1 1 <- rueda  1 1 

9We used the results reported by (Castell6n 93) as a 
baseline because her work was done using the same 
Spanish dictionary. 



Thus, a few arrangements (18 or 48 depending 
on the criteria selected) must be done at the top 
level of the automatic taxonomies. Studying the 
main top beginners we can easily discover an 
internal structure between them. For instance, 
placing all zumo (juice) senses within bebida 
(drink). 

Performing the same process for the whole 
dictionary we obtained for F2+F3>9 a taxonomic 
structure of 35,099 definitions and for F2+F3>4 the 
size grows to 40,754. 

6 C o n c l u s i o n s  

We proposed a novel methodology which 
combines several structured lexical knowledge 
resources for acquiring the most important genus 
terms of a monolingual dictionary for a given 
semantic primitive. Our approach for building 
LKBs is mainly descriptive (the main source of 
knowledge is MRDs), but a minimal prescribed 
structure is provided (the semantic primitives of 
the LKB). Using the most relevant genus terms for 
a particular semantic primitive and applying a 
filtering process, we presented a method to 
construct fully automatically taxonomies from any 
conventional dictionary. This approach differs 
from previous ones because we are considering 
senses as lexical units of the LKB (e.g., in contrast 
to Richardson 97 who links words) and the mixed 
methodo logy  applied (e.g, the complete 
descriptive approach of Bruce et al. 92). 

The results show that the construction of 
taxonomies using lexical resources is not limited to 
highly structured MRDs. Applying appropriate 
techniques, conventional dictionaries such as 
DGILE could be useful resources for building 
automatically substantial pieces of an LKB . 
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