
An Efficient Paral le l Substrate for T y p e d Feature Structures on
Shared M e m o r y Paral le l Mach ines

N I N O M I Y A T a k a s h i ? , T O R I S A W A K e n t a r o ? and T S U J I I J u n ' i c h i t*
?Depa r tmen t of In fo rmat ion Science

Gradua t e School of Science, Univers i ty of Tokyo*
*CCL, UMIST, U.K.

A b s t r a c t
This paper describes an efficient parallel system
for processing Typed Feature Structures (TFSs)
on shared-memory parallel machines. We call
the system Parallel Substrate for TFS (PSTFS).
PSTFS is designed for parallel computing envi-
ronments where a large number of agents are
working and communicating with each other.
Such agents use PSTFS as their low-level mod-
ule for solving constraints on TFSs and send-
ing/receiving TFSs to/fi 'om other agents in an
efficient manner. From a programmers point
of view. PSTFS provides a simple and unified
mechanism for building high-level parallel NLP
svstems. The performance and the flexibility of
our PSTFS are shown through the experiments
on two different types of parallel HPSG parsers.
The speed-up was more than 10 times on both
parsers.

1 I n t r o d u c t i o n

The need for real-time NLP systems has been
discussed for the last decade. The difficulty in
implementing such a system is that people can
not use sophisticated but computationally ex-
pensive methodologies. However, if we could
provide an efficient tool/environment for de-
veloping parallel NLP systems, programmers
would have to be less concerned about the issues
related to efficiency of the system. This became
possible due to recent developments of parallel
machines with shared-memory architecture.

We propose an efficient programming envi-
ronment for developing parallel NLP systems
on shared-memory parallel machines, called the
Parallel Substrate for Typed Feature Structures
(PSTFS). The environment is based on agent-
based/object-oriented architecture. In other
words, a system based on PSTFS has many
computational agents running on different pro-
cessors in parallel; those agents communicate
with each other by using messages including
TFSs. Tasks of the whole system, such as pars-

* This research is part ial ly founded by the project of
JSPS(JSPS-RFTF96P00502).

]
/

Figure 1: Agent-based System with the PSTFS

ing or semantic processing, are divided into sev-
eral pieces which can be simultaneously com-
puted by several agents.

Several parallel NLP systems have been de-
veloped previously. But most of them have been
neither efficient nor practical enough (Adriaens
and Hahn, 1994). On the other hand, our
PSTFS provides the following features.

• An efficient communication scheme for
messages including Typed Feature Struc-
tures (TFSs) (Carpenter , 1992).

• Efficient t reatment of TFSs by an abstract
machine (Makino et al., 1998).

Another possible way to develop parallel NLP
systems with TFSs is to use a full concurrent
logic programming language (Clark and Gre-
gory, 1986; Ueda, 1985). However, we have ob-
served that it is necessary to control parallelism
in a flexible way to achieve high-performance.
(Fixed concurrency in a logic programming lan-
guage does not provide sufficient flexibility.)
Our agent-based architecture is suitable for ac-
complishing such flexibility in parallelism.

The next section discusses PSTFS from a pro-
grammers ' point of view. Section 3 describes
the PSTFS architecture in detail. Section 4 de-
scribes the performance of PSTFS on our HPSG
parsers.

968

C o n s t r a i n t S o l v e r A g e n t
b e g i n - d e f i n i t i o n s

, fFIRS'P Franz 1 ,
nttme~ [LAST Schubert J)"

, W I R S T Johann 1 .
nameL [LAST Bach J)"

c o n c a t e n a t e _ n a m e (X , Y)

[LAST 2L2 j J '

[FULL ~] ~ N} 1
Y = I FIRST ~ / "

/LAST 2L] u J
e n d - d e f l n l t l o n u

(A) Descr ip t ion of CSAs

A S T Sch~be*'t] '
kRsSTT Johann

Bach] '

 AST L2:L,, j '
]FULL

3 o h ~ n ~ l , T B.hU°h Be,h> Jl
:::}

(C) VMues of F ~nd R
d e f i n e {Son t ro l A g e n t name-co~catenatov-f~b
W h e n a message sslv,~(x) a r r ives , do the followings,

S := C S A ~ l e l v * - c o n l t r a i n t (c o n c a t e n a t e _ n a m e (x , ?));
re turn ,5';

d e f i n e (J o n t r o l A g e n t name-concatenalor
W h e n a message s01v* arr ives , do the followings,

/ ~ : = 0;
--.3::=0less ¢ ,,~, tin,t(. (:)));
f o r a l l x E F d o

create ~avt~e. concafe~ator-s~b age~tf N'I;
H, ~ tolv,(x);i := i+ 1;

f o r a l l e n d
f o r j := 0 to i d o

R := R U (W a i t - J o t l t (Afj)) ;
f o r e n d
re turn "R;

(B) Descr ip t ion of CAs

Figure 2: Examt)le concatenate_name

2 P r o g r a n a m e r s ' V i e w

l:roln a progranmlers ' point of view, tile PS'I'I?S
n~e('hanism is q u i l e simI)le and natural , which
is d lte Io careful design f o r accomplishing high-
l)erformance and ease of t)rogramlning.

S y s t e n l s Io t)e constructed on our PSTFS will
include two different tyt)es of agents:

• Control Agents ((.:As)

• Constraint Solver Agents (CSAs)

As ilhlstrated in Figure 1, CAs have overall
control of a system, including control of par-
allelism, and they behave as masters of CSAs.
CSAs modify TFSs according to the orders from
CAs. Note that CAs can neither modify nor
generate TFSs by themselves.

PSTFS has been implemented by combin-
ing two existing programming languages: the
concurrent object-oriented programming lan-
guage A B C L / f (Taura, 1997) and the sequential
programming language LiLFeS (Makino et al.,
1998). CAs can be writ ten in ABCL/f , while
description of CSAs can be mainly writ ten in
LiLFeS.

Figure 2 shows an example of a part of the
PSTFS code. The task of this code is to con-
catenate the first and the second name in a
given list. One of the CAs is called name-
concatenator. This specific CA gathers pairs of
the first and last name by asking a CSA with the
m e s s a g e so]_ve -consg ra :] . r t 4 : ; (t na ' nze (. ' ?) ') . When
the CSA receives this message, the argument
' name(?) ' is treated as a Prolog query in

LiLFeS 1, according to the program of a CSA
((A) of Figure 2). There are several facts with
the predicate 'name'. When the goal 'name(?)'
is processed by a CSA, all the possible answers
defined by these facts are returned. The ob-
tained pairs are stored in the variable F in the
name-concatenator((C) in Figure 2).

The next behavior of the name-concatenator
agent is to create CAs (namc-concatenator-
subs) and to send the message s o l v e with a
TFS to each created CA running in parallel.
The message contains one of the TFSs in I".
Each name-concatenator-sub asks a CSA to con-
catenate FIRST and LAST in a TFS. Then
each CSA concatenates them using the defi-
nite clause concatenate_name given in (A) of
Figure 2. The result is re turned to the name-
concatenator-sub which had asked to do tile job.
Note that the name-coneatenator-sub can ask
any of the existing CSAs. All CSAs can basi-
cally perform concatenation in parallel and in-
dependent way. Then, the name-cones~chafer
waits for the name-concatenator-sub to return
concatenated names, and puts the return val-
ues into the variable R.

The ('A name-com'atc,ator controls the over-
all process. It controls parallelism by creating
('As and s(,nding messages to them. On the
other hand, all the e l) o r a t i o n s Oil TFSs are per-
formed by CSAs when they are asked by CAs.

Supt)ose thai one is trying to implement a
i)arsing system based on PSTFS. The distinc-
tion between CAs att(t CSAs roughly corre-
sponds to the distinction between an al)stract
parsing schema and application of phrase struc-
ture rules. Itere, a parsing schema means a
high-level description of a parsing algorithm in
which the application of phrase structure rules
is regarded as an atomic operation or a sub-
routine. This distinction is a minor factor in
writing a sequential parser, but it has a major
impact on a parallel environment.

For instance, suppose that several distinct
agents evoke applications of phrase structure
rules against the same data simultaneously, and
the applications are accompanied with destruc-
tive operations on the data. This can cause an
anomaly, since the agents will modify the orig-
inal data in unpredictable order and there is
no way to keep consistency. In order to avoid
this anomaly, one has to determine what is an
atomic operation and provide a method to pre-
vent the anomMy when atomic operations are
evoked by several agents. In our fi'amework,
any action taken by CSAs is viewed as such
an atomic operation and it is guaranteed that
no anomaly occurs even if CSAs concurrently

1LiLFeS suppor | s definite clause programs, it T F S
version of t torn chutses.

969

Local Heap

.... i{:i :: !i?i{:~ :::~:~!:~ ':{:{ {i :}: { {:
Shared Heap Area

PSTFS

Figure 3: Inside of the PSTFS

perform operations on the same data. This
can be done by introducing copying of TFSs,
which does not require any destructive opera-
tions. The details are described in the next sec-
tion.

The other implication of the distinction be-
tween CAs and CSAs is that this enables effi-
cient communication between agents in a natu-
ral way. During parsing in HPSG, it is possible
that TFSs with hundreds of nodes can be gen-
erated. Encoding such TFSs in a message and
sending them in an efficient way are not triv-
ial. PSTFS provides a communicat ion scheme
that enables efficient sending/receiving of such
TFSs. This becomes possible because of the
distinction of agents. In other words, since (?As
cannot modify a TFS, CAs do not have to have
a real image of TFSs. When CSAs return the
results of computations to CAs, the CSAs send
only an ID of a TFS. Only when the ID is passed
to other CSAs and they try to modify a TFS
with the ID, the actual transfer of the TFS's
real image occurs. Since the transfer is car-
ried out only between CSAs, it can be directly
performed using a low level representation of
TFSs used in CSAs in an efficient manner. Note
that if CAs were to modify TFSs directly, this
scheme could not have been used.

3 A r c h i t e c t u r e

This section explains the inner s tructure of
PSTFS focusing on the execution mechanism of
CSAs (See (Taura, 1997) for fur ther detail on
CAs). A CSA is implemented by modifying the
abstract machine for TFSs (i.e., LiAM), origi-
nally designed for executing LiLFeS (Makino et
al., 1998).

The important constraint in designing the ex-
ecution mechanism for CSAs is that TFSs gen-
erated by CSAs must be kept unmodified. This
is because the TFSs must be used with several
agents in parallel. If the TFS had been modi-
fied by a CSA and if other agents did not know
the fact, the expected results could not have
been obtained. Note that unification, which is

(i) Copying from shared heap

-L0cal Heap

a Shared Heap

 iiiiiiiiiiiiiiiiiiiii S iiiiiiiiiiiii!ii?

(ii) Computation on local heap

:~'o: :~iiii!iiiiii:iiiiiiiii? ~' ~:!:i:il;ii!i:iiiiiiiiiiiiiiiiii!iiiiiii;ii:!ii? ~: .~i::iiiiiiiiii:iiiiii:iiiii! ~r ~ x ~iiiiiiiiiii!iiiiiiiiii[ililil i;~iiiiiii;iii~iiii~;i;iiii~ii[i7iiiiii;ii~iiiiiii~ii~iiiiiiii~iiiiiiiii~iii~7ii iiiiiiiii~iiiii;:
R ~ @ Local Heap

Shared Heap

(iii) Write resulting TFSs to shared heap
S

~'~R~,.~j ~ Local Heap

Figure d: Operation steps on PSTFS

a major operation on TFSs, is a destructive op-
eralion, and modifications are likely to occur
while executing CSAs. Our execution mecha-
nism handles this problem by letting CSAs copy
TFSs generated by other CSAs at each time.
Though this may not look like an efficient way
at first glance, it has been performed efficiently
by shared memory mechanisms and our copying
methods.

A CSA uses two different types of memory
areas as its heap:

• shared heap

• local heap

A local heap is used for temporary operations
during the computat ion inside a CSA. A CSA
cannot read/wr i te local heap of other CSAs. A
shared heap is used as a medium of commu-
nication between CSAs, and it is realized on
a shared memory. When a CSA completes a
computat ion on TFSs, it writes the result on
a shared heap. Since the shared heap can be
read by any CSAs, each CSA can read the re-
sult performed by any other CSAs. However,
the portion of a shared heap that the CSA can
write to is limited. Any other CSA cannot write
on that portion.

Next:, we look at the steps performed by a
CSA when it is asked by CAs with a message.

970

Note that the message only contains the IDs of
the TFSs as described in the previous section.
The IDs are realized a~s pointers on the shared
heap.

1. Copy TFSs pointed at by the IDs in the
message fi'om the shared heap to the local
heap of the CSA. ((i)in Figure 4.)

2. Process a query using LiAM and the local
heap. ((i i) in Figure 4.)

3. If a query has an answer, the result is
copied to the portion of the shared heap
writable by the CSA. Keep IDs on the
copied TFSs. If there is no answer for the
query, go to Step 5. ((iii) in Figure 4.)

4. Evoke backtracking in LiAM and go to Step
2.

5. Send the message, including the kept IDs,
back to the CA that had asked the task.

Note that:, in step 3, the results of the compu-
tation becomes readable by other CSAs. This
procedure has the following desirable features.

S i m u l t a n e o u s C o p y i n g An identical TFS on
a shared hea I) can be (:opied by several
('SAs simultaneously. This is due to our
shared memory medmnism and the prop-
er ty of LiAM that copying does not have
ally side-ef['ect on TFSs 2.

S i m u l t a n e o u s / S a f e W r i t i n g CSAs can
write on their own shared heap without the
danger of accidental modification by other
CSAs.

D e m a n d D r i v e n C o p y i n g As described in
the previous section, the transfer of real
images of TFSs is performed only after the
IDs of the TFSs reach to the CSAs requir-
ing the TFSs. Redundant copying/sending
of the TFSs ' real image is reduced, and the
transfer is performed efficiently by mecha-
nisms originally provided by LiAM.

With efficient da ta transfer in shared-memory
machines, these features reduce the overhead of
parallelization.

Note that copying in the procedures makes
it possible to support non-determinism in NLP
systems. For instance, during parsing, interme-
diate parse trees must be kept. In a chart pars-
ing for a unification-based grammar, generated

2Actually, this is not trivial. Copying in Step 3 nor-
realizes TFSs and s tores the TFSs into a cont inuous re-
gion on a shared heap. TI 'Ss s tored in such a way can
be copied wi thout any side-effect.

edges are kept untouched, and destructive oper-
ations on the results nmst be done after copying
them. The copying of TFSs in the above steps
realizes such nmchanisms in a natural way, as it
is designed for efficient support for da ta sharing
and destructive operations on shared heaps by
parallel agents.

4 A p p l i e a t i o n a n d P e r f o r m a n c e
E v a l u a t i o n

This section describes two difl%rent types of
IIPSG parsers implemented on PSTFS. One is
designed for our Japanese g rammar and the al-
gori thm is a parallel version of the CKY algo-
r i thm (Kasami, 1965). The other is a parser for
an ALE-style Grammar (Carpenter and Penn,
1994). The algorithms of both parsers are based
on parallel parsing algorithms for CFG (Ni-
nomiya et al., 1997; Nijholt, 1994; Grishman
and Chitrao, 1988; Thompson, 1994). Descrip-
tions of both parsers are concise. Both of them
are writ ten in less than 1,000 lines. This shows
thal our I 'STFS can be easily used. With the
high i)erfornaance of the parsers, this shows the
feasibi]ily and tlexibility of our PSTFS.

For sin@icily of discussion, we assume that
Ill)S(; consists of' lexical entries and rule
schemala, l,exical entries can be regarded as
'l'l.Ss assigned to each word. A rule schema is
a r , l - i n the fi)rm of z - - abe:.., where z . , . / , . c
are T li'Ss.

4.1 P a r a l l e l C K Y - s t y l e H P S G P a r s i n g
Algo r i t h m

A sequential CKY parser for CI"(; uses a data
s t ructure called a trianyular table. Let 1'} 4 de-
note a cell in the triang(flar table. Each cell]'},j
has a set of the non-terminal symbols in CFG
that can generate the word sequence from tile
i + 1-th word to the j - th word in an input sen-
tence. The sequential CKY algorithm computes
each Fi,j according to a certain order.

Our algorithm for a parallel CKY-style parser
for HPSG computes each Fi,j in parallel. Note
that b]-,j contains TFSs covering the word se-
quence fi'om the i + 1-th word to the j - th
word, not non-terminMs. We consider only the
rule schemata with a form of z --. ab where
z ,a ,b are TFSs. Parsing is started by a CA
called 7)ATtSgT4. PAT48gT~ creates cell-agents
Ci,j(O <_ i < j < n) and distributes them to pro-
cessors on a parallel machine (Figure 5). Each
Ci, j computes F},j in parallel. More precisely,
Ci,j(j - i = 1) looks up a dictionary and obtains
lexical entries. Ci,j(j - i > 1) waits for the mes-
sages including I'},k and Fk,j for all k(i < k < j)
from other cell-agents. When Ci,j receives /'},k
and I"k j for an arbitrary k, Ci,j computes rI'FSs
1)3' aI)plying rule schemata to each meint)ers of

971

Figure 5: Correspondence between CKY matrix
and agents: C,i,j correspond to the element of a
CKY triangular matrix

Fi,k and Fk,j. The computed TFSs are consid-
ered to be mothers of members of Fi,k and Fk,
and they are added to Fi,j. Note that these ap J-
plications of rule schemata are done in parallel
in several CSAs 3. Finally. when computation of
[},j (using Fi,~. and [k-,j for all k(i < k < j)) is
completed, Ci,j distributes Fi,j to other agents
waiting for/~'/j. Parsing is completed when the
COml)utation of [o.,~ is completed.

We have done a series of experiments on a
shared-memory parallel machine. SUN Ultra
Enterprise 10000 consisting of 64 nodes (each
node is a 2,50 MHz UltraSparc) and 6 GByte
shared memory. The corpus consists of 879
random sentences from the EDR Japanese cor-
pus written in Japanese (average length of sen-
tences is 20.8) 4 . The grammar we used is an
underspecified Japanese HPSG grammar (Mit-
suishi et al., 1998) consisting of 6 ID-schemata
and 39 lexical entries (assigned to functional
words) and 41 lexical-entry-templates (assigned
to parts of speech). This grammar has wide cov-
erage and high accuracy for real-world texts s.

Table 1 shows the result and comparison with
a parser written in LiLFeS. Figure 6 shows
its speed-up. From the Figure 6, we observe
that the maximum speedup reaches up to 12.4
times. The average parsing time is 85 msec per

aCSAs cannot be added dynamically in our imple-
mentation. So, to gain the maximum parallelism, we
assigned a CSA to each processor. Each Ci.j asks the
CSA on the same processor to apply rule schemata.

4We chose 1000 random sentences from the EDR
Japanese corpus, and the used 897 sentences are all the
parsable sentences by the grammar.

5This grammar can generate parse trees for 82% of
10000 sentences from the EDR Japanese corpus and the
dependency accuracy is 78%.

N u m b e r of , A v ~ of P a r s i n g T i m e (. . . .)
P rocessors J P S T F S | L iLFeS

] 10$7 991
10 248
20 138
30 i 0 6
40 93
50 85
60 135

Table h Average parsing time per sentence

S ~ e ~ u p

14

12

10

8

8

4

2

0

J

, /-
./-

/
5 i I 1 J

10 20 30 40 50

o f t0¢oces~or6

Figure 6: Speed-up of parsing time on parallel
CKY-style HPSG parser

SOIl t on ce 6 .

4.2 C h a r t - b a s e d Pa ra l l e l H P S G
P a r s i n g A l g o r i t h m for A L E
G r a m m a r

Next, we developed a parallel chart-based
HPSG parser for an ALE-style grammar. The
algorithm is based on a chart schema on which
each agent throws active edges and inactive
edges containing a TFS. When we regard the
rule schemata as a set of rewriting rules in
CFG, this algorithm is exactly the same as
the Thompson's algorithm (Thompson, 1994)
and similar to PAX (Matsumoto, 1987). The
main difference between the chart-based parser
and our CKY-style parser is that the ALE-style
parser supports a n-branching tree.

A parsing process is started by a CA called
:P.AT~S£7~. It .creates word-position agents
Pk(0 _< k _< n), distributes them to parallel
processors and waits for them to complete their
tasks. The role of the word-position agent 79k

6Using 60 processors is worse than with 50 proces-
sors. Ill general, when the number of processes increases
to near or more than the number of exist ing processors,
con tex t switch be tween processes occurs f requent ly on
sha red -memory parallel machines (many people can use
the machines s imul taneous ly) . We believe tile cause for
the inefficiency when using 60 processors lies in such con-
text switchcs.

972

e n c e s

[4 he er~'uades her to walk
e l t t ences

~ ~ a . ~ y W tOl~ e t r ies to t i e s to

| (2) [~ h o sees k im w h o m
] " "] he t r ies to see wMks
[(3)] ~ a n d y who sees k im who
[~ be l i eves he r to t e n d to wa lk walks

Table 2: Test corpus for parallel ALE-style
l lPSG parser

S h o r t L e n g t h ~en tences
N u m b e r of Avg . of P a r s i n g T i m e (r e s e t)
P r o c e s s o r s P S T F S [L iLFeS I A L E

1 l O 625160 125 1590

20 156
30 127
40 205
50 142
60 170

Lon~ L e n g t h 5 e n t e n c e ~

N u m b e r of Avg . o l P&r~ing T i m e (m s e c ~
P r o c e s s o r s P S T F S I LiLFeS I A L E

110 193013208 30867 389370

20 2139
30 1776
40 1841
50 1902
60 2052

is to collect edges adjacent to the position k.
A word-position agent has its own active edges
and inactive edges. An active edge is in the form
(i , z ~ A o x B } , where A is a set of TFSs which
have already been unified with an existing con-
stituents, B is a set of TFSs which have not
been unified yet, and x is the TFS which can be
unified with the consti tuent in an inactive edge
whose left-side is in position k. Inactive edges
are in the form (k, x, j}, where k is the left-side
position of th(, consti tuent x and j is the right-
side position of the consti tuent x. That is, the
set of all inactive edges whose left-side position
is k are collected by T'-k.

hi our algorithm, Pk. is always waiting for eF
ther an active e(l,,'e or an inactive edge. and t)er-
torlns the following 1)rocedure when receiving an
edge.

• When Pk receives an active edge (i ,z - -
el o xB) , ~k preserve tire edge and tries to
find the unifiable consti tuent with x from
the set of inactive edges that 7)/~ has ah'eady
received. If the unification succeeds, a new
active edge {i,z ~ Ax o B} is created. If
the dot in the new active edge reaches to
the end of RHS (i.e. B = 0), a new inactive
edge is created and is sent to Pi. Otherwise
the new active edge is sent to 7)j.

• When Tak receives an inactive edge (k, x, j) ,
7~k preserves the edge and tries to find the
unifiable const i tuent on the right side of
the dot from the set of active edges that
T'k has already received. If the unification
succeeds, a new active edge {i, z ~ Ax oB)
is created. If the dot in the new active edge
reaches to the end of RHS (i.e. B = 0), a
new inactive edge is created and is sent to
7)/. Otherwise the new active edge is sent
t o ~Oj.

As long as word-position-agents follow these
behavior, they can run in parallel without any
other restriction.

We have done a series of experiments in the
same machine settings as the experiments with

Table 3: Average parsing time per sentence

Speed-up

t 2

10

0 10 20 30 40 50 60
o f Processors

Figure 7: Speed-up of t)arsing time on chart-
based paralM Ill S(, parser

the CKY-style IIPSG parser. We measured
both its speed up and real parsing time, and
we compared our parallel parser with the ALE
system and a sequential parser on LiLFeS. The
grammar we used is a sample I tPSG grammar
at tached to ALE system r, which has 7 schemata
and 62 lexical entries. The test corpus we
used in this experiment is shown in the Table
2. Results and comparison with other sequen-
tial parsing systems are given in Table 3. Its
speedup is shown in Figure 7. From the figure,
we observe that the maximum speedup reaches
up to 10.9 times and its parsing time is 1.776
msec per sentence.

4.3 D i s c u s s i o n
In both parsers, parsing time reaches a level
required by reM-time applications, though we
used computationally expensive grammar for-
mMisms, i.e. IIPSG with reasonable coverage
and accuracy. This shows the feasibility of our

rThis sample granlingtr is converted to LiLFeS style
half automatically.

973

Processor ID Processor Status

=F - V -
40 ~ = I = " - - - - - - " = -

. - - . - - - o I . - - - ~ - ---- ----- __--

0 2
616,12 616.14 616.16 616.1g

]..K<
] ~ccv

P

Figure 8: Processors status

framework for the goM to provide a parallel pro-
gramming environment for real-time NLP. In
addition, our parallel HPSG parsers are con-
siderably more efficient than other sequential
IIPSG parsers.

However, the speed-up is not proportional to
the number of processors. We think that this is
because the parallelism extracted in our parsing
algorithm is not enough. Figure 8 shows the log
of parsing Japanese sentences by the CKY-style
parser. The black lines indicate when a proces-
sor is busy. One can see thal many l)r<)cessors
are Dequently idle.

We think that this idle time does not sug-
gest that parallel NLP systems are useless. On
the contrary, this suggest; that parallel NLP sys-
tems have many possibilities. If we introduce
semantic processing for instance, overall pro-
cessing time may not change because the idle
time is used for semantic processing. Another
possibility is the use of parallel NLP systems as
a server. Even if we feed several sentences at a
time, throughput will not change, because the
idle time is used for parsing different sentences.

5 C o n c l u s i o n a n d F u t u r e W o r k

We described PSTFS, a substrate for parallel
processing of typed feature structures. PSTFS
serves as an efficient programming environment
for implementing parallel NLP systems. We
have shown the feasibility and flexibility of
our PSTFS through the implementation of two
HPSG parsers.

For the future, we are considering the use of
our HPSG parser on PSTFS for a speech recog-
nition system, a NaturM Language Interface or
Speech Machine Translation applications.

R e f e r e n c e s

Adriaens and Hahn, editors. 1994. Parallel
Natural Language Plvcessing. Ablex Publish-
ing Corporation, New Jersey.

Bob Carpenter and Gerald Penn. 1994. ALE
2.0 user's guide. Technical report, Carnegie
Mellon University Laboratory for Computa-
tional Linguistics, Pit tsburgh, PA.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press,
Cambridge, England.

K. Clark and S. Gregory. 1986. Parlog: Parallel
programming in logic. Journal of the A CM
Transaction on Programming Languages and
Systems, 8(1):1 49.

Ralph Grishman and Mehesh Chitrao. 1988.
Evaluation of a parallel chart parser. In Pro-
ceedings of the second Conference on Applied
Natural Language Processing, pages 71-76.
Association for Computational Linguistics.

T. Kasami. 1965. An efficient recognition and
syntax algorithm for context-free languages.
Technical Report AFCRL-65-758, Air Force
Cambrige Research Lab., Bedford, Mass.

Takaki Makino, Minoru Yoshida, Kentaro Tori-
sawa, and Jun'ichi Tsujii. 1998. LiLFeS
- towards a practical HPSG parser. In
COLING-A CL '98 Proceedings, August.

Yuji Matsumoto. 1987. A parallel parsing sys-
tem for natural language analysis. In Proceed-
in(Is of 3rd International Conference on Logic
l'ro(tramming, pages 396 409.

Yutaka Mitsuishi, Kentaro Torisawa, and
Jun'ichi Tsujii. 19.(t8. HPSG-style underspec-
ifie(I ,lai)anese grammar with wide coverage.
In C'OLING-A CL'98 Proceedings, August.

A nton Nijholt, 1994. Parallel Natural Language
Processing, chapter Parallel Approaches to
Context-Free Language Parsing, pages 135
167. Ablex Publishing Corporation.

Takashi Ninomiya, Kentaro Torisawa, Kenjiro
Taura, and Jun'ichi Tsujii. 1997. A par-
allel cky parsing algorithm on large-scale
distr ibuted-memory parallel machines. In
PACLING '97, pages 223-231, September.

Kenjiro Taura. 1997. Efficient and Reusable
Implementation of Fine-Grain Multithread-
lug and Garbage Collection on Distributed-
Memory Parallel Computers. Ph.D. thesis,
Department of Information Sciencethe, Uni-
versity of Tokyo.

Henry S. Thompson, 1994. Parallel Natural
Language Processing, chapter Parallel Parsers
for Context-Free Grammars-Two Actual Im-
plementations Comparesd, pages 168-187.
Ablex Publishing Corporation.

Kazunori Ueda. 1985. Guarded horn clauses.
Technical Report TR-103, ICOT.

974

