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1 I n t r o d u c t i o n  

Automatic acquisition of translation rules from 
parallel sentence-Migned text takes a variety of 
forms. Some machine translation (MT) svstems 
treat aligned sentences as unstructured word se- 
quences. Other systems, including our own ((Gr- 
ishman, 1994) and (Meyers et al., 1996)), syn- 
tactically analyze sentences (parse) before ac- 
quiring transfer rules (cf. (Kaji et al., 1992), 
(Matsumoto et al., 1993), and (Kitamura and 
Matsumoto, 1995)). This has the advantage of 
acquiring structurM as well as lexical correspon- 
dences. A syntactically analyzed, aligned cor~ 
pus may serve ~s an example base for a form of 
example-based NIT (cf. (Sato and Nagao, 1990), 
(I{aji et al.. 1992), and (Furuse and Iida. 1994)). 

This paper I describes: (1) an efficient algo- 
rithm for aligning a pair of source/target  lan- 
guage parse trees; ~nd (2) a procedure for de- 
riving transfer rules from this alignment. Each 
transfer rule consists of a pair of tree fragments 
derived bv "cutting up" the source and target 
trees. A set of transfer rules whose left-hand 
sides match a source language parse tree is used 
to generate a target language parse tree from 
their set of right-hand sides, which is a transla.- 
tion of the source tree. This technique resembles 
work on MT using synchronous Tree-Adjoining 
Grammars (cf. (Abeille et al., 1990)). 

The Proteus translation system learns transfer 
rules from pairs of aligned source and target reg- 
ularized parses, Proteus's representation of pred- 
icate argument s t ructure(cf .  Figure 1)? Then 
it uses these transfer rules to map source lan- 
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2Regularized parses (henceforth,  "pmse trees")  are 
like F-s t ruc tures  of Lexical }"tmctiou G r a m m a r  (LEG), 
except, that  a depenclency st.ruct.ure is used." 

guage regularized parses generated by ou r source 
language parser into target language regularized 
parses. Finally a generator converts target reg- 
ularized parses into target language sentences. 

All Mignment f is a I-to-1 partial mapping 
from source nodes to target nodes. We con- 
sider only alignments which preserve the dom- 
inance relationship: If node a dominates node 
b in the source tree. then f (a )  dominates f(b) 
in the target tree. In Figure 1. source nodes ,4. 
B, C and D map to the corresponding target 
nodes, marked with a prime, e.g., f (A)  = A'. 
The alignment )nay be represented by the set 
{(A, A'), (B, V'), (C', C'). (D, D')}. We ~ .an  as- 
sign a score to each Mignment f ,  based on the 
(weighted) number of pairs in f ;  finding the best 
alignment translates into finding the alignment 
with the highest score. Our algorithms are based 
on (Farach et al., 199.5) and related work. 

We needed efficient alignment algorithms be- 
cause: (1) Corpus-based training requires pro- 
cessing a lot of text; and (2) An exhaustive 
search of all alignments is too computationally 
expensive for realistically sized parse trees. 

Eliminating dominance violations greatly re- 
duced our search space. Similar work (e.g., 
(Matsumoto et al., 1993)) considers ~dl possible 
matches. Although. our system cannot ¢~ccount 
for actual dominance violations in a given bi- 
text, there are no such violations in our corpus 
and many hypothetical cases can be aw)ided by 
adopting (;he appropriate grammar. Cases of ad- 
juncts aligning with heads and vice versa are not 
dominance violations if we replace our depen- 
dency analysis with one in which internal nodes 
have category labels and the head constituents 
are marked by H E A D  arcs and we assume the 
following CategoriM Grammar (CG) style anal- 
yses. Suppose that verb (VI.) maps to adverb 
(A'I) and adverb (A2) maps to verb (V'2), where 
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("D = volver ~ . . . . . . . . . . . . . . . . . . . . . .  -a~ 

...................... 
Excel vuelve a calcular vaiores en libro de trabajo Excel recalculates values in workbook 

Figure l: A Pair of Aligned Trees 

A2 modifies V1 and A'I  modifies V'2. We as- 
sume the following structures: [VP [VP1 V1 ...] 
A2] and [VD [VP2 V'2 ...] A'I]. No dominance 
violation exists because no dominance relation 
holds between V1 and A2 or V'2 and A'I.  Y. 
Matsumoto (p.c.) notes that the subordinate 
clause of a source sentence may align with the 
main clause of a target language and vice versa, 
e.g., X after Y aligns with Y' before X'. where 
X, X', Y and Y' are all clauses. Assuming a CG 
style analysis, [S X [after Y]] aligns with [S Y" 
[before X']] with no dominance violations. 

2 T h e  L e a s t - C o m m o n - A n c e s t o r  
C o n s t r a i n t  

Our earlier tree alignment algorithms (cf. (Mey- 
ers et al., 1996)) were designed to produce align- 
ments which preserve the least common ancestor 
relationship: If nodes a and b map into nodes 
a' = f(a) and b' = f(b), then I(LCA(a,b)) = 
LCA(I(a),  f(b)) = LCA(a',b'). The least com- 
mon ancestor (LCA) of a and b is tile lowest node 
in the tree dominating both a and b. The LCA- 
preserving approach imposes limitations on the 
quality of the resulting alignments. In Figure l, 
the LCA-preserving Mgorithm will match node 
I:2 with node D' and report that as the best match 
overall. The score S(D, D') would take into ac- 
count only the match (E, D'), which in turn in- 
cludes (B, B') and (C, C'). (S(D, D') would be 
penalized for collapsing the arc from D to E.) 

We seek a better alignment scheme, in which 
the score S(D, D') could benefit from S(A, A'). 
We are willing to pay a small penalty to collapse 
the path from D to E, and align the resulting 
structure. This leads to new algorithms where 
the LCA-preserving restriction is replaced by the 
weaker, dominance-preserving constraint. The 
rationale behind allowing an edge, say (v, u) to 

be collapsed when matching two nodes v and v'. 
is that we may find some children of u which cor- 
respond well to some children of v', while other 
children of ~, correspond well to other children of 
v'. (This is not possible if LCA's are preserved.) 
The algorithm relies on the assumption that two 
different children of v will not match well with 
the same child of v'. 

3 T h e  D o m i n a n c e - P r e s e r v i n g  
A l g o r i t h m  

Let T and T ~ be the source and the target trees. 
We use a dynamic programming algorithm to 
compute, in a bottom-up fashion, the scores for 
matching each node in T against each node in T'. 
There are O(n 2) such scores, n = max(IT], ]T'l) 
is number of nodes in the trees. Let the d(v) be 
the degree of a node v. We denote children of t, 
by vl, / = 1 , . . . ,  d(v), and arc (v, vi) by ffi. 

For all pairs of nodes v E T and v' E T', the 
algorithm computes the score function S(v, v'). 
S(v, v') corresponds to tile best match found be- 
tween the subtrees rooted at v in T and at v' in 
T'. The values o r s  are stored in a IT[ x IT'I ma- 
trix, also denoted by S. Initially, we fill the ma- 
trix S with undefined values, and invoke the pro- 
cedure SCOREdo~, described below, to con> 
pute S(root (T), root(T')), the score for matching 
the root nodes of the trees. During the compu- 
tation of the score for the roots, the procedure 
recursively finds the best-scoring matches for all 
the nodes in the trees. This yields the best align- 
ment of the entire trees. 

Table l(a) shows tile values of S for the trees 
in Figure 1. Whenever we compute a score for 
internal nodes, we also record the best way of 
pairing up their children in Table t(b). 3 Tile 

a Children pairings include child/child pairs and par- 
ent/child pairs: (D.D')'s pairing is {(A, A'), (E, D')}. 
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alignment,  implicit in these children pairings, is 
used in a later phase (Section 4) to recover the 
alignment for the entire trees.  

P r o c e d u r e  SCOREgo,~: For a pair of nodes, 
(v, v'), recursively compute the score S(v, v'): 

Construct  an intermediate  child-scoring ma- 
trix M = M(v,v ' ) ,  for the children of v and v'; 
the dimensions of M are (d(v) + t) x (d(v') + 1). 
Tha t  is, the number of rows in M is one more 
than the number of children of v, and the number 
of columns is one more than number of children 
of v'. We label row d(v) + t and column d(v') + 1 
with a "*" Fill the matr ix M: 

1. Vi, j ,  where 1 <_ i <_ d(v) , l  <_ j <_ d(v') 
compute the corresponding entry in ,g[ij: 

The function Lex,~o&(V,v') > 0 (used be- 
low) is the quali ty of translation, i.e. the 
measure of how closely the label (word) at 
source node v corresponds to the label at 
target  node v ~ in the bilingual dictionary, 
and Lex,~(ff ,  if') >_ 0 is the corresponding 
measure for arc labels. 

2. Fill the last colurnn as follows: Vi, where 
t _< i < d(v) compute the entries: 

Pen(iY4) > 0 is the penalty for collapsing tile 
edge ffi, which depends on tile value of tile 
label of that  edge. 

3. Symmetrically,  g j  s.t. 1 _< j < 
d(v') fill the last row with the entries: 

M.s  = 

4. The entry M . .  is disfavored: ,~,l.~ = -:x) 

For example, during the calculation of the 
scores S(D,  D') and S ( E ,  D') from Table t, the 
corresponding matrices M ( D, D') and :'vl ( E, D') 
are filled in as in Table 2. The proper values for 
the parameter fimctions used above, such as tile 
penalty function Pen and the translat ion mea- 
sures, are chosen empirically, and consti tute the 
tunable parameters  of the procedure. Normally, 
we will expect that  the values of Lexnod~ will be 
much larger than the values of Le:r.~,.~: and Pen. 
In the example we used the following settings: 
[. Lex,~od~ = 100 for an exact translation,  as for 
(A, A'), (B, B;) and (C, C') ,  and 0 otherwise. 
2. all values of Lex~c are set to zero 
3. all penalties Pen are set to 1 

Now, using the values in M, compute the score 
for matching v and v': 

S(v,v ' )  = Lex,~o&(v,v')+ max ~ Mij ([) 
PEEP (i,j)eP 

Here P is a legitimate pairing of v and its chil- 
dren against v' and its children. A legitimate 
pairing P is a set of elements of the matr ix M. 
that  conform to tile following conditions: 

1. each row and each column of M may con- 
tr ibute at most one element to P, except 
that  the row and the column labeled * may 
contribute more than one element to P 

2. if P contains an element Mij correspond- 
ing to the node pair (to, w~), and some child 
node u appears in the Children-Pair ing for 
(w, w'), then the row or column of u may 
not, contribute any elements to P. 

We use £79 = £ / ) (v ,  v') to denote the set of all 
legitimate pairings. There are O(d!) such pair- 
ings, where d is the greater of the degrees of v 
and # .  The sunlmation in (1) ranges over all 
the pairs ( i , j )  that  appear  in a legitimate pair- 
ing P E £79(v, v'). We evaluate this summation 
for all O(d!) legitimate pairings in /279, and then 

) select the pairing [best with the maximum score. 
/3)¢~ is then stored in the Children-Pair ing ma- 
trix entry  for (v, v'). 

Table 2 shows how scores are calculated. The 
best score for S(E,  D') is 200, tile sum of the 
scores for (B, B') and (C ,C ' ) .  S (D,  O') = 
299 = S(A, A') + S(E,  D') - 1, a penalty of 1 
for collapsing tile edge from D to E. 

We can reduce the computatJon time of the 
max term in (1), if we do not consider all O(d!) 
pairings of the children of v and #.  Instead 
of exhaustively computing the maximal-scoring 
pairing Pbe.~t in (1), we can build it in a 9reedy 
fashion: successively choos the d highest-scoring, 
mutually disjoint pairs from the O(d "2) possible 
pairs of children of v and v'. 

1. Initialize the set. of highest scoring pairs 

2. Pb~,.,, +- Pb~.~eu{(i, j )}  where Mij is the next 
largest entry in the matrix,  which that  sat- 
isfies both conditions 1 and 2 of legitimate 
pairings 
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Source 
Nodes  

A 
B 
C 
D 
E 
F 

Target  Nodes  

A '  B '  C '  
100 0 0 

0 100 0 
0 0 100 
0 0 0 
0 0 0 
0 0 0 

D ~ A ~ 
0 A 
0 B 
0 Source  C 

299 Nodes D - 
200 E 

0 F - 

Target  Nodes  

B '  C '  DI 

(,4, A') ( S , o') 
( B, B')(C, C') 

Table l: (a) A Final Score Matrix:  (b) Chi ldren-Pair ing Matr ix  

Source 
Chil- 
dren 

Target  Children 
t: ,4' 2: B'  3: C '  *: D '  

1: B 0 1 0 0  0 99 
2: C '  0 0 100 99 
*: E 0 99 99 - ~ c  

'The Score S( } = 100 + 1.00 = 200 

~ource 
Chil- 
dren 

Target  Children 
t: .4' 2: B'  3: C '  *: D'  

t: A 1 0 0  0 0 99 
2: E? 0 99 99 199 
*: D 9 9  98 98 - : v  

The Score S( ) = 199 + 100 = 299 

Table 2: Comput ing  Child-Scoring Matr ices  

3. Repeat  the above step until no more pairs 
can be added to Pb~t, at most  d times. 
where d = min(d(v) ,  d(v ' ) ) .  

4. Compute  the result: 
S ( v ,  "v') = LeXnode(U, v') + ~(i,j)ePb..~, *~/[ij 

The greedy algor i thm aligns trees with n 
nodes and maximal degree d in O ( n 2 d  2) time. 

4 A c q u i r i n g  T r a n s f e r  R u l e s  

This section describes the procedure  for deriving 
transfer  rules from aligned parse trees. 

First, the best-scoring Mignment is recovered 
from the Chi ldren-Pai r ing  matrix,  (Table l (b)) .  4 
S tar t  by including the root  node-pair in the 
alignment,  (here (D, D')) .  Then,  for each pair 
(v, i/) a lready in the alignment,  repeat  the fol- 
lowing steps, until no more pairs can be added to 
the alignment: ( t )  look up the Children=Pairing 
for (v.v ' ) ;  (2) for each pair in the children- 
pairing, if it does not  include either v or v', add 
the pair to the al ignment ,  (e.g. (,4, ,4'), etc.). 

4When sentences in the bitext have multiple parses, 
we align structure sharing forests of trees. [f one pair 
of trees has the highest scoring alignment, we acquire 
transfer rules from that alignment. When more than one 
pair of trees tie for the highest score, we acquire t.ransfer 
rules from the set of pairs of aligned subtrees which are 
shared by each of these high scoring alignments. 

In tile running example,  the final align- 
ment ( t :A ) i s  {(D,  D'), (A, A'), (B, S ' ) ,  (C, C ' ) ) .  
Based on this Mignment we can "chop up" the 
trees into fragments ,  or subs t ruc tures  ((Mat- 
sumoto  et al., 1993)), where each subst ructure  
of a tree is a connected group of nodes in the 
tree. together  with their joining arcs. In Fig- 
ure 1, dashed arrows connect  aligned pairs of 
source and target  substructures .  These  corre- 
spondences become our t ransfer  rules. 

[rot" each pair of aligned nodes (v, v') in F,4, 
there is a pail' of subst ructures  hi Figure l such 
that v and v / are the roots of the source and tar- 
get substructures .  These  substructures  include 
all unaligned source and target  nodes v~ and 
vl~ below v and v', which have no intervening 

/ 
aligned nodes y or y' dominat ing .v~ or v, .  

The  t ransfer  rules derived from Figure [ may 
be writ ten as follows: 
f .  < root  : E x c e l  > -+ < root  : F x c e l  > 
2. < root : v a l o r e s  > -*  < root : v a l u e s  > 
3. < root : l ibro,  de : t r a b a j o  > --+ < root 
w o r k b o o k  > 
4. < root  : vo lver ,  aub j  : z l , a  :< root  
ca lcu lar ,  obj  : x 2 , e n  :x3  > >  --+ 
< root  : r e c a l c u l a t e ,  s u b j  : T r ( : c t ) , o b j  
T r ( x 2 ) ,  i n :  T r ( x a )  > 
Each subs t ruc ture  is represented as a list con- 
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taining a root lexical item, and a set of arc- 
value pairs. An arc (role) al with head (value) 
h is written as al : h, where h is a fixed la- 
bel (word), a substructure or a variable. If the 
source substructure has n of the leaves labeled 
with variables zl ,  . . . , z n ,  the target will have 
n of the leaves labeled with Tr(xl) , . . . ,Tr(xn),  
where Tr(x)  is the lexical translation function. 
This general structure allows us to capture re- 
lations between multi-word expressions in the 
source and target languages. 

5 T r a n s l a t i o n  

The described procedure for acquisition of trans- 
fer rules from corpora is the basis for our trans- 
lation system. A large collection of transfer rules 
are collected from a training corpus. When new 
text is to be translated, it is first parsed. The 
source tree is matched against the left hand sides 
of tile transfer rules which have been collected. 
If a set of transfer rules whose left-hand sides 
match tile parse tree is found, the corresponding 
target structure is generated from the right hand 
sides of these transfer rules. Typically, several 
sets of transfer rules meet this criterion. They 
are ranked by their frequency in the training cor- 
pus. Once a target tree has been produced, it is 
conve.rted to a word sequence by a target lan- 
guage generator. Vv% have applied this approach 
to the translation of Microsoft l-lelp files in En- 
glish and Spanish. The sentences are moderately 
simple and quite parallel in structure, which has 
made the corpus suitable for our initial system 
development. To date, we have been using a 
training corpus of about 1,000 sentences, and a 
test corpus of about 100 sentences. 

6 E v a l u a t i o n  

Real eva.luation of performance of MT systems 
is time consuming and subjective. Neverthe- 
less, some evaluation system is needed to insure 
that incremental changes are for the be~/er, or 
at least, are not detrimental. We measured the 
success of our translation by how closely we re- 
produced Microsoft's English (target language) 
text. Our evaluation procedure computes the 
ratio between (a) the complement of the inter- 
section set of words in our translation and the 
actual Microsoft sentence; and (b) the combined 
lengths of these two sentences. An exact trans- 
lation gives a score of 0. If the system generates 

the sentence "A B C D E" and the actual sen- 
tence is "A B C F", the score is 3/9 (the length 
of D E F divided by the combined lengths of 
A B C D E and A B C F.) The dominance- 
preserving version of the program produced out- 
put for 88 out of 91 test sentences. The average 
score for these 88 sentences was 0.29:0.21 due 
to incorrect word matches and 0.08 due to failure 
to translate because insufficient confidence levels 
were reached. The LCA-preserving version pro- 
duced output for only 83 sentences with an aver- 
age score of over 0.30: about 0.23 due to incor- 
rect word matches and about 0.08 due to insuffi- 
cient confidence levels. This crude scoring tech- 
nique suggests that the dominance-preserving al- 
gorithm improved our results: more sentences 
were translated with higher quality. One limita- 
tion of this scoring technique is that paraphrases 
are penalized. An imperfect score (even .20) 
may signify an adequate translation. 

R e f e r e n c e s  

A. Abeille, Y. Schabes. and A. K. aoshi. 1990. 
Using Lexicalized Tags for Machine Transla- 
tion. In COLING90. 

M. Farach, T. M. Przytycka, and M. Thorup. 
1995. On the agreement of many trees. Infor- 
mation Processing Letters, 55:297--301. 

O. Furuse and H. [ida. 1994. Constituent 
Boundary Parsing for Example-Based Ma- 
chine Translation. In COLINGOg. 

R. Grishman. 1994. Iterative Alignrnent of Syn- 
tactic Structures for a Bilingual Corpus: In 
Proceedin9s of the Second A,nual Work'shop 
for Very Lar9e Corpora, Tokyo. 

H. Kaji, Y. Kids. and Y. Morimoto. 1992. 
Learning Translation Templates from Bilin- 
gual Text. In COLING92. 

M. Kitamura and Y. Matsumoto. 1995. A Ma- 
chine Translation System based on Transla- 
tion Rules Acquired from Parallel Corpora. In 
RANLP95. 

Y. Matsumoto, H. Ishimoto. T. Utsuro, and 
M. Na.gao. 1993. Structural Matching of Par- 
allel Texts. In ACLg3. 

A. Meyers, R. Yangarber, and R. Grishman. 
1996. Alignment of Shared Forests for Bilin- 
gual Corpora. In COLING96, pages 460-465. 

S. Sato and M. Nagao. 1990. Toward Memory- 
based Translation. In COLING90, volume 3, 
pages 247-252. 

847 


