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Abstract 
The paper investigates the problem of providing a 
formal device for the dependency approach to 
syntax, and to link it with a parsing model. After 
reviewing the basic tenets of the paradigm and the 
few existing mathematical results, we describe a 
dependency formalism which is able to deal with 
long-distance dependencies. Finally, we present an 
Earley-style parser for the formalism and discuss the 
(polynomial) complexity results. 

1. Introduction 
Many authors have developed dependency 

theories that cover cross-linguistically the most 
significant phenomena of natural language syntax: 
the approaches range from generative formalisms 
(Sgall et al. 1986), to lexically-based descriptions 
(Mel'cuk 1988), to hierarchical organizations of 
linguistic knowledge (Hudson 1990) (Fraser, 
Hudson 1992), to constrained categorial grammars 
(Milward 1994). Also, a number of parsers have 
been developed for some dependency frameworks 
(Covington 1990) (Kwon, Yoon 1991) (Sleator, 
Temperley 1993) (Hahn et al. 1994) (Lombardo, 
Lesmo 1996), including a stochastic treatment 
(Eisner 1996) and an object-oriented parallel 
parsing method (Neuhaus, Hahn 1996). 
However, dependency theories have never been 
explicitly linked to formal models. Parsers and 
applications usually refer to grammars built around 
a core of dependency concepts, but there is a great 
variety in the description of syntactic constraints, 
from rules that are very similar to CFG productions 
(Gaifman 1965) to individual binary relations on 
words or syntactic categories (Covington 1990) 
(Sleator, Temperley 1993). 

know 

John beans 

Figure 1. A dependency tree for the sentence "I know 
John likes beans". The leftward or rightward orientation 
of the edges represents the order constraints: the 
dependents that precede (respectively, follow) the head 
stand on its left (resp. righ0. 

The basic idea of dependency is that the syntactic 
structure of a sentence is described in terms of 
binary relations (dependency relations) on pairs of 
words, a head (parent), and a dependent (daughter), 
respectively; these relations usually form a tree, the 
dependency tree (fig. 1). 

The linguistic merits of dependency syntax have 
been widely debated (e.g. (Hudson 1990)). 
Dependency syntax is attractive because of the 
immediate mapping of dependency trees on the 
predicate-arguments structure and because of the 
treatment of free-word order constructs (Sgall et al. 
1986) (Mel'cuk 1988). Desirable properties of 
lexicalized formalisms (Schabes 1990), like finite 
ambiguity and decidability of string acceptance, 
intuitively hold for dependency syntax. 

On the contrary, the formal studies on 
dependency theories are rare in the literature. 
Gaifman (1965) showed that  project ive  
dependency grammars, expressed by dependency 
rules on syntactic categories, are weakly equivalent 
to context-free grammars. And, in fact, it is 
possible to devise O(n 3) parsers for this formalism 
(Lombardo, Lcsmo 1996), or other projective 
variations (Milward 1994) (Eisner 1996). On the 
controlled relaxation of projective constraints, Nasr 
(1995) has introduced the condition of pseudo- 
projectivity, which provides some controlled looser 
constraints on arc crossing in a dependency tree, 
and has developed a polynomial parser based on a 
graph-structured stack. Neuhaus and Broker (1997) 
have recently showed that the general recognition 
problem for non-projective dependency grammars 
(what they call discontinuous DG) is NP-complete. 
They have devised a discontinuous DG with 
exclusively lexical categories (no traces, as most 
dependency theories do), and dealing with free 
word order constructs through a looser subtree 
ordering. This formalism, considered as the most 
straightforward extension to a project ive 
formalism, permits the reduction of the vertex 
cover problem to the dependency recognition 
problem, thus yielding the NP-completeness result. 

However, even if banned from the dependency 
literature, the use of non lexical categories is only a 
notational variant of some graph structures already 
present in some formalisms (see, e.g., Word 
Grammar (Hudson 1990)). This paper introduces a 
lexicalized dependency formalism, which deals 
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with long distance dependencies, and a polynomial 
parsing algorithm. The formalism is projective, and 
copes with long-distance dependency phenomena 
through the introduction of non lexical categories. 
The non lexical categories allow us to keep 
inalterate the condition of  projectivity, encoded in 
the notion of derivation. The core of the grammar 
relies on predicate-argument structures associated 
with lexical items, where the head is a word and 
dependents are categories linked by edges labelled 
with dependency relations. Free word order 
constructs  are dealt  w i t h  by constraining 
displacements via a set data structure in the 
derivation relation. The introduction of non lexical 
categories also permits the resolution of  the 
inconsistencies pointed out by Neuhaus and Broker 
in Word Grammar (1997). 

The parser is an Earley type parser with a 
po lynomia l  complexi ty ,  that encodes  the 
dependency trees associated with a sentence. 

The paper is organized as follows. The next 
section presents a formal dependency system that 
describes the linguistic knowledge. Section 3 
presents an Earley-type parser: we illustrate the 
algorithm, trace an example, and discuss the 
complexity results. Section 4 concludes the paper. 

2. A d e p e n d e n c y  f o r m a l i s m  

The basic idea of dependency is that the 
syntactic structure of a sentence is described in 
terms of binary relations (dependency relations) on 
pairs of  words, a head (or parent), and a dependent 
(daughter), respectively; these relations form a tree, 
the dependency tree. In this section we introduce a 
formal dependency system. The formalism is 
expressed via dependency rules which describe one 
level of  a dependency tree. Then, we introduce a 
notion of derivation that allows us to define the 
language generated by a dependency grammar of 
this form. 

The grammar and the lexicon coincide, since the 
rules are lexicalized: the head of the rule is a word 
of a certain category, i.e. the lexical anchor. From 
the linguistic point of  view we can recognize two 
types of dependency rules: primitive dependency 
rules, which represent subcategorization frames, 
and non-primitive dependency rules, which result 
from the application of  lexical metarules to 
primitive and non-primitive dependency rules. 
Lexical metarules (not dealt with in this paper) 
obey general principles of  linguistic theories. 

A dependency grammar is a six-tuple <W, C, S, 
D, I, H>, where 
W is a finite set of  symbols (words of a natural 

language); 

C is a set of syntactic categories (among which the 
special category E); 

S is a non-empty set of root categories (C ~ S); 
D is the set of  dependency relations, e.g. SUB J, 

OBJ, XCOMP, P-OBJ, PRIED (among which the 
special relation VISITORI); 

I is a finite set of  symbols (among which the 
special symbol 0), called u-indices; 

H is a set of dependency rules of the form 
x:X (<r 1YlUl'l:l> ... <ri-1Yi-1Ui-l'l;i-I > # 

<ri+lYi+lUi+l'~i+l> ... <rmYmum~m>) 
1) xe W, is the head of the rule; 
2) Xe  C, is its syntactic category; 
3) an element <r i Yi ui xi> is a d-quadruple 

(which describbs a-d@efident); the sequence 
of  d-quads,  inc luding the symbol  # 
(representing the linear position of the head, 
# is a special symbol), is called the d-quad 
sequence. We have that 
3a) riE D,j ~ {1 ..... i-l, i+l ..... m}; 
3b) YjeC,  j c {1 ..... i-l, i+1 ..... m}; 
3c)uieI ,  j e {1 ..... i - l , i+ l  ..... m}; 
3d) x-iis a (possibly empty) set of  triples <u, 

r, Y>, called u-triples, where ue I, re D, 
YeC.  

Finally, it holds that: 
I) For each u~ I that appears in a u-triple <u, r, 

Y>eUj,  there exists exac t ly  one d-quad 
<riYiui~i> in the same rule such that u=ui, i ~j. 

II) For each u=ui of a d-quad <riYiulzi>, there 
exists exactl3~ one u-triple <u, r, Y>e z j, i;ej, in 
the same rule. 

Intuitively, a dependency rule constrains one node 
(head) and its dependents in a dependency tree: the 
d-quad sequence states the order of elements, both 
the head (# position) and the dependents (d-quads). 
The g rammar  is lexical ized,  because each 
dependency rule has a lexical anchor in its head 
(x'X). . A d-quad <r'Y.u.z.>l j j j  identifies, a dependent. 
of  category Yi, connected with the head via a 
dependency relation r i. Each element of the d-quad 
sequence is possibly/~ssociated with a u-index (u i) 
and a set of u-triples (xi). Both uj and 'tican be nfill 
elements, i.e. 0 and O,-respcctiv?ly. A-u-triple (z- 
component of  the d-quad) <u, R, Y> bounds the 
area of the dependency tree where the trace can be 
located. Given the constraints I and II, there is a 
one-to-one correspondence between the u-indices 
and the u-triples of  the d-quads. Given that a 
dependency rule constrains one head and its direct 
dependents in the dependency tree, we have that 
the dependent indexed by Uk is coindexed with a 

The relation VISITOR (Hudson 1990) accounts for 
displaced elements and, differently from the other 
relations, is not semantically interpreted. 
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trace node in the subtree rooted by the dependent 
containing the u-triple <Uk, R, Y>. 
Now we introduce a notion of derivation for this 
formalism. As one dependency rule can be used 
more than once in a derivation process, it is 
necessary to replace the u-indices with unique 
symbols (progressive integers) before the actual 
use. The replacement must be consistent in the u 
and the -c components. When all the indices in the 
rule are replaced, we say that the dependency rule 
(as well as the u-triple) is instantiated. 
A triple consisting of a word w (e W) or the trace 
symbol e (EW) and two integers g and v is a word 
object of the grammar. 
Given a grmnmar G, the set of word objects of G is 

Wx(G)={ BXv/g,v_>O, x e W u  {e} }. 
A pair consisting of a category X (e C) and a string 
of instantiated u-triples y is a category object of the 
grammar (X(7)). 
A 4-tuple consisting of a dependency relation r 
(ED), a category object X(71), an integer k, a set of 
instantiated u-triples 3t2 is a derivation object of the 
grammar. Given a grammar G, the set of derivation 
objects of G is 
Cx(G) = {<r,Y(y1),u,~> / 

re D, Ye C, u is an integer, 
~'1 ,Y2 are strings of instantiated u-triples}. 

Let cc,[Se Wx(G)* and ~ e ( W x ( G ) u  Cx(G) )*. The 
derivation relation holds as follows: 
1) 
o~ <R,X(Tp),U,yx> ~ :=:, 

<r 1,Y 1 (pl),U 1,'el> 
<r2,Y 2(P2),u 2,'c2> 
, , .  

<a'i-1 ,Y i-I (Pi-1),u i-1 ,'Ci-1 > 
uXO 
<ri+l,Y i+l(Pi+l), u i+l,'q+l > 

<rm,Y m( Pm),U m,'~m > 

where x:X ( < r l Y l U l ' q >  ... <rblYblUi-1%l > # 
<ri+lgi+lUi+l~Ci+l > ... <rm Y mUmq:m >) is a 
dependency rule, and Pl u ... vo Prn--q'p UYx. 

2) 
<r,X( <j,r,x>),u,O> ~ ~ ~ uq ~t 

Wc define ~ *  as the reflexive, transitive closure 
of ~ .  
Given a grammar G, L'(G) is the language of  
sequences of word objects: 

L'(G)={ae Wx(G)* / 
<TOP, Q(O), 0, O> ~ *  ct and QE S(G)} 

where 'FOP is a dummy dependency relation. The 
language generated by the grammar G, L(G), is 
defined through the function t: 

L(G)={we Wx(G)* / w=t(c0 and me L'(G)}, 

where t is defined recursively as 
t(-) = -; 
t(i.tw v ct) = w t(a); 

As an example, consider the grammar 
G1 = < 

W(G 1) = {I, John, beans, know, likes} 
C(G l) = { V, V+EX, N } 
S(GI)  = {V, V+EX} 
D(G 1) = {SUB J, OBJ, VISITOR, TOP} 
I(GI) = {0, Ul} 
T(G1) >, 

where T(GI)  includes the following dependency 
rules: 

1. I: N (#); 
2. John: N (#); 
3. beans: N (#); 
4. likes: V (<SUBJ, N, 0, 0 > #  <OBJ, N, 0, 0)>); 
5. knOW: V+EX (<VISITOR, N, ul, Q~> 

<SUB J, N, 0, 0 >  
# 
<SCOMP, V, 0, {<ul,OBLN>}>). 

A derivation for the sentence "Beans I know John 
likes" is the following: 

<TOP, V+EX(O), 0, ID> :=~ 
<VISITOR, N(O), 1, 0 >  <SUB J, N(O), 0, 0 >  know 

<SCOMP, V(O), 0, {<I,OBJ,N>}> :=~ 
lbeans <SUB J, N(O), 0, 0 >  know 

<SCOMP, V(O), 0, {<I,OBJ,N>}> =:~ 
lbeans I know <SCOMP, V(Q~), 0, {<I,OBJ,N>}> =:~ 
lbeans I know <SUBJ, N(O), 0, O>likes 

<OBJ, N(<I,OBJ,N>), 0, O> :=~ 
tbeans I know Jolm likes 

<OBJ, N(<I,OBJ,N>), 0, 0 >  
tbeans I know John likes el  

The dependency tree corresponding to this 
derivation is in fig. 2. 

3. P a r s i n g  i s sues  

In this section we describe an Earley-style parser 
for the formalism in section 2. The parser is an off- 
line algorithm: the first step scans the input 
sentence to select the appropriate dependency rules 

know 
. V I S ~ " I / S U B  J ~ S C O M P  

lbeans I likes 

SUB J /  ~OBJ 

John El 
Figure 2. Dependency tree of the sentence "Beans I 
know John likes", given the grammar G 1. 
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from the grammar. The selection is carried out by 
matching the head of  the rules with the words of  
the sentence. The second step follows Earley's 
phases on the dependency rules, together with the 
treatment of  u-indices and u-triples. This off-line 
technique is not uncommon in lexical ized 
grammars, since each Earley's prediction would 
waste much computation time (a grammar factor) 
in the body of  the algorithm, because dependency 
rules do not abstract over categories (cf. (Schabes 
1990)). 

In order to recognize a sentence of n words, n+l 
sets Si of  items are built. An item represents a 
subtree of  the total dependency tree associated with 
the sentence. An item is a 5-tuple <Dotted-rule, 
Position, It-index, v-index, T-stack>. Dot t ed - ru l e  is 
a dependency rule with a dot between two d-quads 
of  the d-quad sequence. Pos i t ion  is the input 
posi t ion where the parsing of  the subtree 
represented by this item began (the leftmost 
position on the spanned string). It-index and v- 
index are two integers that correspond to the 
indices of  a word object in a derivation. T - s t a c k  is 
a stack of sets of  u-triples to be satisfied yet: the 
sets of  u-triples (including empty sets, when 
applicable) provided by the various items are 
stacked in order to verify the consumption of  one 
u-triple in the appropriate subtree (cf. the notion of  
derivation above). Each time the parser predicts a 
dependent, the set of  u-triples associated with it is 
pushed onto the stack. In order for an item to enter 
the completer phase, the top of T-s tack  must be the 
empty set, that means that all the u-triples 
associated with that item have been satisfied. The 
sets of  u-triples in T-stack are always inserted at 
the top, after having checked that each u-triple is 
not already present in T-stack (the check neglects 
the u-index). In case a u-triple is present, the 
deeper u-triple is deleted, and the T-stack will only 
contain the u-triple in the top set (see the derivation 
relation above). When satisfying a U-triple, the T- 
stack is treated as a set data structure, since the 
formalism does not pose any constraint on the 
order of  consumption of the u-triples. 

Following Earley's style, the general idea is to 
move the dot rightward, while predicting the 
dependents of  the head of  the rule. The dot can 
advance across a d-quadruple <riYiui'q> or across 
the special symbol #. The d-q-ua~-irhmediately 
following the dot can be indexed uj. This is 
acknowledged by predicting an item (representing 
the subtree rooted by that dependent), and inserting 
a new progressive integer in the fourth component 
of  the item (v-index). "~i is pushed onto T-stack: the 
substructure rooted by-a node of  category Yi must 
contain the trace nodes of  the type licensed by the 
u-triples. The prediction of a trace occurs as in the 
case 2) of the derivation process. When an item P 

contains a dotted rule with the dot at its end and a 
T-stack with the empty set O as the top symbol, the 
parser looks for the items that can advance the dot, 
given the completion of the dotted dependency rule 
in P. Here is the algorithm. 

Sentence: w 0 w 1 ... Wn-1 
Grammar G=<W,C,S,D,I,H> 

initialization 
for each x:Q( ~i)E H(G), where QE S(G) 

replace each u-index in ~i with a progressive integer; 

INSERT <x:Q(o 6), 0, 0, 0, []> into S O 
body 
for each set S i (0<i<n) d._.oo 

for each P=<y: Y(~ • 6), j, I x, v, T-stack> in S i 
---> c o m p l e t e r  (including p s e u d o c o m p l e t e r ) .  

i.f ~ is the empty sequence and TOP(T-stack)=lZI 

for each <x: X(k. • <R, Y, Ux, "rx> ~), 

j', It', v', T-stack'> in Sj 
T-stack" <- POP(T-stack); 
INSERT <x: X(~. <R, Y, Ux, "r.x> • ~), 

j', Ix', v' ,  T-stack"> into Si; 
---> p r e d i c t o r :  

if 6 = <R&Z& u& "r6>'q then 
fo__[r each rule z: Z~(0) 

replace each u-index in 0 with a prog. integer; 
T-stack' <- PUSH-UNION(x ~5, T-stack); 

INSERT <z: Z~5( • 0), i, 0, uS, T-stack'> into S i; 
. . . . . . . . . . .  > pseudopredictor: 

if <u, R 8, Z 5> ~ UNION (set i [ set i in T-stack); 
DELETE <u, R~i, Z ~i> from T-stack; 
T-stack' <- PUSH(~,  T-stack); 

INSERT < ¢: Z6(. #), i, u, u 6, T-stack'> into S i; 
---> s c a n n e r  : 

if 6 = #  rl then 
i_fy=w i 

INSERT <y: Y(y # • q), 

j, Ix, v, T-stack> into Si+ 1 
. . . . . . . . . . .  > pseudoscanner . "  

elseif y= c 

INSERT <z: Y(# -), j, Ix, v, T-stack> into Si; 
end for 

termination 
if<x: Q(ot o), 0, It, v, []> E S n, where Qe S(G) 
then accept else reject endif. 

At the beginning ( i n i t i a l i z a t i o n ) ,  the parser 
initializes the set So, by inserting all the dotted 
rules (x :Q(f )e  H(G)) that have a head of  a root 
category (Q ~ S(G)). The dot precedes the whole d- 
quad sequence (~5). Each u-index of  the rule is 
replaced by a progressive integer, in both the u and 
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the "c components of the d-quads. Both Ix and v- 
indices are null (0), and T-stack is empty ([]). 

The body consists of  an external loop on the 
sets Si (0 < i < n) and an inner loop on the single 
items of the set Si. Let 

P = < y :  Y(rl ° 6),j, Ix, v, T-stack> 
be a generic item. Following Earley's schema, the 
parser invokes three phases on the item P: 
completer, predictor and scanner. Because of the 
derivation of traces (e) from the u-triples in T- 
stack, we need to add some code (the so-called 
pseudo-phases)  that deals with completion,  
prediction and scanning of these entities. 
Completer: When 5 is an empty sequence (all the 

d-quad sequence has been traversed) and the top 
of T-stack is the empty set ~ (all the triples 
concerning this item have been satisfied), the 
dotted rule has been completely analyzed. The 
completer looks for the items in Sj which were 
waiting for completion (return items; j is the 
return Position of the item P). The retum items 
must contain a dotted rule where the dot 
immediately precedes a d-quad <R,Y,ux,Xx>, 
where Y is the head category of  the dotted rule in 
the item P. Their generic form is <x: X(L • 
<R,Y,ux,'tx> 4), J', g', v', T-stack'>. These items 
from Sj are inserted into Si after having 
advanced the dot to the right of <R,Y,ux,'Cx>. 
Before inserting the items, we need updating the 
T-stack component, because some u-triples could 
have been satisfied (and, then, deleted from the 
T-stack). The new T-stack" is the T-stack of the 
completed item after popping the top element O. 

Predictor: If the dotted rule of P has a d-quad 
<Rs,Z~,us, zV~ immediately after the dot, then the 
parser is expecting a subtree headed by a word of 
category ZS. This expectation is encoded by 
inserting a new item (predicted item) in the set, 
for each rule associated with Z5 (of the form 
z:Zs(0)). Again, each u-index of the new item (d- 
quad sequence 0) is replaced by a progressive 
integer. The v-index component of the predicted 
item is set to u& Finally, the parser prepares the 
new T-stack', by pushing the new u-triples 
introduced by "c5, that are to be satisfied by the 
items predicted after the current item. This 
operation is accomplished by the primitive 
PUSH-UNION, which also accounts for the non 
repetition of u-triples in T-stack. As stated in the 
der ivat ion relat ion through the UNION 
operation, there cannot be two u-triples with the 
same relation and syntactic category in T-stack. 
In case of a repetition of a u-triple, PUSH deletes 
the old u-triple and inserts the new one (with the 
same u-index) in the topmost set. Finally, 
INSERT joins the new item to the set S i. 

The  pseudopredic tor  accounts for the 
satisfaction of the the u-triples when the 
appropriate conditions hold. The current d-quad 
in P, <R&Z3,u&'cZ~>, can be the dependent which 
satisfies the u-triple <u,Rs,Zr> in T-stack (the 
UNION operation gathers all the u-triples 
scattered through the T-stack): in addition to 
updating T-stack (PUSH(QS,T-stack)) and 
inserting the u-index u5 in the v component as 
usual, the parser also inserts the u-index u in the 
Ix component to coindex the appropriate distant 
element. Then it inserts an item (trace item) with 
a fictitious dotted dependency rule for the trace. 

Scanner: When the dot precedes the symbol #, the 
parser can scan the current input word wi (if y, 
the head of the item P, is equal to it), or 
pseudoscan a trace item, respectively. The result 
is the insertion of a new item in the subsequent 
set (S i+1) or the same set (S i), respectively. 

At the end of the external loop (termination), the 
sentence is accepted if an item of a root category Q 
with a dotted rule completely recognized, spanning 
the whole sentence (Position=0), an empty T-stack 
must be in the set Sn. 

3.1. An example 
In this section, we trace the parsing of  the 

sentence "Beans I know John likes". In this 
example we neglect the problem of subject-verb 
agreement: it can bc coded by inserting the AGR 
features in the category label (in a similar way to 
the +EX feature in the grammar G1); the comments 
on the right help to follow the events; the separator 
symbol I helps to keep trace of the sets in the stack; 
finally, we have left in plain text the d-quad 
sequence of the dotted rules; the other components 
of the items appear in boldface. 

So 
<know: V+EX (* <VISITOR, N. l. 0 >  (irtitiafization) 

<SUBL N. O, ~>  
# 
<SCOMP. V. O. <1. OBJ. N>>), 
O, O, 0,[]> 

<likes: V (" <SUB J, N, O, 0 >  (initialization) 
# 

<OBJ. V. O. 0>),  
0, 0, 0,H> 

<beans: N (" # ), 0, 0, 1,[O]> (predictor "know" ) 
<h N (* # ), 0, 0, 1, [ 0]> (predictor "know" ) 

<John: N (" # ), 0, 0, 1, [0]> (predictor "know" ) 
<beans: N (" # ), O, O, O, [0]> (predictor "likes") 
<h N (" # ), O, O, O, [ 0l> (predictor "likes" ) 
<Jolm: N ( * # ), O, O, O, [0 ]> (predictor "likes" ) 

S 1 [beans]  
<beans: N (# *), O, O, 1, [0]> (scanner) 
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<beans: N (# *), 0, 0, 0, [0]> (scanne0 
<know: V+EX (<VISITOR, N, 1, ~> (completer "beans") 

•<SUBJ. N, O, ~ >  
# 
<SCOMP, V, 0, <l, OBJ, N>>), 
0, 0, 0, [l> 

<likes: V (<SUB J, N, 0, O> 
. #  

<OBJ, V, 0, Q)>), 
0, 0, 0, []> 

<beans: N (* #), 1, 0, 0,[~]> 
<I: N (" #), 1, 0, 0, [9]> 
<John: N (• # ), 1, 0, 0, [~]> 

(completer "beans") 

(predictor "know" ) 
(predictor "know" ) 
(predictor "know" ) 

S2 [I] 
<I: N (# "), 1, 0, 0, [~10]> 
<know: V+gx (<VISITOR. N. 1, Q)> 

<SUB J, N, 0, ¢~1> 
• #  
<SCOMP. V. 0, <1, OBJ. N>>), 
0, 0, 0, []> 

(scanner) 
(completer 'T') 

S3 [know] 
<know: V +EX (<VISITOR, N, 1, ~> (scanner) 

<SUB J, N, 0, O> 
# 
* <SCOMP, V, 0, <1, OBJ, N>>), 
0, 0, 0, []> 

<likes: V (• <SUBJ, N, 0. O> (predictor"know") 
# 
<OBJ, V, 0, ~)>), 
3, 0, 0, [ {<1, OBJ, N>}]> 

<beans: N (" # ), 3, 0, 2,[{<1, OBJ, N>} 19]> (p. "know") 
<I:N (° #), 3, 0, 2, [ {<1, OBJ, N>}IO]> (p. "know" ) 
<Jobn:N(* # ), 3, 0, 2, [{<I, OBJ, N>}I~]> (p."know") 
<beans: N (• # ), 3, 0, 0, [{<1, OBJ, N>}IO]> (p. "likes" ) 
<I: N (* #), 3, 0, 0, [{<1, OBJ, N>}IO]> (p. "likes" ) 
<John:N( • #), 3, 0, 0, [{<1, OBJ, N>}I~]> (p. "likes" ) 

$4 [John] 
<John: N (# *), 3, 0, 2, [ {<1, OBJ, N>} [~]> (scanner) 
<John: N (# "), 3, 0, 0, [ {<1, OBJ, N>} 10]> (scanner) 
<know: V÷EX (<VISITOR, N, 2, ~> (completer "John") 

• <SUBJ, N, 0, ~)> 
# 
<SCOMP, V, 0, <2, OBJ, N>>), 
3, 0, 0, [ {<1, OBJ, N>}I> 

<likes: V (<SUB J, N, 0, @> (completer "John") 
• #  

<OBJ, V, 0, @>), 
3, 0, 0, [{<1, OBJ, N>}]> 

Ss [likes] 
<likes: V (<SUBJ, N, 0, ~> 

# 
(scanner) 

* <OBJ, N, 0, O>),  

0, 0, 0, [{<1, OBJ, N>}]> 
<beans: N (* # ), 5, 0, 0, [{<1, OBJ, N>}/O]> 
<I: N (* #), 5, 0, 0, [{<1, OBJ, N>}I~I> 
<John: N ( * # ), 5, 0, 0, [{<1, OBJ, N>} [0]> 
<lz: N (* #), 5, 0, 0, [0]> 
<~: N (# "), 5, 0, 0, [0]> 
<likes: V (<SUB J, N, 0, ~> 

# 

<OBJ, N, 0, ~ > •  ), 
3, 0, 0, [0]> 

<know: V+EX (<VISITOR, N, 1, O> 
<SUB J, N, 0, ~> 
# 

<SCOMP, V, 0, <1, OBJ, N>> * ), 
0, 0, 0, []> 

(p. "likes" ) 
(p. "likes" ) 
(p. "likes" ) 

(pseudopredictor) 
(pseudopredictor) 

(completer) 

(completer) 

3.2. Complexi ty  results  
The parser has a polynomial  complexity.  The 

space complexity o f  the parser, i.e. the number o f  
items, is O(n 3+ IDHCI). Each item is a 5-tuple 
<Dotted-rule, Position, g-index, v-index, T-stack>: 
Dotted rules are in a number which is a constant of  
the grammar, but in off-line parsing this number is 
bounded by O(n). Position is bounded by O(n). g- 
index and v- index are two integers that keep trace 
of  u-triple satisfaction, and do not add an own 
contribution to the complexity count. T-stack has a 
number  of  e lements  which  depends  on  the 
maximum length of  the chain of  predictions. Since 
the number of  rules is O(n), the size of  the stack is 
O(n). The elements o f  T-stack contain all the u-  
triples introduced up to an item and which are to 
be satisfied (deleted) yet. A u-triple is of  the form 
<u,R,Y>: u is an integer that is ininfluent, R e  D, 
Y~ C. Because of  the PUSH-UNION operation on 
T-stack, the number of  possible u-triples scattered 
throughout the elements of  T-stack is IDIICI. The 
number  of  d i f fe ren t  s tacks is given by the 
dispositions of  IDIICI u-triples on O(n) elements; 
so, O(n IDIICI). Then, the number of  items in a set of  
items is bounded by O(n 2+ IDIICI) and there are n 
sets of  items (O(n 3+ IDI ICI)). 

The time complexity of  the parser is O(n 7+3 IDI 
ICI). Each of  the three phases executes an INSERT 
of  an item in a set. The cost o f  the INSERT 
operation depends on the implementation of  the set 
data structure; we assume it to be linear (O(n 2+ 
IDIICl)) to make  easy  calcula t ions .  The phase 
completer executes at most  O(n 2+ IDIICI)) actions 
per each pair of  items (two for-loops). The pairs of  
items are O(n 6+2 IDI El). But to execute the action 
of  the completer,  one o f  the sets must have the 
index equal to one of  the positions, so O(n 5 + 21DI 
~Cl). Thus, the completer costs O(n 7+3 IDI ICI). The 
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phase predictor, executes O(n) actions for each 
item to introduce the predictions ("for each rule" 
loop); then, the loop of the pseudopredictor is 
O(IDIICI) (UNION+DELETE), a grammar factor. 
Finally it inserts the new item in the set (O(n 2+ 
iDllCl)). The total number of items is O(n 3+ IDI ICI) 
and, so, the cost of the predictor O(n ~i + 21DI ICI). 
The phase scanner executes the INSERT operation 
per item, and the items are at most O(n 3+ IDI ICI). 
Thus, the scanner costs O(n 5+2 IDI I¢1). The total 
complexity of the algorithm is O(n 7+3 IDIICI). 

We are conscious that the (grammar dependent) 
exponent can be very high, but the treatment of the 
set data structure for the u-triples requires 
expensive operations (cf. a stack). Actually this 
formalism is able to deal a high degree of free 
word order (for a comparable result, see (Becker, 
Rambow 1995)). Also, the complexity factor due 
to the cardinalities of the sets D and C is greatly 
reduced if we consider that linguistic constraints 
restrict the displacement of several categories and 
relations. A better estimation of complexity can 
only be done when we consider empirically the 
impact of the linguistic constraints in writing a 
wide coverage grammar. 

4. Conclusions 

The paper has described a dependency 
formalism and an Earley-type parser with a 
l.~lynomial complexity. 

The introduction of non lexical categories in a 
dependency formalism allows the treatment of 
long distance dependencies and of free word order, 
and to aovid the NP-completeness. The grammar 
factor at the exponent can be reduced if we 
flmherly restrict the long distance dependencies 
through the introduction of a more restrictive data 
structure than the set, as it happens in some 
constrained phrase structure formalisms (Vijay- 
Schanker, Weir 1994). 

A compilation step in the parser can produce 
parse tables that account for left-corner 
information (this optimization of  the Earley 
algorithm has already been proven fruitful in 
(Lombardo, Lesmo 1996)). 
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