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Abstract 
While the notion of a cooperative response has been 
the focus of considerable research in natural lan- 
guage dialogue systems, there has been little empir- 
ical work demonstrating how such responses lead 
to more efficient, natural, or successful dialogues. 
This paper presents an experimental evaluation of 
two alternative response strategies in TOOT, a spo- 
ken dialogue agent that allows users to access train 
schedules stored on the web via a telephone conver- 
sation. We compare the performance of two ver- 
sions of TOOT (literal and cooperative), by hav- 
ing users carry out a set of tasks with each ver- 
sion. By using hypothesis testing methods, we show 
that a combination of response strategy, application 
task, and task/strategy interactions account for var- 
ious types of performance differences. By using 
the PARADISE evaluation framework to estimate 
an overall performance function, we identify inter- 
dependencies that exist between speech recognition 
and response strategy. Our results elaborate the con- 
ditions under which TOOT' s cooperative rather than 
literal strategy contributes to greater performance. 

1 Introduction 
The notion of a cooperative response has been the 
focus of considerable research in natural language 
and spoken dialogue systems (Allen and Perrault, 
1980; Mays, 1980; Kaplan, 1981; Joshi et al., 1984; 
McCoy, 1989; Pao and Wilpon, 1992; Moore, 1994; 
Seneff et al., 1995; Goddeau et al., 1996; Pierac- 
cini et al., 1997). However, despite the existence 
of many algorithms for generating cooperative re- 
sponses, there has been little empirical work ad- 
dressing the evaluation of such algorithms in the 
context of real-time natural language dialogue sys- 
tems with human users. Thus it is unclear un- 
der what conditions cooperative responses result in 
more efficient or efficacious dialogues. 

This paper presents an empirical evaluation 

of two alternative algorithms for responding to 
database queries in TOOT, a spoken dialogue agent 
for accessing online train schedules via a telephone 
conversation. We conduct an experiment in which 
12 users carry out 4 tasks of varying difficulty with 
one of two versions of TOOT (literal and coopera- 
tive TOOT), resulting in a corpus of 48 dialogues. 
The values for a wide range of evaluation measures 
are then extracted from this corpus. We analyze 
our data using both traditional hypothesis testing 
methods and the PARADISE (Walker et al., 1997; 
Walker et al., 1998) methodology for estimating a 
performance function. Hypothesis testing shows 
that while differences among some evaluation mea- 
sures depend on the response strategy (literal or co- 
operative), other differences are a function of appli- 
cation task and task/strategy interactions. A PAR- 
ADISE assessment of the contribution of each eval- 
uation measure to overall performance shows that 
strategy-dependent dialogue phenomena as well as 
phenomena associated with speech recognition sig- 
nificantly predict performance. Our results identify 
the conditions under which TOOT' s cooperative re- 
sponse strategy leads to greater agent performance. 

2 T O O T  

TOOT allows users to access online AMTRAK train 
schedules via a telephone dialogue, as in Figure 1.1 
(All examples are from the experiment in Section 3.) 
We have built two versions of TOOT: literal TOOT 
(LT) and cooperative TOOT (CT). LT and CT have 
equivalent functionality, but use different response 
strategies to present tabular results of web queries 
in a displayless environment. 2 LT and CT incorpo- 
rate many of the types of database responses in the 

IOur domain was chosen to afford future comparison with 
similar systems, e.g., (Danieli and Gerbino, 1995). 

"Initiative (Walker et al., 1998) and conlirmation (Danieli 
and Gerbino, 1995) strategies are equivalent in LT and CT, and 
were chosen to reduce speech recognition errors. 
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T: Hi, this is the Amtrak train schedule system. 
Which city do you want to go to? 

U: Philadelphia. 
T: What city do you want to go to Philadelphia from? 
U: New York City. 
T: On what day of the week do you want to go to 

Philadelphia from New York City? 
U: On the weekend. 
T: What time do you want to leave on the weekend? 
U: 4o'clockpm. 
T: Do you want me to find the trains going to 

Philadelphia from New York City on the 
weekend around 4 o' clock pm now? 

U: Yes. 
T: I am going to query the Amtrak website for you. 

This may take some time if the internet traffic is 
heavy. Please wait patiently. [30 second pause] 
There ate 7 trains available around 4 o'clock 
pro. Here are the f irst  3 trains. The 1st train 
leaves at 3:00 pm on Saturday and Sunda3; attd 
it takes I hour 12 rains. The 2rid train leaves at 
3:20 pm ever3' da3; and it takes I hour 22 rains. 
The 3rd train leaves at 4:00 pet Oil Sllltda), and 
it takes 1 hour 12 minx. Do you want to heal" the 
test o f  the trains? 

U: No. 
T: Do you want to continue and lind a new set of 

trains? 
U: No. 
T: Thank you for using the Amtrak schedule system. 

See you next time. 

Figure 1 : Example dialogue with (literal) TOOT. 

literature into relatively literal and cooperative re- 
sponse strategies. (More sophisticated cooperative 
strategies could be imagined.) When there is too 

much  i n f o r m a t i o n  to present in a single utterance, 
UF groups the information into units of 3 trains, 
then presents each unit, as in the italicized portion 
of Figure 1. In contrast, CT summarizes the range 
of trains available, then tells the user to either list the 
trains or further constrain the query. In CT, the ital- 
icized portion of Figure 1 would be replaced with 
the following response: 

(1) There are 7 trains available around 4 o'clock pro. 
Here is the earliest train we have. The f r s t  train 
leaves at 3:00 pm on Satulday and Sunday, attd it 
takes 1 hour 12 rains. Hete is the latest train we 
have. The seventh train leaves at 5:00pro oil Satur- 
day and it takes 1 hour 12 mitts. Please say "list" 
to hear trains 3 at a time, or say "add constraint" 
to constrain your departure time or travel day, or 
say "continue" i f  nty answer was sufficient, or say 
"repeat" to hear this message again. 

LT's response incrementally presents the set of 
trains that match the query, until the user tells LT to 
stop. Enumerating large lists, even incrementally, 
can lead to information overload. CT's response 
is more cooperative because it better respects the 
resource limitations of the listener. CT presents a 
subset of  the matching trains using a summary re- 
sponse (Pao and Wilpon, 1992), followed by an op- 
tion to reduce the information to be retrieved (Pier- 
accini et al., 1997; Goddeau et al., 1996; Seneff et 
al., 1995; Pao and Wilpon, 1992). 

If  there is no in fo rma t ion  that matches a query, 
LT reports only the lack of an answer to the query, 
as in the following dialogue excerpt: 

(2) There ate no trains going to Chicago J)om 
Philadelphia on Sunday around 10:30 am. Do you 
want to continue atM f ind a new set o f  trains? 

CT automatically relaxes the user's time constraint 
and allows the user to perform other relaxations: 

(3) There are ,to trains going to Chicago from 
Philadelphia on Sunday around 10:30 atn. The 
closest earlier train leaves at 9:28 attt evel T day, 
attd it takes 1 day 3 hours 36 miJts. The closest later 

t ra in  leaves at 11:45 ant on Saturday attd Sund~o; 
attd it takes 22 hours 5 milts. Please say "relax" 
to change your departure time or travel day or say 
"continue" i f  nty attswer was sufficient, or say "re- 

peat"  to hear this ntessage again. 

CT's response is more cooperative since identify- 
ing the source of a query failure can help block in- 
correct user inferences (Pieraccini et al., 1997; Pao 
and Wilpon, 1992; Joshi et al., 1984; Kaplan, 1981; 
Mays, 1980). LT's response could lead the user to 
believe that there are no trains on Sunday. 

When there are I-3 trains that match a query, both 
LT and CT list the trains: 

(4) There are 2 trains available around 6 pm. The first 
train leaves at 6:05 pm every da); attd it rakes 5 
hours 10 rains. The second train leaves at 6:30 pm 
ever), day, and it rakes 2 days 11 hours 30 rains. Do 
you want to continue and f ind a new set o f  trains ? 

TOOT is implemented using a platform for spo- 
ken dialogue agents (Kamm et al., 1997) that com- 
bines automatic speech recognition (ASR), text- 
to-speech (TTS), a phone interface, and modules 
for specifying a dialogue manager and application 
fnnctions. ASR in our platform supports barge- in ,  

an advanced functionality which allows users to in- 
terrupt an agent when it is speaking. 
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The dialogue manager  uses a finite state machine 
to implement dialogue strategies. Each state spec- 
ifies 1) an initial prompt  (or response) which the 
agent says upon entering the state (such prompts of- 
ten elicit parameter values); 2) a help prompt which 
the agent says if the user says help; 3) rejection 
prompts which the agent says if the confidence level 
of  ASR is too low (rejection prompts typically ask 
the user to repeat or paraphrase their utterance); and 
4) t imeout prompts which the agent says if the user 
doesn ' t  say anything within a specified time frame 
(timeout prompts are often suggestions about what 
to say). A context-free grammar specifies what ASR 
can recognize in each state. Transitions between 
states are driven by semantic interpretation. 

TOOT's  application functions access and process 
information on A M T R A K ' S  web site. Given a set of  
constraints, the functions return a table listing all 
matching trains in a specified temporal interval, or 
within an hour of  a specified timepoint. This table is 
converted to a natural language response which can 
be realized by TTS through the use of  templates for 
either the LT or the CT response type; values in the 
table instantiate template variables. 

3 E x p e r i m e n t a l  D e s i g n  

The experimental instructions were given on a web 
page, which consisted of  a description of  T O O T s  
functionality, hints for talking to TOOT, and links 
to 4 task pages. Each task page contained a task 
scenario, the hints, instructions for calling TOOT, 
an~l a web survey designed to ascertain the depart 
and travel times obtained by the user and to measure 
user perceptions of  task success and agent usability. 
Users were 12 researchers not involved with the de- 
sign or implementation of  TOOT; 6 users were ran- 
domly assigned to LT and 6 to CT. Users read the in- 
structions in their office and then called TOOT from 
their phone. Our experiment  yielded a corpus of  48 
dialogues (1344 total turns; 214 minutes of  speech). 

Users were provided with task scenarios for two 
reasons. First, our hypothesis  was that performance 
depended not only on response strategy, but also on 
task difficulty. To include the task as a factor in our 
experiment, we needed to ensure that users executed 
the same tasks and that they varied in difficulty. 

Figure 2 shows the task scenarios used in our ex- 
periment. Our hypotheses  about agent performance 
are summarized in Table 1. We predicted that op- 
timal performance would occur whenever the cor- 
rect task solution was included in TOOT' s initial re- 

Task 1 (Exact-Match): Try to find a train going to 
Boston from New York City on Saturday at 6:00 
pm. If you cannot find an exact match, find the one 
with the closest departure time. Write down the ex- 
act departure time of the train you found as well 
as the total travel time. 

Task2 (No-Match-l): Try to find a train going to 
Chicago from Philadelphia on Sunday at 10:30 
am. If you cannot find an exact match, find the one 
with the closest departure time. Write down the ex- 
act departure time of the train you found as well 
as the total travel time. 

Task3 (No-Match-2): Try to find a train going to 
Boston from Washington D.C. on Thursday at 
3:30 pm. If you cannot find an exact match, lind 
the one between 12:00 pm and 5:00 pm that has 
the shortest travel time. Write down the exact de- 
parture time of the train you found as well as the 
total travel time. 

Task4 (Too-Much-Info/Early-Answer): Try to find a 
train going to Philadelphia from New York City 
on the weekend at 4:00 pm. If you cannot find 
an exact match, find the one with the closest de- 
parture time. Please write down the exact depar- 
ture time of the train you found as well as the total 
travel time. ("weekend" means the train depao.me 
date includes either Saturday or Sunday) 

Figure 2: Task scenarios. 

sponse to a web query (i.e., when the task was easy). 
Task 1 (dialogue fragment (4) above) produced 

a query that resulted in 2 matching trains, one of 
which was the train requested in the scenario. Since 
the response strategies of  LT and CT were identical 
under this condition, we predicted identical LT and 
CT performance, as shown in Table 1.3 

Tasks 2 (dialogue fragments (2) and (3)) and 3 led 
to queries that yielded no matching trains. In Task 2 
users were told to find the closest train. Since only 
CT included this extra information in its response, 
we predicted that it would perform better than LT. 

In Task 3 users were told to find the shortest 
train within a new departure interval. Since neither 
LT nor CT provided this information initially, we 
hypothesized comparable LT and CT performance. 
However,  since CT allowed users to change just  
their departure time while LT required users to con- 
struct a whole new query, we also thought it possible 
that CT might perform slightly better than LT. 

Task 4 (Figure 1 and dialogue fragment (1)) led to 

3Since Task 1 was the easiest,  it was always performed first. 
The  order  of  the remaining tasks was randomized across users. 
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Task LT Strategy CT Strategy Hypothesis 
Exact-Match Say it Say it LT equal to CT 
No-Match-1 Say No Match Relax Time Constraint LT worse than CT 
No-Match-2 Say No Match Relax Time Constraint IX equal to or worse than CT 

Too-Mucb-Info/Early-Answer List 3 then more? Summarize; Give Options LT better than CT 

Table 1 : Hypothesized performance of literal TOOT (LT) versus cooperative TOOT (CT). 

a query where the 3rd of 7 matching trains was the 
desired answer. Since only LT included this train in 
its initial response (by luck, due to the train's po- 
sition in the list of matches), we predicted that LT 
would perform better than CT. Note that this pre- 
diction is highly dependent on the database. If the 
desired train had been last in the list, we would have 
predicted that CT would perform better than LT. 

attribute value 
arrival-city 
depart-city 
depart-day 
depart-range 
exact-depart-time 
total-travel-time 

Philadelphia 
New York City 
weekend 
4:00 pm 
4:00 pm 
1 hour 12 mins 

Table 2: Scenario key, Task 4. 

A second reason for having task scenarios 
was that it allowed us to objectively determine 
whether users achieved their tasks. Following PAR- 
ADISE (Walker et al., 1997), we defined a "key" for 
each scenario using an attribute value matrix (AVM) 
task representation, as in Table 2. The key indicates 
the attribute values that must be exchanged between 
the agent and user by the end of the dialogue. If 
the task is successfully completed in a scenario ex- 
ecution (as in Figure 1), the AVM representing the 
dialogue is identical to the key. 

4 Measuring Aspects of  Performance 

Once the experiment was completed, values for a 
range of evaluation measures were extracted from 
the resulting data (dialogue recordings, system logs, 
and web survey responses). Following PARADISE, 
we organize our measures along four performance 
dimensions, as shown in Figure 3. 

To measure task success, we compared the sce- 
nario key and scenario execution AVMs for each 
dialogue, using the Kappa  statistic (Walker et al., 
1997). For the scenario execution AVM, the values 
for arrival-city, depart-city, depart-day, and depart- 
range were extracted from system logs of ASR re- 

• Task Success: Kappa, Completed 

• Dialogue Quality: Help Requests, ASR Rejec- 
tions, Timeouts, Mean Recognition, Barge Ins 

• Dialogue Efficiency: System Turns, User Turns, 
Elapsed Time 

• User Satisfaction: User Satisfaction (based on 
TI'S Performance, ASR Performance, Task Ease, 
Interaction Pace, User Expertise, System Response, 
Expected Behavior, Future Use) 

Figure 3: Measures used to evaluate TOOT. 

suits. The exact-depart-time and total-travel-time 
were extracted from the web survey. To measure 
users' percel)tions of task success, the survey also 
asked users whether they had successfully Com- 
pleted the task. 

To measure dialogue quality or naturalness, we 
logged the dialogue manager's behavior on entering 
and exiting each state in the finite state machine (re- 
call Section 2). We then extracted the number of 
prompts per dialogue due to Help Requests, ASR 
Rejections, and Timeouts. Obtaining the values 
for other quality measures required manual analysis. 
We listened to the recordings and compared them to 
the logged ASR results, to calculate concept accu- 
racy (intuitively, semantic interpretation accuracy) 
for each utterance. This was then used, in com- 
bination with ASR rejections, to compute a Mean 
Recognition score per dialogue. We also listened 
to the recordings to determine how many times the 
user interrupted the agent (Barge Ins). 

To measure dialogue efficiency, the number of 
System Turns and User Turns were extracted from 
the dialogue manager log, and the total Elapsed 
Time was determined from the recording. 

To measure user satisfaction 4, users responded to 
the web survey in Figure 4, which assessed their 
subjective evaluation of the agent's performance. 
Each question was designed to measure a pattie- 

4Questionnaire-based user satisfaction ratings (Shriberg et 
al., 1992; Polifroni et al., 1992) have been frequently used in 
the literature as an external indicator of agent usability. 
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• Was the system easy to understand in this conver- 
sation? (TTS Performance) 

• In this conversation, did the system understand 
what you said? (ASR Performance) 

• In this conversation, was it easy to find the schedule 
you wanted? (Task Ease) 

• Was the pace of interaction with the system appro- 
priate in this conversation? (Interaction Pace) 

o In this conversation, did you know what you could 
say at each point of the dialogue? (User Expertise) 

• How often was the system sluggish and slow to 
reply to you in this conversation? (System Re- 
sponse) 

• Did the system work the way you expected it to in 
this conversation? (Expected Behavior) 

• From your current experience with using our sys- 
tem, do you think you'd use this regularly to access 
train schedules when you are away li"om your desk? 
(Future Use) 

Figure 4: User satisfaction survey and associated 
evaluation measures. 

ular factor, e.g., System Response. Responses 
ranged over n pre-defined values (e.g., almost never, 
rarel); sometimes, often, almost always), which 
were mapped to an integer in 1 ...7~. Cumulative 
User Satisfaction was computed by summing each 
question' s score. 

5 Strategy and Task Differences 

To test the hypotheses in Table 1 we use analysis 
of  variance (ANOVA) (Cohen, 1995) to determine 
whether  the values of  any of  the evaluation mea- 
sures in Figure 3 significantly differ as a function 
of  response strategy and task scenario. 

First, for each task scenario (4 sets of  12 dia- 
logues, 6 per agent and 1 per user), we perform 
an ANOVA for each evaluation measure as a func- 
tion of  response strategy. For Task 1, there are 
no significant differences between the 6 LT and 6 
CT dialogues for any evaluation measure, which is 
consistent with Table 1. For Task 2, mean Com-  
ple ted (perceived task success rate) is 50% for LT 
and 100% for CT (p < .05). In addition, the aver- 
age number  of  Help  Reques ts  per LT dialogue is 
0, while for CT the average is 2.2 (p < .05). Thus, 
for Task 2, CT has a better perceived task success 
rate than LT, despite the fact that users needed more 
help to use CT. Only the perceived task success dif- 
ference is consistent with the Task 2 prediction in 

Table 1. 5 For Task 3, there are no significant differ- 
ences between LT and CT, which again matches our 
predictions. Finally, for Task 4, mean K a p p a  (ac- 
tual task success rate) is 100% for LT but only 65% 
for CT (p < .01). 6 Like Task 2, this result suggests 
that some type of  task success measure is an impor- 
tant predictor of  agent performance. Surprisingly, 
we found that LT and CT did not differ with respect 
to any efficiency measure, in any task]  

Next, we combine all of  our data (48 dialogues), 
and perform a two-way ANOVA for each evaluation 
measure as a function of  strategy and task. An inter- 
action between response strategy and task scenario 
is significant for F u t u r e  Use (p < .03). For task 1, 
the likelihood of  F u t u r e  Use is the same for LT and 
CT; for task 2, the likelihood is higher for CT; for 
tasks 3 and 4, the likelihood is higher for LT. Thus, 
the results for tasks 1, 2, and 4, but not for Task 3, 
are consistent with the predictions in Table 1. How- 
ever, Task 3 was the most difficult task (see below), 
and sometimes led to unexpected user behavior with 
both agents. A strategy/task interaction is also sig- 
nificant for He lp  Reques ts  (p < .02). For tasks 1 
and 3, the number  of  requests is higher for LT; for 
tasks 2 and 4, the number is higher for CT. 

No evaluation measures significantly differ as a 
function of response strategy, which is consistent 
with Table 1. Since the task scenarios were con- 
structed to yield comparable performance in Tasks 
1 and 3, better CT performance in Task 2, and better 
LT performance in Task 4, we expected that overall, 
LT and CT performance would be cotnparable. 

In contrast, many measures (User Satisfaction, 
Elapsed  Time,  Sys tem Turns,  User  Turns ,  ASR  
Performance, and Task Ease)  differ as a function 
of  task scenario (p < .03), confirming that our tasks 
vary with respect to difficulty. Our results suggest 
that the ordering of  the tasks from easiest to most 
difficult is 1, 4, 2, and 3, 8 which is consistent with 
our predictions. Recall that for Task 1, the initial 
query was designed to yield the correct train for 
both LT and CT. For tasks 4 and 2, the initial query 
was designed to yield the correct train for only one 
agent, and to require a follow-up query for the other. 

5However, the analysis in Section 6 suggests that Help Re- 
quests is not a good predictor of pertbrmance. 

61n our data, actual task success implies perceived task suc- 
cess, but not vice-versa. 

7However, our "difficult" tasks were not that difficult (we 
wanted to minimize subjects' time commitment). 

SThis ordering is observed for all the listed measures except 
User Turns, which reverses tasks 4 and 1. 
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For Task 3, the initial query was designed to require 
a follow-up query for both agents. 

6 Performance Function Estimation 
While hypothesis testing tells us how each evalua- 
tion measure differs as a function of strategy and/or 
task, it does not tell us how to tradeoff or com- 
bine results from multiple measures. Understand- 
ing such tradeoffs is especially important when dif- 
ferent measures yield different performance predic- 
tions (e.g., recall the Task 2 hypothesis testing re- 
sults for Completed and Help Requests). 

[ MAXIMIZE UN~R SATLqFACT[ON] 

EFFICIENCy MEASURESJ MEAS LIRES 

Figure 5: PARADISE's structure of objectives for 
spoken dialogue performance. 

To assess the relative contribution of each eval- 
uation measure to performance, we use PAR- 
ADISE (Walker et al., 1997) to derive a perfor- 
mance function from our data. PARADISE draws 
on ideas in multi-attribute decision theory (Keeney 
and Raiffa, 1976) to posit the model shown in Fig- 
ure 5, then uses multivariate linear regression to es- 
timate a quantitative performance function based on 
this model. Linear regression produces coefficients 
describing the relative contribution of predictor fac- 
tors in accounting for the variance in a predicted fac- 
tor. In PARADISE, the success and cost measures 
are predictors, while user satisfaction is predicted. 
Figure 3 showed how the measures used to evaluate 
TOOT instantiate the PARADISE model. 

The application of PARADISE to the TOOT data 
shows that the only significant contributors to User 
Satisfaction are Completed (Comp), Mean Recog- 
nition (MR) and Barge Ins (BI), and yields the fol- 
lowing performance function: 

P e r f  = .45H(Comp) + - 

Completed is significant at p < .0002, Mean 
Recognition 9 at p < .003, and Barge Ins at p < 
.0004; these account for 47% of the variance in User 
Satisfaction..U is a Z score normalization func- 
tion (Cohen, 1995) and guarantees that the coeffi- 

9Since we measure recognition rather than misrecognition, 
this "'cost" thctor has a positive coefficient. 

cients directly indicate the relative contribution of 
each factor to performance. 

Our performance function demonstrates that 
TOOT performance involves task success and di- 
alogue quality factors. Analysis of variance sug- 
gested that task success was a likely performance 
factor. PARADISE confirms this hypothesis, and 
demonstrates that perceived rather than actual task 
success is the useful predictor. While 39 dialogues 
were perceived to have been successful, only 27 
were actually successful. 

Results that were not apparent from the analysis 
of variance are that Mean Recognition and Barge 
Ins are also predictors of performance. The mean 
recognition for our corpus is 85%. Apparently, 
users of both LT and CT are bothered by dialogue 
phenomena associated with poor recognition. For 
example, system misunderstandings (which result 
from ASR misrecognitions) and system requests to 
repeat what users have said (which result from ASR 
rejections) both make dialogues seem less natural. 

While barge-in is usually considered an advanced 
(and desirable) ASR capability, our performance 
function suggests that in TOOT, allowing users to 
interrupt actually degrades performance. Examina- 
tion of our transcripts shows that users sometimes 
use barge-in to shorten TOOTs  prompts. This often 
circumvents TOOTs  confirmation strategy, which 
incorporates speech recognition results into prompts 
to make the user aware of misrecognitions. 

Surprisingly, no efficiency measures are signif- 
icant predictors of performance. This draws into 
question the frequently made assumption that ell 
ficiency is one of the most important measures of 
system performance, and instead suggests that users 
are more attuned to both task success and qualitative 
aspects of the dialogue, or that efficiency is highly 
correlated with some of these factors. 

However, analysis of subsets of our data suggests 
that efficiency measures can become important per- 
formance predictors when the more primary effects 
are factored out. For example, when a regression 
is performed on the 11 TOOT dialogues with per- 
fect Mean Recognition, the significant contribu- 
tors to performance become Completed (p < .05), 
Elapsed time (p < .04), User Turns (p < .03) and 
Barge Ins (p < 0.0007) (accounting for 87% of the 
variance). Thus, in the presence of perfect ASR, 
efficiency becomes important. When a regression 
is performed using the 39 dialogues where users 
thought they had successfully completed the task 
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(perfect Completed), the significant factors become 
Elapsed time (p < .002), Timeouts (p < .002), and 
Barge Ins (p < .02) (58% of the variance). 

Applying the performance function to each of our 
48 dialogues yields a performance estimate for each 
dialogue. Analysis with these estimates shows no 
significant differences for mean LT and CT perfor- 
mance. This result is consistent with the ANOVA 
result, where only one of the three (comparably 
weighted) factors in the performance function de- 
pends on response strategy (Completed). Note that 
for Tasks 2 and 4, the predictions in Table 1 do not 
hold for overall performance, despite the ANOVA 
results that the predictions do hold for some evalua- 
tion measures (e.g., Completed in Task 2). 

7 C o n c l u s i o n  

We have presented an empirical comparison of lit- 
eral and cooperative query response strategies in 
TOOT, illustrating the advantages of combining hy- 
pothesis testing and PARADISE. By using hypoth- 
esis testing to examine how a set of evaluation mea- 
sures differ as a function of response strategy and 
task, we show that TOOT's cooperative and literal 
responses can both lead to greater task success, like- 
lihood of future use, and user need for help, de- 
pending on task. By using PARADISE to derive a 
performance function, we show that a combination 
of strategy-dependent (perceived task success) and 
strategy-independent (number of barge-ins, mean 
recognition score) evaluation measures best predicts 
overall TOOT performance. Our results elaborate 
the conditions under which TOOT' s response strate- 
gies lead to greater performance, and allow us to 
make predictions. For example, our performance 
equation predicts that improving mean recognition 
and/or judiciously restricting the use of barge-in 
will enhance performance. Our current research is 
aimed at automatically adapting dialogue behavior 
in TOOT, to increase mean recognition and thus 
overall agent performance (Walker et al., 1998). 

Future work utilizing PARADISE will attempt to 
generalize our results, to make a more predictive 
model of agent performance. Performance function 
estimation needs to be done iteratively over different 
tasks and dialogue strategies. We plan to evaluate 
additional cooperative response strategies in TOOT 
(e.g., intensional summaries (Kalita et al., 1986), 
summarization and constraint elicitation in isola- 
tion), and to combine TOOT data with data from 
other agents (Walker et al., 1998). 
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