
A Test Environment for Natural Language Understanding Systems 
Li Li, Deborah A. Dahl, Lewis M. Norton, Marcia C. Linebarger, Dongdong Chen 

Unisys Corporation 
2476 Swedesford Road 

Malvern, PA 19355, U.S.A. 
{Li.Li, Daborah.Dahl, Lewis.Norton, Marcia.Linebarger, Dong.Chen}@unisys.com 

Abstract 

The Natural Language Understanding Engine 
Test Environment (ETE) is a GUI software tool 
that aids in the development and maintenance of 
large, modular, natural language understanding 
(NLU) systems. Natural language understanding 
systems are composed of modules (such as part- 
of-speech taggers, parsers and semantic 
analyzers) which are difficult to test individually 
because of the complexity of their output data 
structures. Not only are the output data 
structures of the internal modules complex, but 
also many thousands of test items (messages or 
sentences) are required to provide a reasonable 
sample of the linguistic structures of a single 
human language, even if the language is 
restricted to a particular domain. The ETE 
assists in the management and analysis of the 
thousands of complex data structures created 
during natural language processing of a large 
corpus using relational database technology in a 
network environment. 

Introduction 

Because of the complexity of the internal data 
structures and the number of test cases involved in 
testing a natural language understanding system, 
evaluation of testing results by manual 
comparison of the internal data structures is very 
difficult. The difficulty of examining NLU 
systems in turn greatly increases the difficulty of 
developing and extending the coverage of these 
systems, both because as the system increases in 

coverage and complexity, extensions become 
progressively harder to assess and because loss of 
coverage of previously working test data becomes 
harder to detect. 

The ETE addresses these problems by: 
1. managing batch input of large numbers of tdSt 

sentences or messages, whether spoken or 
written. 

2. storing the NLU system output for a batch run 
into a database. 

3. automatically comparing multiple levels of 
internal NLU data structures across batch 
runs of the same data with different engine 
versions. These data structures include part- 
of-speech tags, syntactic analyses, and 
semantic analyses. 

4. flagging and displaying changed portions of 
these data structures for an analyst's attention. 

5. providing access to a variety of database 
query options to allow an analyst to select 
inputs of potential interest, for example, those 
which took an abnormally long time to 
process, or those which contain certain words. 

6. providing a means for the analyst to annotate 
and record the quality of the various 
intermediate data structures. 

7. providing a basis for quantifying both 
regression and improvement in the NLU 
system. 

1 Testing Natural Language 
Understanding Systems 

Application level tests, in which the ability of the 
system to output the correct answer on a set of 

763 



s y s t e m  p a r a m e t e r s  

. . !  . . . . . . . . . . .  ! . . . .  • . . . .  : 

.:. , r : : : 
. . . . . . . .  b . A  . . . .  J . . . 4 . ° ~  . . . .  , . . .  

i ..... ~ i . . :  ..~: 

n+l  n+2  

test da ta  

s y s t e m  
vers ions  

Figure 1: Matrix Comparison Analysis 

inputs is measured, have been used in natural 
language processing for a number of years 
(ATIS-3 (1991), MUC-6 (1995), Harman and 
Voorhees (1996)). Although these tests were 
originally designed for comparing different 
systems, they can also be used to compare the 
performance of sequential versions of the same 
system. These kinds of black-box tests, while 
useful, do not provide insight into the correctness 
of the internal NLU data structures since they are 
only concerned with the end result, or answer 
provided by the system. They also require the 
implementation of a particular application against 
which to test. This can be time-consuming and 
also can give rise to the concern that the NLU 
processing will become slanted toward the 
particular test application as the developers 
attempt to improve the system's performance on 
that application. 

The Parseval effort (Black (1991)) attempted to 
compare parsing performance across systems 
using the Treebank as a basis for comparison. 
Although Parseval was very useful for comparing 
parses, it did not enable developers to compare 
other data structures, such as semantic 
representations. In addition, in order to 
accommodate many different parsing formalisms 
for evaluation, it does not attempt to compare 
every aspect of the parses. Finally, Treebank data 
is not always available for domains which need to 
be tested. 

King (1996) discusses the general issues in NLU 
system evaluations from a software engineering 

point of view. Flickinger et al. (1987) describe in 
very general terms a method for evaluation of 
NLU systems in a single application domain 
(database query) with a number of different 
measures, such as accuracy of lexical analysis, 
parsing, semantics, and correctness of query, 
based on a large collection of annotated English 
sentences. Neal et al. (1992) report on an effort to 
develop a more general evaluation tool for NLU 
systems. These approaches either focus on 
application level tests or presuppose the 
availability of large annotated test collections~ 
which in fact are very expensive to create and 
maintain. For the purpose of diagnostic evaluation 
of different versions of the same system, an 
annotated test corpus is not absolutely necessary 
because defects and regressions of the system can 
be discovered from its internal data structures and 
the differences between them. 

2 Matrix Comparison Analysis 
of NLU Systems 

A typical NLU system takes an input of certain 
form and produces a final as well as a set of 
intermediate analyses, for instance, parse treesl 
represented by a variety of data structures ranging 
from list to graph. These intermediate data can be 
used as "milestones" to measure the behavior of 
the underlying system and provide clues for 
determining the types and scopes of problems. 

The intermediate data can be further compared 
systematically to reveal the behavior changes of a 
system. In a synchronic comparison, different tests 
are conducted for a version of the system by 
changing its parameters, such as the presence or 
absence of the lexical server, to determine the 
impact of the module to the system. In a 
diachronic comparison, tests are conducted for 
different versions of the system with the same 
parameters, to gauge the improvements of 
development effort. In practice, any two tests can 
be compared to determine the effect of certain 
factors on the performance of a NLU system. 
Conceptually, this type of matrix analysis can be 

764 



represented in a coordinate system (Figure 1) in 
which a test is represented as a point and a 
comparison between two tests as an arrowhead 
line connecting the points. In theory, n-way and 
second order comparisons are possible, but in 
practice 2-way first order comparisons are most 
useful. 

ETE is designed for the Unisys natural language 
engine (NLE), a NL system implemented in 
Quintus prolog. NLE can take as input text 
(sentences or paragraphs) or nbest speech output 
and produce the following intermediate data 
structures as Prolog constructs: 

• tokens (flat list) 
• words (flat list) 
• part-of-speech tags (flat list) 
• lexical entries (nested attribute-value list) 
• parse trees (tree) 
• syntactic representation (graph and tree 

derived from graph) 
• semantic representation (graph and tree • 

derived from graph) 
° processing time of different stages of analyses 

The trees in this case are lines of text where 
parent-child relationships are implied by line 
indentations. A graph is expressed as a Prolog list 
of terms, in which two terms are linked if they 
have the same (constant) argument in a particular 
position. In addition to these data structures, NLE 
also generates a set of diagnostic flags, such as 
backup parse (failure to achieve a full-span parse) 
and incomplete semantic analysis. 

A special command in NLE can be called to 
produce the above data in a predefined format on 
a given corpus. 

3 The Engine Test Environment 

ETE is comprised of two components: a common 
relational database that houses the test results and 
a GUI program that manages and displays the test 
resources and results. The central database is 

stored on a file server PC and shared by the 
analysts through ETE in a Windows NT network 
environment ETE communicates with NLE 
through a TCP/IP socket and the Access database 
with Visual Basic 5.0. Large and time-consuming 
batch runs can be carried out on several machines 
and imported into the database simultaneously. 
Tests conducted on other platforms, such as Unix~ 
can be transferred into the ETE database and 
analyzed as well. 

The key functions of ETE are described below: 

Manage test  resources :  ETE provides an 
graphical interface to manage various 
resources needed for tests, including corpora, 
NLE versions and parameter settings, and 
connections to linguistic servers (Norton et al. 
(1998)). The interface also enforces the 
constraints on each test. For example, two 
tests with different corpora cannot be 
compared. 
Compare v a r i o u s  typ es  of analysis data. 
ETE employs different algorithms to compute 
the difference between different types of data 
and display the disparate regions graphically 
The comparison routines are implemented in 
Prolog except for trees. Lists comparisons are 
trivial in Prolog. Graph comparison is 
achieved in two steps. First, all linkage 
arguments in graph terms are substituted by 
variables such that links are maintained by 
unification. Second, set operations are applied 
to compute the differences. Let U(G) denote 
the variable substitution of a graph G and 
diff(Gx, Gy) the set of different terms between 
Gx and Gy, then diff(Gx, Gy) = Gx - U(Gy) 
and diff(Gy, Gx) = Gy - U(Gx), where (-) is 
the Prolog set difference operation. Under this 
definition, differences in node ordering and 
link labeling of two graphs are discounted in 
comparison. For instance, Gx = [f(a, el), 
g(el,  e2)], for which U(Gx) = [f(a, X), g(X, 
Y)], is deemed identical to Gy = [g(e3, e4), 

f(a, e3)], where ei are linkage arguments. It is 
easy to see the time complexity of dif f  is 
O(mn) for two graphs of size m and n 

765 



respectively. Trees are treated as text files and 
the DOS command fc (file comparison) is 
utilized to compare the differences. Since fc 
has several limits, we are considering 
replacing it with a tree matching algorithm 
that is more accurate and sensitive to 
linguistic structures. 

• Present a hierarchical view of batch 
analyses. We base our approach to visual 
information management upon the notion of 
"overview, filter, detail-on-demand." For each 
test, ETE displays a diagnostic report and a 
table of sentence analyses. The diagnostic 
report is an overview to direct an analyst's 
attention to the problem areas which come 
either from the system's own diagnostics, or 
from comparisons. ETE is therefore still 
useful even without every sentence being 
annotated. The sentence analyses table 
presents the intermediate data in their logical 
order and shows on demand the details of each 
type of data. 

• Enable access to a variety of database 
query capabilities. ETE stores all types of 
intermediate data as strings in the database 
and provides regular-expression based text 
search for various data. A unique feature of 
ETE is in-report query, which enables query 
options on various reports to allow an analyst 
to quickly zoom in to interesting data based on 
the diagnostic information. Compared with 
Tgrep (1992) which works only on Treebank 
trees, ETE provides a more general and 
powerful search mechanism for a complex 
database. 

• Provide graphical and contextual 
information for annotation. Annotation is a 
problem because it still takes a human. ETE 
offers flexible and easy access to the 
intermediate data within and across batch 
runs. For instance, when grading a semantic 
analysis, the analyst can bring up the lexical 
and syntactic analyses of the same sentence, 
or look at the analyses of the sentence in other 
tests at the same time, all with a few mouse 
clicks. This context information helps analysts 

to maintain consistency within and between 
themselves during annotation. 
Facilitate access to other resources and 
applications. Within ETE, an analyst can 
execute other applications, such as Microsoft 
Excel (spreadsheet), and interact with other 
databases, such as a Problem Database which 
tracks linguistic problems and an Application 
Database which records test results for 
specific applications, to offer an integrated 
development, test and diagnosis environmeni 
for a complex NLU system. The integration of 
these databases will provide a foundation to 
evaluate overall system performance. For 
instance, it would be possible to determine 
whether more accurate semantic analyses 
increase the application accuracy. 

4 Using the Engine Test 
Environment 

So far ETE has been used in the Unisys NLU 
group for the following tasks: 
• Analyze and quantify system improvements 

and regressions due to modifications to the 
system, such as expanding lexicon, grammar 
and knowledge base. In these diachronic 
analyses, we use a baseline system and 
compare subsequent versions against the 
baseline performance, as well as the previous 
version. ETE is used to filter out sentences 
with changed syntactic and semantic analyses 
so that the analyst can determine the types of 
the changes in the light of other diagnostic 
information. A new system can be 
characterized by percentage of regression and 
improvement in accuracy as well as time 
speedup. 

• Test the effects of new analysis strategies. For 
instance, ETE has been used to study if our 
system can benefit from a part-of-speech 
tagger. With ETE, we were able quantify the 
system's accuracy and speed improvements 
with different tagging options easily and 

766 



quickly on test corpora and modify the system 
and the tagger accordingly. 

Annotate parses and semantic analyses for 
quality analysis and future reference. We have 
so far used corrective and grading 
annotations. In corrective annotation, the 
analyst corrects a wrong analysis, for 
example, a part-of-speech tag, with the correct 
one. In grading annotation, the analyst assigns 
proper categories to the analyses. In the tests 
we found that both absolute grading (i.e. a 
parse is perfect, mediocre or terrible in a test) 
and relative grading (i.e. a parse is better, 
same or worse in a comparison) are very 
useful. 

The corpora used in these tests are drawn from 
various domains of English language, ranging 
from single sentence questions to e-mail messages. 
The performance of ETE on batch tests depends 
largely on NLE, which in turn depends on the size 
and complexity of a corpus. The tests therefore 
range from 20 hours to 30 minutes with various 
corpora in a Pentium Pro PC (200 Mhz, 256 MB 
memory). A comparison of two batch test results 
is independent of linguistic analysis and is linear 
to the size of the corpus. So far we have 
accumulated 209 MB of test data in the ETE 
database. The tests show that ETE is capable of 
dealing with large sets of test items (at an average 
of 1,000 records per test) in a network 
environment with fast database access responses. 
ETE assists analysts to identify problems and 
debug the system on large data sets. Without ETE, 
it would be difficult, if not impossible, to perform 
tasks of this complexity and scale. ETE not only 
serves as a software tool for large scale tests of a 
system, but also helps to enforce a sound and 
systematic development strategy for the NLU 
system. An issue to be further studied is whether 
the presence of ETE skews the performance of 
NLE as they compete for computer resources. 

Conclusion 

We have described ETE, a software tool for NLU 
systems and its application in our NL development 

project. Even though ETE is tied to the current 
NLU system architecture, its core concepts and 
techniques, we believe, could be applicable to the 
testing of other NLU systems. ETE is still 
undergoing constant improvements, driven both by 
the underlying NLU system and by users' requests 
for new features. The experiments with ETE so 
far show that the tool is of great benefit for 
advancing Unisys NLU technology 

References 

ATIS-3 (1991) Proceedings of the DARPA Speech 
and Natural Language Workshops, Morgan 
Kaufinann 

Black E. et al. (1991) A Procedure for Quantitatively 
Comparing the Syntactic Coverage of English 
Grammars, Proceedings of Speech and Natural 
Language Workshop, DARPA, pp. 306 - 311 

Flickinger D., Nerbounne J., Sag I., and Wasow T. 
(1987) Toward Evaluation of NLP Systems. 
Hewlett Packard Laboratories, Palo Alto, California 

Harman D.K., Voorhees E.M. (1996) Proceedings of 
the Fifth Text Retrieval Conference (TREC-5), 
Department of Commerce and NIST 

King Margaret (1996) Evaluating Natural Language 
Processing Systems. Communication of ACM, Vol. 
39, No. 1, January 1996, pp. 73 - 79 

MUC-6 (1995) Proceedings of the Sixth Message 
Understanding Conference, Columbia, Maryland, 
Morgan Kaufinann 

Neal J., Feit, E.L., Funke D.J., and Montgomery C.A. 
(1992) An Evaluation Methodology for Natural 
Language Processing Systems. Rome Laboratory 
Technical Report RL-TR-92-308 

Norton M.L., Dahl D.A., Li Li, Beals K.P. (1998) 
Integration of Large-Scale Linguistic Resources in 
a Natural Language Understanding System. to be 
presented in COLING 98, August 10-14, 1998, 
Universite de Montreal, Montreal, Quebec, Canada 

Tgrep Documentation (1992) 
http://www.ldc.upenn.edu/ldc/online/treebank/REA 
DME.long 

767 


