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Introduction 
To introduce the algorithln presented in this pa- 
per, we take a path that is inverse to the his- 
torical development of the idea of analogy (see 
(Hoffman 9.5)). This is necessary, because a 
certain incomprehension is faced when speak- 
ing about linguistic analogy, i.e., it is generally 
given a broader and more psychological defini- 
tion. Also, with our proposal being computa- 
tional, it is impossible to ignore works about 
analogy in computer science, which has come 
to mean artificial intelligence. 

1 A S u r v e y  of  W o r k s  on  A n a l o g y  

This paper is not intended to be an exhaustive 
study. For a more comprehensive study on the 
subject, see (Hoffman 95). 

1.1 M e t a p h o r s ,  o r  Impl ic i t  Analogies  

Beginning with works in psychology and arti- 
ficial intelligence, (Gentner 83) is a milestone 
study of a possible modeling of analogies such 
as, "an atom is like the solar system" adequate 
for artificial intelligence. In these analogies, two 
domains are mapped, one onto the other, thus 
modeling of the domain becomes necessary. 

/ 
sun -~ nucleus 

planet ~ electron 

In addition, properties (expressed by clauses, 
formulae, etc.) are transferred from one domain 
onto the other, and their number somehow de- 
termines the quality of the analogy. 

attracts(sun, --+f'attracts(nucleus, 
planet) electron) 

moremassive(sun, -~fmoremassive(nucleus, 
planet) electron) 

However, Gentner's explicit description of 
sentences as "an A is like a B" as analo- 
gies is subject to criticism. Others (e.g. 
(Steinhart 94)) prefer to call these sentences 
metaphors 1, the validity of which rests on sen- 
tences of the kind, "A is to B as C is to D", for 
which the name analogy 2 is reserved. In other 
words, some metaphors are supported by analo- 
gies. For instance, the metaphor, "a.n atom is 
like the solar system", relies on the analogy, "an 
electron is to the nucleus, as a planet is to the 
8~tl~" .3 

The answer of the AI community is com- 
plex because they have headed directly to more 
complex problems. For them, in analogies or 
metaphors (Hall 89): 

* two different domains appear 

, for both domains, modeling of a knowledge- 
base is necessary 

, mapping of objects and transfer of proper- 
ties are different operations 

* the quality of analogies has to be evalu- 
ated as a function of the strength (number, 
truth, etc.) of properties transferred. 

We must drastically simplify all this and 
enunciate a simpler problem (whose resolution 
may not necessarily be simple). This can be 
achieved by simplifying data types, and conse- 
quently the characteristics of the problem. 

1If the fact that properties are carried over char- 
acterises such sentences, then etyulologically they are 
metaphors: In Greek, phercin: to carry; recta-: between, 
among, with, after. "Metaphor" means to transfer, to 
carry over. 

2In Greek, logos, -logia: ratio, proportion, reason, dis- 
course; ana-: top-down, again, anew. "Analogy" means 
the same proportions, similar ratios. 

aThis complies with Aristotle's definitions in the 
Poetics. 
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1.2 M u l t i p l i c i t y  vs U n i c i t y  o f  D o m a i n s  

In the field of natural language processing, there 
have been plenty of works on pronunciation of 
English by analogy, some being very much con- 
cerned with reproducing human behavior (see 
(Damper &: Eastmond 96)). Here is an illustra- 
tion of the task from (Pirelli & Federici 94): 

: /vejn/ 
.L g .1. h 

s a n e - -  X = /sejnl 

Similarly to AI approaches, two dolnains ap- 
pear (graphemic and phonemic). Consequently, 
the functions .f, 9 and h are of different types 
because their dolnains and ranges are of differ- 
ent data types. 

Similarly to AI again, a common feature in 
such pronouncing systems is the use of data 
bases of written and phonetic forms. R.egard- 
ing his own model, (Yvon 94) comments that: 

The [...] model crucially relies upon the 
existence of nunterous paradigmatic rela.- 
lionships in lexica.l data bases. 

Paradigmatic relationships being relation- 
ships in which fl~ur words intervene, they are 
in fact morphological analogies: "reaction is to 
reactor., a.s faction is to factor". 

reactor f reaction 

I g I g 
factor  ! .  fact ion 

Contrasting sharply with A[ approaches, 
morphological analogies apply in only one do- 
main, that  of words. As a consequence, 
the nulnber of relationships between analogical 
terms decreases from three ( f ,  9 and h.) to two 
( f  and g). Moreover, because all four terms 
intervelfing in the analogy are from the same 
domain, the domains and ranges of f and [I 
are identical. Finally, lnorphological analogies 
can be regarded as simple equations indepen- 
dent of any knowledge about the language in 
which they are written. This standpoint elim- 
inates the need for any knowledge base or dic- 
tionary. 

reactor ~ rcactio.n 

.1. .L 
factor  ---,I x? 

1.3 U n i c i t y  vs M u l t i p l i c i t y  o f  C h a n g e s  

Solving morphological analogies remains diffi- 
cult because several simultaneous changes may 
be required to tra.nsform one word into a see- 
ond (for instance, doer -~ undo requires the 
deletion of the suffix -er anti the insertion of 
the prefix un-). This problem has yet to be 
solved sa.tisfactorily. For example, in (Yvon 94), 
only one change at a time is allowed, and 
multiple changes are captured by successive 
applications of morphological analogies (cas- 
cade lnodel). However, there are cases in the 
morphology of some languages where multiple 
changes at the same tilne are mandatory, for 
instance in semitic languages. 

"One change at a time", is also found in (Na- 
gao 84) for a translation method, called trans- 
lation b 9 analogp , where the translation of an 
input sentence is an adaptation of translations 
of similar sentences retrieved from a data base. 
The difficulty of handling multiple changes is 
remedied by feeding the system with new exam- 
ples differing by only one word commutation at 
a time. (Sadler and Vendelmans 90) proposed a 
difl'erent solution with all algebra on trees: dif- 
ferences on strings are reflected by adding or 
subtracting trees. Although this seems a more 
convincing answer, the use of data bases would 
resume, as would the multiplicity of domains. 

Our goal is a true analogy-solver, i.c., an algo- 
rithm which, on receiving three words as input, 
outputs  a word, analogical to the input, l:or 
that,  we thus have to answer the hard problem 
of: (1) performing multiple changes (2) using 
a unique data-type (words) (3) without dictio- 
nary nor any external knowledge. 

1.4 A n a l o g i e s  on  \Yards  

We have finished our review of the problem an d 
ended up with what was tlhe starting point of 
our work. In linguistic works, analog:j is tie- 
fined by Saussure, after Humboldt and B audoin 
de Courtenay, as the operation by which, given 
two forms of a given word, and only one form 
of a second word, the missing form is coined 4, 
"honor is to honorcm as 6rator is to oratorc,z" 
noted 6r~t6rcm : 6rgitor = hon6rcm : honor. 
This is the same definition as the one given by 
Aristotle himself, "A is to B as C is to D", pos- 
tulating identity of types for A, B, C, and D. 

4Latin: orator (arMor, speaker) ~md bona," (honour) 
nonfinative singular, 6rat6rcmt and honorcm ~ccusative 
singular. 
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However, while analogy has been mentioned 
and used, algorithmic ways to solve analogies 
seem to have never been proposed, maybe be- 
cause the operation, is so ':intuitive". We (Lep- 
age & Ando 96) recently gave a tentat ive com- 
putat ional  explanation which was not always 
valid because false analogies were captured, it 
did not consti tute an algorithm either. 

The only work Oll solving analogies on words 
seems to be Copycat  ((Hofstadter  et al. 94) 
and (Hoffman 95)), which solves such puzzles 
as: abe  : abbccc  --  i j k  : x. Unfortunately it 
does not seem to use a truly dedicated algo- 
r i thm, rather ,  following the AI approach, it uses 
a formalisation of the domain with such fnnc- 
tions as, ' :p rev ious  in  a l p h a b e t " ,  " rank in  
a l p h a b e t " ,  e tc .  

2 F o u n d a t i o n s  o f  t h e  A l g o r i t h m  

2.1 T h e  F i r s t  T e r m  as a n  Axis  

(I tkonen and Hauki0ja 97) give a. prograln in 
Prolog to solve analogies in sentences, as a refu- 
tat ion of C, homsky, according to whom analogy 
would, not be operational in syntax, because it 
delivers non-grammatical  sentences. That  anal- 
ogy would apply also to syntax, was advocated 
decades ago by Hernlann Paul and Bloomfield. 
C, homsky's  claim is unfair, because it supposes 
tha t  analogy applies only on the symbol level. 
I tkonen and Hankioja show that  analogy, when 
controlled by some structural  level, does d.eliver 
perfectly grammatical  sentences. What  is of 
interest  to us, is the essence of their method,  
which is the seed for our algorithm: 

Sentence D is formed by going through 
sentences B a.nd C one element at ~ time 
and inspecting the relations of each ele- 
mere, to the structure of sentence A (plus 
the part of sentence D that is ready). 

Hence, sentence A is the axis against which sen- 
tences B and C are colnpared, and by opposition 
to which output  sentence D is built. 

r e a d e r :  u~__~readfble = d o e r  : x ~ x = .undoabIe  

The method  will thus be: (a) look for those 
parts which are not common to A and B Oll one 
hand,  and not comlnon to A and C on the other 
and (b) put them together  in the right order. 

2.2 C o m m o n  S u b s e q u e n e e s  

Looking for colnnlon subsequences of A and B 
(resp. A and C) solves problem (o,) by comple- 
mentat ion.  (Wagner & Fischer 74) is a. method 

to find longest common subsequences by com- 
puting edit distance matrices, yielding the min- 
ilnal number of edit operations (insertion, dele- 
tion, substitntion) necessary to transform one 
string into another.  

For instance, the following matrices give the 
distance between l ike  and u n l i k e  on one hand, 
and between l i ke  and k ~ m w n  on the other hand, 
in their right bot tom cells: d i s t ( l i k e ,  u n l i k e )  = 2 

and dist(like, know.n )  = 5 

u n l i k e k 7~ o w n 

l 1 2 2 3 4 5 l 1 2 3 4 5 
i 2 2 3 2 3 4 i 2 2 3 4 5 
k 3 3 3 3 2 3 k 2 3 3 4 5 
e 4 4 4 4 3 2 e 3 3 4 4 5 

2.3 S i m i l i t u d e  b e t w e e n  W o r d s  

We call s i m i l i t u d e  between A and B the length 
of their longest common subsequence. It is also 
equal to the length of A, minus the number of 
its characters deleted or replaced to produce B. 
This number we call pdist(A, B), because it is 
a pseudo-distance, which can be computed ex- 
actly as the edit distances, except that  inser- 
tions cost 0. 

sire(A, B) = I A I - pdist(A, B) 

For instance, p d i s t ( u n l i k e ,  f ikc)  = 2, while 
p dist(/ike, u n l i k e )  = O. 

l i k e 

u 1 1 1 1 u ll l i k e 
n 2 2 2 2 
l 2 2 2 2 l 1 1 0 0 0 0 
i 3 2 2 2 i 2 2 1 0 0 0 
k 4 3 2 2 k 3 3 2 1 0 0 
e 5 4 3 2 e 4 4 3 2 1 0 

Characters inserted into B or C may be left. 
aside, precisely because they are those charac- 
ters of B and C, absent from A, that  we want 
to assemble into the solution, D. 

As A is the axis in the resolution of analogy, 
graphically we make it the vertical axis around 
which the computat ion of pseudo-distances 
takes place. For instance, for l i k e : u n l i k e  = 
k l 2 o w ~  : x ,  

n w o n k u n I i k e 

1 1 1 1 1 l 1 1 0 0 0 () 
2 2 2 2 2 i 2 2 1 0 0 0 
2 2 2 2 2 k 3 3 2 1 0 0 
3 3 3 3 3 e 4 4 3 2 1 0 
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2.4 T h e  Coverage  Cons tra in t  

It is easy to verify that  there is no solution to an 
analogy if some characters of A appear neither 
in B nor in C. The contrapositive says that ,  
for an analogy to hold, any character of A has 
to appear in either B or C. Hence, the sum 
of the similitudes of A with B and C must be 
greater than or equal to its length: sire(A, B) + 
s im(A,C)  >_ I A I, or, equivalently, 

I A I >- p d i s t ( d , B )  + p d i s t ( d , C )  

When the length of A is greater than the sum 
of the pseudo-distances, some subsequences of 
A are common to all strings in the same order. 
Such snbsequences have to be copied into the 
solution D. We call com(A, B, C, D) the sum 
of the length of such subsequences. The del- 
icate point is that  this sum depends precisely 
on the sohttion D being currently built by the 
algorithm. 

To sulnlnarise, for analogy A : B = C: D to 
hold, the following constraint must be verified: 

I A I = pdist(A, B)+pdis t (A,  C)+com(A, B, C, 1)) 

3 T h e  A l g o r i t h m  

3.1 C o m p u t a t i o n  o f  Matr ices  
Our method relies on the computation of two 
pseudo-distance matrices between the three first 
terms of the analogy. A result by (Ukkonen 85) 
says that  it is sufficient to compute a diagonal 
band phts two extra, bands on each of its sides in 
the edit distance matrix, in order to get the ex- 
act distance, if the value of the overall distance 
is known to be less than some given thresh- 
old. This result applies to pseudo-distances, 
and is used to reduce the computat ion of the 
two pseudo-distance matrices. The width of the 
extra bands is obtained by trying to satisfy the 
coverage constraint with the value of the current 
pseudo-distance in the other matrix. 

proc  compute~natrices(A, B, C, pdAB, pdAc ) 
compute pseudo-distances matrices with 
extra bands of pdAB/2 and pdAc/2 
i f  ]A I>_ p d i s t ( A , B ) +  pdis t (A,C)  

main component  
else 

compute_matrices(A, B, C, 
tnax([ A ] - pdist(A, C),pdAB + 1), 
lnax(] A ] - pa in t (A ,B) ,pdac  + 1)) 

end if 
end proc compute_matrices 

3.2 Main C o m p o n e n t  

Once enough in the matrices has been com- 
puted, the principle of the algorithm is to follow 
the paths along which longest common subse- 
quences are found, simultaneously in both ma- 
trices, copying characters into the solution ac- 
cordingly. At each time, the positions in both 
matrices must be on the same horizontal line, 
i.e. at a same position in A, in order to ensure 
a right order while building the solution, 1). 

Determining the patlhs is done by compar- 
ing the current cell in the matrix with its three 
previous ones (horizontal, vertical or diagonal), 
according to the technique in (Wagner £~ Fis- 
cher 74). As a consequence, paths are followed 
from the end of words down to their begin- 
ning. The nine possible combinations (three di- 
rections in two matrices) can be divided into 
two groups: either the directions are the same 
in both matrices, or they are different. 

The following sketches the al- 
gorithm, corn(A, B,C,  D) has been initialised 
to: I A l - (pdist(A,B) + pdist(A,C)), iA, iB 
and iv are the current positions in A. B and 
C. dirAn (resp. dirac) is the direction of the 
path in matrix A x B (resp. A x C) from the 
current position. "copy" means to copy a char- 
acter from a word at the beginning of 1) and to 
move to the previous character in that  word. 

i f  constraint(iA, iB, ic, corn(A, B, C, D)) 
c a s e :  d i r A B  --- d i r A c  = d i a g o n a l  

A[:A] = = C l i o ]  
decrement corn(A, B, C, D) 

end if 

c o p y  B[ iB]  + C[ic,]- A[iA]:' 
case: dirAB = dirAc = horizontal 

copy c hath/min(pdist(A[1. . ia] ,  B[l ..iB]), 
pdist(A[t..iA]. C[1..ic])) 

case:  dirAB = dirAc = vertical 
move only in A (change horizontal line) 

case :  dirAB # dirAc 
i f  dirAB = horizontal 

copy B[il~] 

~In this case, we move in tile three words at tile 
same time. Also, the character  ari thnmtics factors, 
in view of generalisations, different operations:  if the 
three current  characters  in A, B and C are equal, copy 
this character ,  oiherwise copy that  character  from B 
or C that  is different from the one in A. If all current  
characters  are different, this is a faihtre. 

bThe word with less simili tude with A is chosen, so 
as to make up for its delay. 
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end 

else if dirAB = vertical 
move in A and C 

else same thing by exchanging B and C 
end if 
if 

3.3 Early Terminat ion  in Case o f  
Failure 

Complete computat ion of both matrices is not 
necessary to detect a failure. It is obvious when 
a let ter  in A does not appear in B or C. This 
may already be detected before any matr ix  com- 
putat ion.  

Also, checking the coverage constraint allows 
the algorithm to stop as soon as non-satisfying 
moves have been performed. 

3.4 A n  E x a m p l e  
We will show how the analogy l ike: unlike = 
known : x is solved by the algorithm. 

The algorithm first verifies that  all letters 
of like are present either in unlike or known.  
Then,  the minimuln computat ion is done for the 
pseudo-distances matrices, i.e. only the nfini- 
real diagonal band is computed.  

e k i l n u k n o w n 

0 1 1 1 1 1 
0 1 2 i 2 2 

0 1 2 k 3 3 
0 1 2 e 4 4 

As the coverage constraiut ix verified, the 
main component  is called. It follows the paths 
noted by values in circles in the matrices. 

e k i l n u k n o w n 

@ O O I O @ 
@ @ 1 2 i 2 @  

1 2 k 3 ~) 
@ 1 2 e 4 (~) 

The succession of moves triggers the following 
copies into the solution: 

dirAB d i rAc  
diagonal 
diagonal 
diagonal 
diagonal 

horizontal 
horizontal 
horizontal 

c o p y  
diagonal n 
diagonal w 
diagonal o 
diagonal n 

horizontal k 
diagonal n 
diagonal u 

At each step, the coverage constraint being veri- 
fied, finally, the solution x = unknown is ouptut .  

4 P r o p e r t i e s  and  C o v e r a g e  
4.1 Tr iv ia l  Cases ,  M i r r o r i n g  

Trivial cases of analogies are, of course, solved 
by the algorithm, like: A : A = A : x  ~ x =  
A or A : A  = C : x  =~ x = C: Also, by 
construction, A : B =  C : x  and A :  C =  B : x  
deliver the same solution. 

With this constructi_ on, mirroring poses no 
problem. If we note A the mirror of word A, 
then A : B = C : D  ~ A : B = C : D .  

4.2 Pref ix ing,  Suffixing, P a r a l l e l  
Infixing 

Appendix A lists a numl)er of examples, actu- 
ally solved by the algorithm, froln simple to 
complex, which illustrate the algorithm's per- 
formance. 

4.3 Redupl icat ion  and P e r m u t a t i o n  
The previous form of the algorithm does not 
produce reduplicotion. This would be neces- 
sary if we wanted to obtain, for example, pin- • v. 

rals in Indonesian°: orang:  orang-orang = 
burung : x ~ x = burung-bu, ru.ng . In this 
case, our algorithm delivers, x = orang-burung, 
because preference is given to leave prefixes un- 
challged. However, the algorithna may be easily 
modified so tha.t it applies repeatedly so as to 
obtain the desired solution a. 

Permutat ion is not captured by the algo- 
rithm. An example (q with a and u.) in Proto- 
semitic is: yaqtilu : yuqtilu. = qataI : qutal. 

4.4 L a n g u a g e - i n d e p e n d e n c e / C o  de- 
d e p e n d e n c e  

Because the present algorithm performs compu- 
tation only on a symbol level, it may be applied 
to any language. It is thus language indepen- 
dent. This is fortunate,  as analogy in linguistics 
certainly derives from a more general psycho- 
logical operation ((Gentner 83), (Itkonen 94)), 
which seems to be universal among human be- 
ings. Examples in Section A illustrate the lan- 
guage independence of the algorithm. 

Conversely, the symbols determine the gram~- 
larity of the analogies computed.  Consequently, 
a commutat ion not reflected in the coding sys- 
tem will not be captured. This may be illus- 
t ra ted by a Japanese example in three different 

5 orang (huInan being) singular, o,a,~g-oran 9 plural, 
burung (bird). 

6Similarly, it is easy to apply the algorithm in a 
transducer-like way so tlud it modifies, by analogy, parts 
of an input string. 
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codings: the native writing system, the Hep- 
burn transcription and the official, strict rec- 
omlnendation (kunrei). 

I(anji /Kana: ~ 9  : ~ ~ = {~JJ < : x 
Hepburn: m o t s u  : m a c h i m o s u .  = h a t a r a k u  : x 

Kunrei: m a t u  : m a t i m a s u  = h a t a r o k u  : x 

x = h a t a r a k i m a s u  

The a.lgorithm does not solve the first two analo- 
gies (solutions: {'~J 3 ~ ~ ,  h a t a r a k i m a s u )  be- 
cause it does not solve the elementary analogies, 

: g = < : ~ and t s u : c h i =  ku:k i ,  which 
are beyond the symbol level r. 

More generally speaking, the interaction of 
analogy with coding seems the basis of a fre- 
quent reasoning principle: 

f ( A )  : f ( B )  = f ( C )  : x ¢> A:13==- C : . f - '  ( x )  

Only the first analogy holds on the symbol level 
and. as is, is solved, by our algoritlun, f is an 
encoding fllnction for which an inverse exists. 
A striking application of this principle is the 
resolution of some Copycat puzzles, like: 

abc  : abd  = i j k  : x ~ x =  i j l  

Using a binary ASCII representation, which re- 
flects sequence in the alphabet,  our algorithm 
produces: 

011000010110(1(11(/(111//(/011 : 0110000101.10001001100100 

OllOlO010110101001101011 : X 

--~ X : OllOlO01011010lO0110llO0 : /~]1 

Set in tiffs way, even analogies of geometrical 
type can be solved under a convenient represen- 
tation. 

An adequate description (or coding), with no 
reduplication, is: 

obj(big)&~. . o b j ( s m a I t ) c o b j ( b i g ) _  ob j (b ig)g~  :x 
o b j = c i r c l c "  & o b j = c i r c I c  - o b j = s q u a r c  

This is actually solved by our algorithm: 

o b j ( s m a l I ) c  obj(big) 
x = & o b j = s q u . a r e  

tOne  could imagine extending  the Mgori thm by 
paramet r i s ing  it with such predcfincd analogical 
relations.  

In other words, coding is the key to many 
analogies. More generally we follow (Itkonen 
and Haukioja 97) when they claim that  analogy 
is a.n operation against which formal represen- 
tations should also be assessed. But for that ,  of 
course, we needed an automatic analogy-solver. 

Conclusion 

We have proposed an algorithm which solves 
analogies on words, i .e .  when possible it coins 
a fourth word when given three words. It re- 
lies on the computation of pseudo-distances be- 
tween strings. The verification of a constraint. 
relevant for analogy, limits the computation of 
matrix cells, and permits early termination in 
case of faihlre. 

This algorithm has bee]] proved to handle 
]]zany different cases in many different lan- 
guages. In particular, it handles parallel infix- 
ing, a property necessary for the lnorphologica] 
description of semitic languages. Reduplication 
is an easy extension. 

This algorithm is independent of any lan- 
guage, but not coding-independent: it consti- 
tutes a trial at inspecting how much can be 
achieved using only pure COlnputation on sym- 
bols, without any external knowledge. We are 
inclined to advocate that  lnuch in the lnatter of 
usual analogies, is a. question of symbolic rep- 
resentation, i .e .  a question of encoding into a 
for]]] solvable by a purely symbolic algorithm 
like the one we proposed. 

A E x a m p l e s  

The following examples show actual resolution 
of analogies by tile algorithm. They illustrate 
what the algorithm achieves on real linguistic 
examples. 

A.1 

Latin: 

French: 

Malay: 

Chinese: 

I n s e r t i o n  or  d e l e t i o n  of  pref ixes  o r  
suffixes 

or( t toF(?D~ : OF(I tOY = ]IO~OF(:DZ : X 

X = h o n o r  

r ~ p r c s s i o n  : r ~ p r c s s i o n n a i r c  = . rdac t ion  : x 

x = r d a c t i o n n a i r c  

t i n g g a l  : k, c t i n g g a I a n  = d u d u k  : x 

x = k e d u d u k a n  

x = ¢'~:~. 
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A.2 E x c h a n g e  o f  prefixes or suffixes 

English: wolf :  wolves = l c a f :  x 
x = leaves 

Malay: kawan : m c n g a w a n i  = kcliling : x 
x = mcngcIi l ingi  

Malay: keras : mcngcraskan  = kcna : x 
x = mcngcnakan  

Polish: wys,vcdtcd : wysztad = poszcdted : x 
x = posztad 

A.3 Inf ixing and unflaut 

Japanese: ~.,5 : ~@7o = ~7o : x 
x = ~@Tz 

German: Ian9 : tSngste = scharf  : x 
x = schgrfstc 

German: f l ichcn : cr f loh = schIicflcn : x 
x = cr schlofl 

Polish: zgubiony : zgubicni  = zmar tw iony  : x 
x = zmar tw ien i  

Akkadian: ukag.gad : uktanag.gad = ugal~.gad : x 
x = ugtanakgad 

A.4 Paral le l  infixing 

Proto-semitic: yasriqu : sariq = 9anqimu : x 
x = naqim 

Arabic: huziIa : huzal  = ..sudi'a : x 
X ---- 8udo 

Arabic: arsaIa : m u r s i h m  = aslama : x 
x = m u s l i m u n  
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U N  A L G O R I T H M E  P O U R  LA 
R I ~ S O L U T I O N  D E S  A N A L O G I E S  

E N T R E  M O T S  
Y v e s  L E P A G E  

A L G O R Y T M  D O  R O Z S T R Z Y G A N I A  
A N A L O G I I  P O M I I ~ D Z Y  S L O W A M I  

Y v e s  L E P A G E  

R 6 s u m 6  

Un rappel de travaux pr6c6dents sur l'analogie 
en psychologie, en intelligence artificielle et en 
tra itement automatique des langues pr6c6de la 
pr6sentation d'un a lgorithme de r6solution, au 
niveau morphologique, d'analogies entre roots. 
Cet algorithme cr6e un quatrihme mot h partir 
de trois roots donn6s, quand Cest possible. Par 
exemple, &ant donn6s fablc, fabuleux et mira- 
clc, l'algorithme er6e bien miraculcux. Des cas 
bien plus difficiles sont correctement r6solus par 
l'algorithme, en particulier, les cas d'infixation 
multiple, n6cessaires pour rendre compte de la. 
morph.ologie des langues s6mitiques. Nous don- 
nons les caract6ristiques de l'algorithme et men- 
tionnons quelques applicatio~xs possibles. 

S t r e s z c z e n i e  

Po opisaniu poprzednich prac nad zagadnie- 
niem ana.logii w ramach psychologii, sztu- 
cznej inteligencji oraz lingwistyki kompu- 
terowej, pokazujemy algorytm do rozwi~za.nia 
a.na.].ogii pomi~dzy slowalni ha. poziomie morfo- 
logicznym. Algorytm ten tworzy, kiedy .jest to 
mo~liwe, czwa.rty terrain na podstawie trzech 
innych termindw. Na przyktad, je~eli podamy 
dpicwa~, dpiewacz~:a i dziata~, algorytln stusznie 
stworzy dziataczka. Algorytm ten. rozwi,'lzuje 
bardziej skomplikowane problemy analogii, jak 
w przypadku morfologii j¢zyk6w semitycznych, 
gdzie w ,~rodku st6w mo~,e pojawi~, si 9 kilka przy- 
rostk6w .jednoeze.4nie. Opisujemy algorytm i 
jego mo~liwe zastosowania. 

E I N  A L G O R I T H M U S  Z U R  LC}SUNG 
V O N  W O R T - A N A L O G I E N  

Y v e s  L E P A G E  Y v e s  L E P A G E  (;t,]~--5;:z) 

Z u s a m m e n f a s s u n g  
Nach einer Beschreibung friiherer Werke iiber 
Analogie im Rahlnen yon I'sycholo- 
gie, kiinstlicher Intelligenz und masehineller 
Sprachverarbeitung, wird ein Algorithmus zur 
LSsung von Wort-Analogien a.uf morphologi- 
sober Ebene vorgeschlagen, l)ieser Algorith- 
reus erzeugt, wen.n :mSglich, ein viertes Wort 
aus drei gegebenen WSrtern. Znm Beispiel, 
attssiihest wird alUS nehmen, ausnahmest und 
schen abgeleitet. Auch komplexere FS~lle wer- 
den korrekt behandelt, selbst in der Morpholo- 
gie semitischer Sprachen, in denen pa.rallele 
Infixung vorkommt. Der Algorithmus wird 
beschrieben und mSgliche Anwendungen wer- 
den aufgezeigt. 

Z~o 
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