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A b s t r a c t  

We describe novel aspects of a new natural lan- 
guage generator called Nitrogen. This generator has 
a highly flexible input representation that allows a 
spectrum of input from syntactic to semantic depth, 
and shifts the burden of many linguistic decisions 
to the statistical post-processor. The generation al- 
gorithm is compositional, making it efficient, yet it 
also handles non-compositional aspects of language. 
Nitrogen's design makes it robust and scalable, op- 
erating with lexicons and knowledge bases of one 
hundred thousand entities. 

1 I n t r o d u c t i o n  

Language generation is an important subtask 
of applications like machine translation, human- 
computer dialogue, explanation, and summariza- 
tion. The recurring need for generation suggests the 
usefulness of a general-purpose, domain-independent 
natural language generator (NLG). However, "plug- 
in" generators available today, such as FUF/SURGE 
(Elhadad and Robin, 1998), MUMBLE (Meteer et 
ah, 1987), KPML (Bateman, 1996), and CoGen- 
Tex's RealPro (Lavoie and Rambow, 1997), require 
inputs with a daunting amount of linguistic detail. 
As a result, many client applications resort instead 
to simpler template-based methods. 

An important advantage of templates is that they 
sidestep linguistic decision-making, and avoid the 
need for large complex knowledge resources and pro- 
cessing. For example, the following structure could 
be a typical result from a database query on the type 
of food a venue serves: 

(( :obj-type venue)(:obj-name Top_of_the_Mark) 
( :a t t r ibu te  food-type)( :at t r ib-value American)) 

By using a template like 

<obj-name> 's <attribute> is <attrib-value>. 

the structure could produce the sentence, "Top of 
the Mark's food type is American." 

Templates avoid the need for detailed linguistic 
information about lexical items, part-of-speech tags, 

number, gender, definiteness, tense, sentence organi- 
zation, sub-categorization structure, semantic rela- 
tions, etc., that more general NLG methods need to 
have specified in the input (or supply defaults for). 
Such information is usually not readily inferrable 
from an application's database, nor is it always read- 
ily available from other sources, with the breadth of 
coverage or level of detail that is needed. Thus, using 
a general-purpose generator can be formidable (Re- 
iter, 1995). However, templates only work in very 
controlled or limited situations. They cannot pro- 
vide the expressiveness, flexibility or scalability that 
many real domains need. 

A desirable solution is a generator that abstracts 
away from templates enough to provide the needed 
flexibility and scalability, and yet still requires only 
minimal semantic input (and maintains reasonable 
efficiency). This generator would take on the re- 
sponsibility of finding an appropriate linguistic re- 
alization for an underspecified semantic input. This 
solution is especially important in the context of ma- 
chine translation, where the surface syntactic orga- 
nization of the source text is usually different from 
that of the target language, and the deep semantics 
are often difficult to obtain or represent completely 
as well. In Japanese to English translation, for ex- 
ample, it is often hard to determine from a Japanese 
text the number or gender of a noun phrase, the En- 
glish equivalent of a verb tense, or the deep semantic 
meaning of sentential arguments. There are many 
other obvious syntactic divergences as well. 

Thus, shifting such linguistic decisions to the gen- 
erator is significantly helpful for client applications. 
However, at the same time, it imposes enormous 
needs for knowledge on the generator program. Tra- 
ditional large-scale NLG already requires immense 
amounts of knowledge, as does any large-scale AI 
enterprise. NLG operating on a scale of 200,000 en- 
tities (concepts, relations, and words) requires large 
and sophisticated lexicons, grammars, ontologies, 
collocation lists, and morphological tables. Acquir- 
ing and applying accurate, detailed knowledge of 
this breadth poses difficult problems. 

(Knight and Hatzivassiloglou, 1995) suggested 
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Figure 1: Combining Symbolic and Statisti- 
cal Knowledge in a Natural Language Generator 
(Knight and Hatzivassiloglou, 1995). 

overcoming this knowledge acquisition bottleneck in 
NLG by tapping the vast knowledge inherent in En- 
glish text corpora. Experiments showed that corpus- 
based knowledge greatly reduced the need for deep, 
hand-crafted knowledge. This knowledge, in the 
form of n-gram (word-pair) frequencies, could be ap- 
plied to a set of semantically related sentences to 
help sort good ones from bad ones. A corpus-based 
statistical ranker takes a set of sentences packed ef- 
ficiently into a word lattice, (a state transition di- 
agram with links labeled by English words), and 
extracts the best path fi'om the lattice as output, 
preferring fluent sentences over contorted ones. A 
generator can take advantage of this by producing a 
lattice that  encodes various alternative possibilities 
when the information needed to make a linguistic 
decision is not available. 

Such a system organization shown in Figure 1, is 
robust against underspecified and even ambiguous 
input meaning structures. Traditionally, underspec- 
ification is handled with rigid defaults (e.g., assmne 
present tense, use the alphabetically-first synonyms, 
use nominal arguments, etc.). However, the word 
lattice structure permits all the different possibili- 
ties to be encoded as different phrasings, and the 
corpus-based statistical extractor can select a good 
sentence from these possibilities. 

The questions that still remain are: What kind of 
input representation is minimally necessary'? What 
kinds of linguistic decisions can the statistics reliably 
make, and which instead need to be made symbol- 
ically? How should symbolic knowledge be applied 
to the input to efficiently produce word lattices from 
the input? 

This paper describes Nitrogen, a generation sys- 
tem that  computes word lattices from a meaning rep- 
resentation to take advantage of corpus-based sta- 

tistical knowledge. Nitrogen performs sentence real- 
ization and some components of sentence planning--  
namely, mapping domain concepts to content words, 
and to some extent, mapping semantic relations to 
grammatical ones. It contributes: 

* A flexible input representation based o11 concep- 
tual meanings and the relations between them. 

* A new grammar formalism for defining the map- 
ping of meanings onto word lattices. 

. A new efficient algorithm to do this mapping. 

• A large grammar, lexicon, and morphology of 
English, addressing linguistic phenomena such 
as knowledge acquisition bottlenecks and m~dcr- 
specified/ambiguous input. 

This paper is organized as follows. First, we de- 
scribe our Abstract Meaning Representation lan- 
guage (AMR). Then we outline the generation algo- 
rithm and describe how various knowledge sources 
apply to render an AMR into English, including 
lexical, morphological, and grammatical knowledge 
bases. We describe the structure of these knowl- 
edge bases and give examples. We also present a 
technique that adds powerful flexibility to the gram- 
mar formalism. We finish with a discussion of the 
strengths and weaknesses of our generation system. 

2 A b s t r a c t  M e a n i n g  R e p r e s e n t a t i o n  

The AMR language is composed of concepts fi'om 
the SENSUS knowledge base (Knight and Luk, 
1994), including all of WordNet 1.5 (Miller, 1990), 
and keywords relating these concepts to each other.1 

An AMR is a labeled directed graph, or feature 
structure, derived from the PENMAN Sentence Plan 
Language (Penman, 1989). The most basic AMR is 
of the form (label  / concept), e.g.: 2 

(ml / I d o g < c a n i d l )  

The slash is shorthand for a type (or instance) fea- 
ture, and in logic notation this AMR might be writ- 
ten as instance(ml, dog). This AMR can represent 
"the dog," "the dogs," "a dog," or "dog," etc. 

A concept can be modified using keywords: 

(m2 / Idog<canid l  
: quant plural) 

1Strings can be used in place of concepts. If the string 
is not a recognized word/phrase, then the generator will acid 
this ambiguity to the word lattice for the statistical extrac- 
tor to resolve by propo,~ing all possible part-of-speech tags. 
We prefer to use concepts because they make the AMR more 
language-independent, and enable semantic reasoning and 
inference. 

2Concept names appear between vertical bars. We use a 
set of short, unique concept names derived from the struc- 
ture of WordNet by Jonathan Graehl, and available from 
ht tp: / /www .isl .edu/natural-language/(]AZEI~LE.ht ml 
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This narrows the meaning to "the dogs," or "dogs." 
Concepts can be associated with each other in 

a nested fashion to form more complex mean- 
ings. These relations between conceptual mean- 
ings are also expressed through keywords. It is 
through them that  our formalism exhibits an ap- 
pealing flexibility. A client has the freedom to ex- 
press the relations at various semantic and syn- 
tactic levels, using whichever level of representa- 
tion is most convenient. 3 We have currently im- 
plemented shallow semantic versions of roles such 
as :agent, :patient, :sayer, :sensor, etc., as well as 
deep syntactic roles such as :obliquel, :oblique2, and 
:oblique3 (which correspond to deep subject, ob- 
ject, and indirect object respectively, and serve as 
an abstraction for passive versus active voice) and 
the straightforward syntactic roles :subject, :direct- 
object, :indirect-object, etc. We explain further how 
this is implemented later in the paper. 

Below is an example of a slightly more complex 
meaning. The root concept is eating, and it has an 
agent and a patient, which are dogs and a bone (or 
bones), respectively. 

(m3 / [ e a t , t a k e  in[  
: a g e n t  (m4 / [dog<can id l  

: quan t  p l u r a l )  
:patient (mS / los,bone[)) 

Possible output includes "The dogs ate the bone," 
"Dogs will eat a bone," "The dogs eat bones," "Dogs 
eat bone," and "The bones were eaten by dogs." 

3 Lexical Knowledge 
The Sensus concept ontology is mapped to an En- 
glish lexicon that  is consulted to find words for ex- 
pressing the concepts in an AMR. The lexicon is a 
list of 110,000 tuples of the form: 

(<word> <part-of-speech> <rank> <concept>) 
Examples: 
(("eat" VERB I lear,take inl) 
("eat" VERB 2 feat>eat lunch[) 
°.° ) 

The <rank> field orders the concepts by sense fre- 
quency for the given word, with a lower number sig- 
nifying a more frequent sense. 

Like other types of knowledge used in Nitro- 
gen, the lexicon is very simple. It contains no 

3This flexibility has another advantage from a research 
point of view. We consider the appropriate level of abstrac- 
tion an important problem in interlingua-style machine trans- 
lation. The flexibility of this representation allows us to ex- 
periment with various levels of abstraction without changing 
the underlying system. Further, it has opened up to us the 
possibility of implementing interlingua-based semantic trans- 
fer, where the interlingua serves as the transfer mechanism, 
rather than being a single, fixed peak point of abstraction. 

information about features like transitivity, sub- 
categorization, gradability (for adjectives), or count- 
ability (for nouns), etc. Such features are needed 
in other generators to produce correct grammatical 
constructions. Our statistical post-processor instead 
more softly (and robustly) ranks different grammat- 
ical realizations according to their likelihood. 

At the lexical level, several important  issues in 
word choice arise. WordNet maps a concept to one 
or more synonyms. However, some words may be 
less appropriate than others, or may actually be 
misleading in certain contexts. An example is the 
concept [sell<cozen[ to which the lexicon maps the 
words "betray" and "sell." However, it is not very 
common to use the word "sell" in the sense of "A 
traitor sells out on his friends." In the sentence "I 
cannot [sell<cozen[ their trust" the word "sell" is 
misleading, or at least sounds very strange; "betray" 
is more appropriate. 

This word choice problem occurs frequently, and 
we deal with it by taking advantage of the word- 
sense rankings that the lexicon offers. According to 
the lexicon, the concept [sell<cozen[ expresses the 
second most frequent sense of the word "betray," 
but only the sixth most frequent sense of the word 
"sell." To minimize the lexical choice problem, we 
have adopted a policy of rejecting words whose pri- 
mary sense is not the given concept when better 
words are available. 4 

Another issue in word choice relates to the broader 
issue of preserving ambiguities in MT. In source 
language analysis, it is often difficult to determine 
which concept is intended by a certain word. The 
AMR allows several concepts to be listed together 
in a disjunction. For example, 

(m6 / (*OR* [sell<cozen[ [cheat on] [bewray[ 
Ibetray,faill Irat on[)) 

The lexical lookup will a t tempt to preserve the 
ambiguity of this *OR*. If it happens that several or 
all of the concepts in a disjunction can be expressed 
using the same word, then the lookup will return 
only that word or words in preference to the other 
possibilities. For the example above, the lookup re- 
turns only the word "betray." This also reduces the 
complexity of the final sentence lattices. 

4 M o r p h o l o g i c a l  K n o w l e d g e  

The lexicon contains words in their root form, 
so morphological inflections must be generated. 
The system also performs derivational morphol- 
ogy, such as adjective-~noun and noun-+verb (ex: 

4A better "soft" technique would be to accept all words 
returned by the lexicon for a given concept, but associate 
with each word a preference score using a method such as 
Bayes' Rule and probabilities computed from a corpus such 
as SEMCOR, allowing the statistical extractor to choose the 
best alternative. We plan to implement this in the future. 
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"translation" -+ "translate" ) to give the generator 
more syntactic flexibility in expressing complex 
AMR's. This flexibility ensures that the generator 
can find a way to express a complex meaning repre- 
sented by nested AMRs, but is also useful for solving 
problems of syntactic divergence in MT. 

Both kinds of morphology are handled the same 
way. Rules and exception tables are merged into a 
single, concise knowledge base. Here, for example, 
is a portion of the table for pluralizing nouns: 

("-child" "children") 

("-person .... people .... persons") 

("-a .... as .... ae") ; formulas/formulae 

("-x .... xes" "xen") ; boxes/oxen 

("-man .... roans .... men") ; humans/footmen 

("-Co" "os" "oes") 

The last line means: if a noun ends in a conso- 
nant followed by "-o," then we compute two plural 
forms, one ending in "-os" and one ending in "-oes," 
and put both possibilities in the word lattice for 
the post-generation statistical extractor to choose 
between later. Deciding between these usually re- 
quires a large word list. However, the statistical 
extractor already has a strong preference for "pho- 
tos" and "potatoes" over "photoes" and "potatos," 
so we do not need to create such a list. IIere again 
corpus-based statistical knowledge greatly simplifies 
the task of symbolic generation. 

Derivational morphology raises the issue of mean- 
ing shift between different part-of-speech forms 
(such as "depart"-+ "departure"/"department") .  
Errors of this kind are infrequent, and are corrected 
in the morphology tables. 

5 G e n e r a t i o n  A l g o r i t h m  

An AMR is transformed into word lattices by 
keyword-based grammar rules described in Section 
7. By contrast, other generators organize their 
grammar rules around syntactic categories. A 
keyword-based organization helps achieve simplicity 
in the input specification, since syntactic informa- 
tion is not required from a client. This simplification 
can make Nitrogen more readily usable by client ap- 
plications that are not inherently linguistically ori- 
ented. The decisions about how to syntactically re~ 
alize a given meaning can be left largely up to the 
generator. 

The top-level keywords of an AMR are used to 
match it with a rule (or rules). The algorithm 
is compositional, avoiding a combinatorial explo- 
sion in the number of rules needed for the various 
keyword combinations. A matching rule splits the 
AMR apart, associating a sub-AMR with each key- 
word, and lumping the relations left over into a sub- 
AMR under the :rest role using the same root as the 
original AMR. Each sub-AMR is itself recursively 

matched against the keyword rules, until the recur- 
sion bottoms out at a basic AMR which matches 
with the instance rule. 

Lexical and morphological knowledge is used to 
build the initial word lattices associated with a con- 
cept when the recursion bottoms out. Then the in- 
stance rule builds basic noun and verb groups from 
these, as well as basic word lattices for other syn- 
tactic categories. As the algorithm climbs out of the 
rccursion, each rule concatenates together lattices 
for each of the sub-AMR's to form longer phrases. 
The rhs specifies the needed syntactic category for 
each sub-lattice and the surface order of the concate- 
nation, as well as the syntactic category for the new 
resulting lattice. Concatenation is performed by at- 
taching the cud state of one sub-lattice to the start 
state of the next. Upon emerging from the top-level 
rule, the lattice with the desired syntactic category, 
by default S (sentence), is selected and handed to 
the statistical extractor for ranking. 

The next sections describe fltrther how lexical and 
morphological knowledge are used to build the initial 
word lattices, how underspecification is handled, and 
how the grammar is encoded. 

6 T h e  I n s t a n c e  R u l e  

The instance rule is the most basic rule since it is ap- 
plied to every concept in the AMR. This rule builds 
the initial word lattices for each lexical item and 
for basic noun and verb groups. Each concept in 
the AMR is eventually handed to the instance rule, 
where word lattices are constructed for all awdlable 
parts of speech. 

The relational keywords that apply at the in,~tance 
level arc :polarity, :quant, :tense, and :modal. In 
cases where a meaning is underspecified and does 
not include these keywords, the instance rule uses a 
rccasting mechanism (described below) to add some 
of them. If not specified, the system assumes posi- 
tive polarity, both singular and plural quantities, all 
possible time frames, and no modality. 

Japanese nouns are often ambiguous with respect 
to number, so generating both singular and plural 
possibilities and allowing the statistical extractor to 
choose the best one results in better translatio,1 qual- 
ity than rigidly choosing a single default as tradi- 
tional generation systems do. Allowing nmnber to 
be unspecified in the input is also useful for gen- 
eral English generation as well. There are many in- 
stances when the number of a noun is dictated more 
by usage convention or grammatical constraint than 
by semantic content. For example, "The company 
has (a plan/plans) to establish itself in February," or 
"This child won't eat any carrots," ("carrots" must 
be plural by grammatical constraint). It is easier 
for a client program if the input is not required to 
specify number in these cases, but is allowed to rely 
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on the statistical extractor to supply the best one. 
In translation, there is frequently no direct corre- 

spondence between tenses of different languages, so 
in Nitrogen, tense can be coarsely specified as either 
past, present, or future, but need not be specified 
at all. If not specified, Nitrogen generates lattices 
for the most common English tenses, and allows the 
statistical extractor to choose the most likely one. 

The instance rule is factored into several sub- 
instance rules with three main categories: nouns, 
verbs, and miscellaneous. The noun instance rules 
are further subdivided into two rules, one for plu- 
ral noun phrases, and the other for singular. The 
verb instance rules are factored into two categories 
relating to modality and tense. 

Polarity can apply across all three main instance 
categories (noun, verb, and other), but only affects 
the level it appears in. When applied to nouns or ad- 
jectives, the result is "non-" prepended to the word, 
which conveys the general intention, but is not usu- 
ally very grammatical. Negative polarity is usually 
most fluently expressed in the verb rules with the 
word "not," e.g., "does not eat. ''~ 

7 G r a m m a r  F o r m a l i s m  

The grammatical specifications in the keyword rules 
constitute the main formalism of the generation sys- 
tem. The rules ,nap semantic and syntactic roles to 
grammatical word lattices. These roles include: 

: a g e n t ,  : p a t i e n t ,  :domain ,  : r a n g e ,  : s o u r c e ,  
: dest inat ion, : spat ial-locat ing, 
: temporal-locat ing, : accompanier ; 
: obliquel, : oblique2, : oblique3 ; 
:subject, :object, :mod, etc. 

A simplified version of the rule that applies to an 
AMR with :agent  and : p a t i e n t  roles is: 

((xl  :agent) 
(x2 :pa t ient )  
(x3 : res t )  
-> 

(s  ( s e q  (x l  np nom-pro)  (x3 v - t e n s e d )  
(x2 np ace-pro)))  

(s (seq (x2 np nom-pro) (x3 v-passive) 
(wrd "by") (xl np ace-pro)))  

(rip (seq (x3 np ace-pro nora-pro) (wrd "of") 
(x2 np ace-pro) (wrd "by") (xl np ace-pro)))  

(s-ger  (seq . . . ) )  
( inf  (seq . . . ) ) )  

The left-hand side is used to match an AMR with 
agent and patient roles at the top level. The : r e s t  
keyword serves as a catch-all for other roles that ap- 
pear at the top level. Note that the rule specifies 
two ways to build a sentence, one an active voice 

5We plan to generate more fluent expressions for negative 
polarity on nouns and adjectives, for example, "unhappy" 
instead of "non-happy." 

version and the other passive. Since at this level the 
input may be underspecified regarding which voice 
to use, the statistical extractor is expected to choose 
later the most fluent version. Note also that this rule 
builds lattices for other parts of speech, in addition 
to sentences (ex: "the consumption of the bone by 
the dogs"). In this way the generation algorithm 
works bottom-up, building lattices for the leaves (in- 
nermost nested levels of the input) first, to be com- 
bined at outer levels according the relations between 
the leaves. For example, the AMR below will match 
this rule: 

(m7 / feat,take inl 
: time present 
:agent (d / Idog,canidl 

: quant plural) 
:patient (b / los,bonel 

:quant sing) ) 

Below are some sample lattices that result from 
applying the rule above to this AMR: 6 

(S (or (seq (or (wrd "the") (wrd "*empty*")) 
(wrd "dog") (wrd "+plural") 
(wrd "may") (wrd "eat") 
(or (wrd "the") (wrd "a") 

(wrd "an") (wrd "*empty*")) 
(wrd "bone") ) 

(seq (or (wrd "the") (wrd "a") 
(wrd "an") (wrd "*empty*")) 

(wrd "bone") (wrd "may") (wrd "be") 
(or (wrd "being") (wrd "*empty*")) 
(wrd "eat") (wrd "+pastp") (wrd "by") 
(or (wrd "the") (wrd "*empty*")) 
(wrd "dog") (wrd "+plural")) )) 

(NP (seq (or (wrd "the") (wrd "a") 
(wrd "an") (wrd "*empty*")) 

(wrd "possibility") (wrd "of") 
(or (wrd "the") (wrd "a") 

(wrd "an") (wrd "*empty*")) 
(wrd "consumption") (wrd "of") 
(or (wrd "the") (wrd "a") 

(wrd "an") (wrd "*empty*")) 
(wrd "bone") (wrd "by") 
(or (wrd "the") (wrd "*empty*")) 
(wrd "dog") (wrd "+plural")))) 

(S-~Ea ... ) 

(INF ... ) 

Note the variety of symbolic output that is pro- 
duced with these excessively simple rules. Each re- 
lation is mapped not to one but to many different 
realizations, covering regular and irregular behav- 
ior exhibited in natural language. Purposeful over- 
generation becomes a strength. 

6The grammar rules can insert the special token *empty*, 
here indicating an option for the null determiner. Before run- 
ning, the statistical extractor removes all *empty* transitions 
by determlnizlng the word lattice. Note also the insertion of 
morphological tokens llke +plural .  Inflectional morphology 
rules also apply during this determinizing stage. 
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The : r e s t  keyword in the rule head provides 
a handy mechanism for decoupling the possible 
keyword combinations. By means of this mecha- 
nism, keywords which generate relatively indepen- 
dent word lattices can be organized into separate 
rules, avoiding combinatorial explosion in the num- 
ber of rules which need to be written. 

7.1 R e c a s t i n g  M e c h a n i s m  

The recasting mechanism that  is used in the gram- 
mar  formalism gives it unique power and flexibil- 
ity. The recasting mechanism enables the generator 
to transform one semantic representation into an- 
other one (such as deep to shallow, or instance to 
sub-instance) and to accept as input a specification 
anywhere along this spectrmn, permitt ing meaning 
to be encoded at whatever level is most convenient. 
The recasting mechanism also makes it possible to 
handle non-compositional aspects of language. 

One area in which we use this mechanism is in the 
:domain rule. "Fake for example the sentence, "It is 
necessary that  the dog eat." It is sometimes most 
convenient to represent this as: 

(mS / [obligatory<necessaryl 
:domain (m9 / ]eat,take inl 

:agent (mlO / Idog,canidl))) 

and at other times as: 

(mll / [have the quality of beingl 
:domain (m12 / feat,take in[ 

:agent (d / Idog,canidl)) 
:range (m13 / I obligatory<necessaryl ) 

but we can define them to be semantically equiva- 
lent. In our system, both are accepted, and the first 
is automatical ly transformed into the second. 

Other ways to say this sentence include "The dog 
is required to eat," or "The dog must eat." How- 
ever, the g r am m ar  formalism cannot express this, 
because it would require inserting the word lattice 
for I obl igatory<necessaryl  within the lattice for m9 
or m l 2 - - b u t  the formalism can only concatenate lat- 
tices. The recasting mechanism solves this problem, 
by recasting the above AMR as: 

(m14 / /eat,take inl 
:modal (m15 / [obligatory<necessaryl) 
:agent (m16 / Idog,canidl)) 

which makes it possible to form these sentences. The 
syntax for recasting the first AMR to the second is: 

( (x l  : r e s t )  
(x2 :domain) 
-> 
(? (xl (:new ( /  ]have the q u a l i t y  of beingl)  

(:domain x2) ( : range x i ) )  ?)) 

and for recasting the second into the third: 

((xl :rest) 
(x2 :domain) 
(x3 :range) 
-> 

(? (x2 (:add (:modal (x3 (:add (:extra xl))))) ?)) 
(s (seq (x2 np nom-pro) (xl v-tensed) 

(x3 adj np ace-pro))) 
(s (seq (wrd "it") (xl v-tensed) 

(x3 adj np ace-pro) (wrd "that") (x2 s))) 
,°°) 

Tile :new and :add keywords signal all AMR re- 
cast. The list after the keyword contains the in- 
structions for doing the reca~st. In tile first case, 
the ;new keyword means: build an AMR with a 
new root, ]have the quality of being[, and two 
roles, one labeled :domain and assigned sub-AMR 
x2; the other labeled : r ange  and assigned sub-AMR 
xi .  The question mark causes a direct splice of the 
results from the recast. 

In the second case, the :add keyword means: in- 
sert into the sub-AMR of x2 a role labeled :modal 
and assign to it the snb-AMR of x3 which itself is 
recast to include the roles in the sub-AMR of x l  but 
not its root. (This is in case there are other roles 
such as polarity or time which need to be included 
in the new AMR.) 

In fact, recasting makes it possible to nest modals 
within modals to any desired depth, and even to at- 
tach polarity and tense at any level. For example, 
"It is not possible that  it is required that  you are per- 
mitted to go," can be also (more concisely) stated 
as "It cannot be required that you be permit ted to 
go," or "It is not possible that  you nmst be permit- 
ted to go," or "You cannot have to be permit ted 
to go." This is done by a g rammar  rule express- 
ing the most nested modal concept as a modal verb 
and the remaining modal concepts as a combination 
of regular verbs or adjective phrases. Our g rammar  
includes a fairly complete model of obligation, pos- 
sibility, permission, negation, tense, and all of their 
possible interactions. 

8 Discuss ion  

We have presented a new generation g rammar  for- 
malism capable of mapping meanings onto word lat- 
tices. It includes novel mechanisms for construct- 
ing and combining word lattices, and for re-writing 
meaning representations to handle a broad range of 
linguistic phenomena. The g rammar  accepts inputs 
along a continumn of semantic depth, requiring only 
a minimal amount of syntactic detail, making it at- 
tractive for a variety of purposes. 

Nitrogen's g rammar  is organized around seman- 
tic input patterns rather than the syntax of English. 
This distinguishes it from both unification g rammar  
(Elhadad, 1993a; Shieber et al., 1989) and systemic- 
network grammar  (Penman, 1989). Meanings can 
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be expressed directly, or else be recast and recy- 
cled back through the generator. This recycling ul- 
timately allows syntactic constraints to be localized, 
even though the grammar is not organized around 
English syntax. 

Nitrogen's algorithm operates bottom-up, effi- 
ciently encoding multiple analyses in a lattice data 
structure to allow structure sharing, analogous to 
the way a chart is used in bottom-up parsing. In 
contrast, traditional generation control mechanisms 
work top-down, either deterministically (Meteer et 
el., 1987; Penman, 1989) or by backtracking to pre- 
vious choice points (Elhadad, 1993b). This unnec- 
essarily duplicates work at run time, unless sophis- 
ticated control directives are included in the search 
engine (Elhadad and Robin, 1992). Recently, (Kay, 
1996) has explored a bottom-up approach to genera- 
tion as well, using a chart rather than a word lattice. 

Nitrogen's generation is robust and scalable. It 
can generate output even for unexpected or incom- 
plete input, and is designed for broad coverage. 
It does not require the detailed, difficult-to-obtain 
knowledge bases that other NLG systems require, 
since it relies instead on corpus-based statistics to 
make a wide variety of linguistic decisions. Cur- 
rently the quality of the output is limited by the use 
of only word bigram statistical information, which 
cannot handle long-distance agreement, or distin- 
guish likely collocations from unlikely grammatical 
structure. However, we plan to remedy these prob- 
lems by using statistical information extracted from 
the Penn Treebank corpus (Marcus et al., 1994) to 
rank tagged lattices and parse forests. 

Nitrogen's rule matching is much less expensive 
than graph unification, and lattices generated for 
sub-AMRs are cached and reused in subsequent ref- 
erences. The semantic roles used in the grammar 
formalism cover most common syntactic phenomena, 
though our grammar does not yet generate ques- 
tions, or infer pronouns from explicit coreference. 

Nitrogen has been used extensively as part of 
a semantics-based Japanese-English MT system 
(Knight et al., 1995). Japanese analysis provides 
AMR's, which Nitrogen transforms into word lat- 
tices on the order of hundreds of nodes and thou- 
sands of arcs. These lattices compactly encode a 
number of syntactic variants that usually reach into 
the trillions and beyond. Most of these are some- 
what ungrammatical or awkward, yet the statistical 
extractor rather successfully narrows them down to 
the top N best paths. An online demo is available at 
http : / / www.isi.edu /natural-language /mt  /nitrogen / 
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