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A b s t r a c t  

We present a connectionist architecture and demon- 
strate that it can learn syntactic parsing from a cor- 
pus of parsed text. The architecture can represent 
syntactic constituents, and can learn generalizations 
over syntactic constituents, thereby addressing the 
sparse data problems of previous connectionist ar- 
chitectures. We apply these Simple Synchrony Net- 
works to mapping sequences of word tags to parse 
trees. After training on parsed samples of the Brown 
Corpus, the networks achieve precision and recall 
on constituents that approaches that of statistical 
methods for this task. 

1 I n t r o d u c t i o n  

Connectionist networks are popular for many of the 
same reasons as statistical techniques. They are ro- 
bust and have effective learning algorithms. They 
also have the advantage of learning their own inter- 
nal representations, so they are less constrained by 
the way the system designer formulates the prob- 
lem. These properties and their prevalence in cog- 
nitive modeling has generated significant interest in 
the application of connectionist networks to natu- 
ral language processing. However the results have 
been disappointing, being limited to artificial do- 
mains and oversimplified subproblems (e.g. (Elman, 
1991)). Many have argued that these kinds of con- 
ncctionist networks are simply not computationally 
adequate for learning the complexities of real natural 
language (e.g. (Fodor and Pylyshyn, 1988), (Hender- 
son, 1996)). 

Work on extending connectionist architectures for 
application to complex domains such as natural lan- 
guage syntax has developed a theoretically moti- 
vated technique called Temporal Synchrony Variable 
Binding (Shastri and Ajjanagadde, 1993; Henderson, 
1996). TSVB allows syntactic constituency to be 
represented, but to date there has been no empiricM 
demonstration of how a learning algorithm can be 
effectively applied to such a network. In this paper 
we propose an architecture for TSVB networks and 
empirically demonstrate its ability to learn syntac- 
tic parsing, producing results approaching current 

statistical techniques. 
In the next section of this paper we present the 

proposed connectionist architecture, Simple Sym 
chrony Networks (SSNs). SSNs are a natural ex- 
tension of Simple Recurrent Networks (SRNs) (El- 
man, 1991), which are in turn a natural extension 
of Multi-Layered Perceptrons (MLPs) (Rumelhart 
et al., 1986). SRNs are an improvement over MLPs 
because they generalize what they have learned over 
words in different sentence positions. SSNs are an 
improvement over SRNs because the use of TSVB 
gives them the additional ability to generalize over 
constituents in different structural positions. The 
combination of these generalization abilities is what 
makes SSNs adequate for syntactic parsing. 

Section 3 presents experiments demonstrating 
SSNs' ability to learn syntactic parsing. The task 
is to map a sentence's sequence of part of speech 
tags to either an unlabeled or labeled parse tree, 
as given in a preparsed sample of the Brown Cor- 
pus. A network input-output format is developed 
for this task, along with some linguistic assump- 
tions that were used to simplify these initial ex- 
periments. Although only a small training set was 
used, an SSN achieved 63% precision and 69% re- 
call on unlabeled constituents for previously unseen 
sentences. This is approaching the 75% precision 
and recall achieved on a similar task by Probabilis- 
tic Context Free Parsers (Charniak, forthcoming), 
which is the best current method for parsing based 
on part of speech tags alone. Given that these are 
the very first results produced with this method, fu- 
ture developments are likely to improve on them, 
making the future for this method very promising. 

2 A C o n n e c t i o n i s t  A r c h i t e c t u r e  t h a t  
G e n e r a l i z e s  o v e r  C o n s t i t u e n t s  

Simple Synchrony Networks (SSNs) are designed to 
extend the learning abilities of standard connec- 
tionist networks so that they can learn generaliza- 
tions over linguistic constituents. This generaliza- 
tion ability is provided by using Temporal Synchrony 
Variable Binding (TSVB) (Shastri and Ajjanagadde, 
1993) to represent constituents. With TSVB, gener- 
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Figure 1: A Simple Recurrent Network. 

alization over constituents is achieved in an exactly 
analogous way to the way Simple Recurrent Net- 
works (SRNs) (Elman, 1991) achieve generalization 
over the positions of words in a sentence. SRNs are 
a standard connectionist method for processing se- 
quences. As the name implies, SSNs are one way of 
extending SRNs with TSVB. 

2.1 Simple R e c u r r e n t  Networks  

Simple Recurrent Networks (Elman, 1991) are a sim- 
ple extension of the most popular form of connec- 
tionist network, Multi-Layered Perceptrons (MLPs) 
(Rumelhart et al., 1986). MLPs are popular because 
they can approximate any finite mapping, and be- 
cause training them with the Baekpropagation learn- 
ing algorithm (Rumelhart et al., 1986) has been 
demonstrated to be effective in a wide variety of 
applications. Like MLPs, SRNs consist of a finite 
set of units which are connected by weighted links, 
as illustrated in figure 1. The output of a unit is 
simply a scalar activation value. Information is in- 
put to a network by placing activation values on the 
input units, and information is read out of a net- 
work by reading off activation values from the out- 
put units. Computation is performed by the input 
activation being scaled by the weighted links and 
passed through the activation functions of the "hid- 
den" units, which are neither part of the input nor 
output. The only parameters in this computation 
are the weights of the links and how many hidden 
units are used. The number of hidden units is cho- 
sen by the system designer, but the link weights are 
automatically trained using a set of example input- 
output mappings and the Backpropagation learning 
algorithm. 

Unlike MLPs, SRNs process sequences of inputs 
and produce sequences of outputs. To store infor- 
mation about previous inputs, St~Ns use a set of 
context units, which simply record the activations 
of the hidden units during the previous time step 
(shown as dashed links in figure 1). When the SRN 
is done computing the output for one input in the se- 

quence, tile vector of activations on the hidden units 
is copied to the context units. Then the next input 
is processed with this copied pattern in the context 
units. Thus the hidden pattern computed for one 
input is used to represent the context for the subse- 
quent input. Because the hidden pattern is learned, 
this method allows SRNs to learn their own inter- 
nal representation of this context. This context is 
the state of the network. A number of algorithms 
exist for training such networks with loops in their 
flow of activation (called recurrence), for example 
Backpropagation Through Time (Rumelhart et al., 
1986). 

The most important characteristic of any learning- 
based model is the way it generalizes from the ex- 
amples it is trained on to novel testing examples. In 
this regard there is a crucial difference between SRNs 
and MLPs, namely that SRNs generalize across se- 
quence positions. At each position in a sequence a 
new context is copied, a new input is read, and a 
new output is computed. However the link weights 
that perform this computation are the same for all 
the positions in the sequence. Therefore the infor- 
mation that was learned for an input and context in 
one sequence position will inherently be generalized 
to inputs and contexts in other sequence positions. 
This generalization ability is manifested in the fact 
that SRNs can process arbitrarily long sequences; 
even the inputs at the end, which are in sequence 
positions that the network has never encountered 
before, can be processed appropriately. This gener- 
alization ability is a direct result of SRNs using time 
to represent sequence position. 

Generalizing across sequence positions is crucial 
for syntactic parsing, since a word tends to have the 
same syntactic role regardless of its absolute position 
in a sentence, and there is no practical bound on the 
length of sentences. However this ability still doesn't 
make SRNs adequate for syntactic parsing. Because 
SRNs have a bounded number of output units, and 
therefore an effectively bounded output for each in- 
put, the space of possible outputs should be linear 
in the length of the input. For syntactic parsing, the 
total number of constituents is generally considered 
to be linear in the length of the input, but each con- 
stituent has to choose its parent from amongst all 
the other constituents. This gives us a space of pos- 
sible parent-child relationships that is proportional 
to the square of the length of the input. For exam- 
ple, the attachment of a prepositional phrase needs 
to be chosen from all the constituents on the right 
frontier of the current parse tree. There may be an 
arbitrary number of these constituents, but an SRN 
would have to distinguish between them using only 
a bounded number of output units. While in the- 
ory such a representation can be achieved using ar- 
bitrary precision continuous activation values, this 
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bounded nature is symptomatic  of a limitation in 
SILNs' generalization abilities. What  we really want 
is for the network to learn what kinds of constituents 
such prcpositional phrases like to attach to, and ap- 
ply these generalizations independently of the abso- 
lute position of the constituent in the parse tree. In 
other words, we want the network to gcneralize over 
constituents. There is no apparent way for SIgNs to 
achieve such generalization. This inability to gener- 
alize results in the network having to bc trained on 
a ~,~et of sentences in which every kind of constituent 
appears in cvery position in the parse tree, result- 
ing in serious sparse data  problems. We believe that  
it is this difficulty that  has prevented the successful 
application of SRNs to syntactic parsing. 

2.2 S i m p l e  S y n c h r o u y  N e t w o r k s  

The basic technique which we use to solve Sl~.Ns' 
inability to generalize over constituents is exactly 
analogous to the technique SRNs use to generalize 
over sentence positions; we process constituents one 
at a time. Words are still input to the network one 
at a time, but  now within each input step the net- 
work cycles through tim set of constituents. This 
dual use of time does not introduce any new compli- 
cations for learning algorithms, so, as for SRNs, we 
can use Backpropagation Through Time. The use 
of timing to represent constituents (or more gener- 
ally entities) is the core idea of Temporal  Synchrony 
Variable Binding (Shastri and Ajjanagadde, 1993). 
Simple Synchrony Networks are an application of 
this idea to SigNs. 1 

As illustrated in figure 2, SSNs use the same 
method of representing state as do Sl£Ns, namely 
context units. The difference is that  SSNs have 
two of these memories, wifile SP~Ns have one. One 
memory is exactly the same as for SRNs (the fig- 
nre's lower recurrent component).  This memory 
has no rcpresentation of constituency, so we call 
it thc "gestalt" memory. The other memory has 
had TSVB applied to it (the figure's upper recur- 
rent component,  depicted with "stacked" units). 
This memory only represents information about con- 
stituents, so wc call it the constituent memory. 
These two representations are then combined via an- 
other set of hidden units to compute the network's 
output .  Because the output  is about  constituents, 
these combination and output  units have also had 
TSVB applied to them. 

The application of TSVB to the output  units al- 
lows SSNs to solve the problems that  SP~Ns have 
with representing the output  of a syntactic parser. 
For every step in the input sequence, TSVB units 
cycle through the set of constituents. To output  

1The re  a re  a variety of  ways  to e x t e n d  S R Ns  u s ing  T S V B .  
"]!he arc] f i tec ture  p r e s e n t e d  here  was se lec ted  b a s e d  on  previ-  
ous  e x p e r i m e n t s  u s i n g  a toy g r a m m a r .  
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Figure 2: A Simple Synchrony Network. The units 
to which TSVB has been applied are depicted as 
several units stacked on top of each other, because 
they store activations for several constituents. 

something about  a particular constituent, it is sim- 
ply necessary to activate an output  unit at that  
constituent's t ime in the cycle. For example, when 
a prepositional phrase is being processed, the con- 
stituent which that  prepositional phrase attaches to 
can be specified by activating a "parent" output  unit 
in synchrony with the chosen constituent, ttowever 
many constituents there are for the prepositional 
phrase to choose between, there will be that  many 
times in the cycle that  the "parent" unit can be acti- 
vated in. Thereby we can output  information about 
an arbitrary number of constituents using only a 
bounded number of units. We simply require an 
arbitrary amount  of t ime to go through all the con- 
stituents. 

Just as SRNs' ability to input arbitrarily long sen- 
tences was symptomat ic  of their ability to generalize 
over sentence position, the ability of SSNs to output  
information about  arbitrari ly many constituents is 
symptomatic  of their ability to gencralizc ovcr con- 
stituents. Having more constituents than the net- 
work has seen before is not a problem because out- 
puts for the extra constituents are produced on the 
same units by the same link weights as for other 
constituents. The training that  occurred for the 
other constituents modified the link weights so ms 
to produce the constituents '  outputs  appropriately, 
and now these same link weights are applied to tim 
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extra constituents. So the SSN has generalized what 
it has lcarned over constituents. For example, once 
the network has learned what kinds of constituents a 
preposition likes to attach to, it can apply these gen- 
eralizations to each of the constituents in the current 
parse and choose the best match. 

In addition to their ability to generalize over con- 
stituents, SSNs inherit from SRNs the ability to gen- 
eralize over sentence positions. By generalizing in 
both these ways, the amount  of data that is nec- 
essary to learn linguistic generalizations is greatly 
reduced, thus addressing the sparse data problems 
which we believe are the reasons connectionist net- 
works have not been successfully applied to syntactic 
parsing. The next section empirically demonstrates 
that  SSNs can be successfully applied to learning the 
syntactic parsing of real natural  language. 

3 E x p e r i m e n t s  i n  L e a r n i n g  t o  P a r s e  

Adding the theoretical ability to generalize over lin- 
guistic constituents is an important  step in connec- 
tionist natural language processing, but theoretical 
arguments are not sufficient to address the empir- 
ical question of whether these mechanisms are ef- 
fective in learning to parse real natural language. 
In this section we present experiments on training 
Simple Synchrony Networks to parse naturally oc- 
curring sentences. First we present the input-output 
format  for the SSNs used in these experiments, then 
we present the corpus, then we present the results, 
and finally we discuss likely future developments. 
Despite the fact that  these are the first such ex- 
periments to be designed and run, an SSN achieved 
63% precision and 69% recall on constituents. Be- 
cause these results are approaching the results for 
current statistical methods for parsing from part of 
speech tags (around 75% precision and recall), we 
conclude that  SSNs are effective in learning to parse. 
We anticipate that  future developments using larger 
training sets, words as inputs, and a less constrained 
input-output  format  will make SSNs a real alterna- 
tive to statistical methods. 

3.1 S S Ns  fo r  P a r s i n g  

The networks that  are used in the experiments all 
have the same design. They all use the internal 
structure discussed in section 2.2 and illustrated in 
figure 2, and they all use the same input-output for- 
mat.  The input-output  format  is greatly simplified 
by SSNs' ability to represent constituents, but for 
these initial experiments some simplifying assump- 
tions are still necessary. In particular~ we want to 
define a single fixed input-output  mapping for ev- 
ery sentence. This gives the network a stable pat- 
tern to learn, rather than having the network itself 
make choices such as when information should be 
output  or which output  constituent should be asso- 
ciated with which words. To achieve this we make 

two assumptions, namely that outputs should occur 
as soon as theoretically possible, and that the head 
of each constituent is its first terminal child. 

As shown in figure 2, SSNs have two sets of in- 
put  units, constituent input units and gestalt input 
units. Defining a fixed input pattern for the gestalt 
inputs is straightforward, since these inputs per- 
tain to information about  the sentence as a whole. 
Whenever a tag is input to the network, the activa- 
tion pat tern for that  tag is presented to the gestalt 
input units. The information from these tags is 
stored in the gestalt context units, forming a holistic 
representation of the preceding portion of the sen- 
tence. The use of this holistic representation is a sig- 
nificant distinction between SSNs and current sym- 
bolic statistical methods, giving SSNs some of the 
advantages of finite state methods. Figure 3 shows 
an example parse, and depicts the gestalt inputs as 
a tag just  above its associated word. First NP is in- 
put  to the gestalt component,  then VVZ, then AT, 
and finally NN. 

Defining a fixed input pattern for the constituent 
input units is more difficult, since the input must be 
independent of which tags are grouped together into 
constituents. For this we make use of the assumption 
that  the first terminal child of every constituent is its 
head. When a tag is input we add a new constituent 
to the set of constituents that  the network cycles 
through and assume that  the input tag is the head 
of that  constituent. The activation pattern for the 
tag is input in synchrony with this new constituent, 
but nothing is input to any of the old constituents. 
In the parse depicted in figure 3, these constituent 
inputs are shown as predications on new variables. 
First constituent w is introduced and given the input 
NP, then x is introduced and given VVZ, then y is 
introduced and given AT, and finally z is introduced 
and given NN. 

Because the only input to a constituent is its head 
tag, the only thing that  the constituent context units 
do is remember information about each constituent's 
first terminal child. This is not a very realistic as- 
sumption about  the nature of the linguistic gener- 
alizations that  the network needs to learn, but it 
is adequate for these initial experiments. This as- 
sumption simply means that  more burden is placed 
on the network's gestalt memory, which can store in- 
formation about  any tag. Provided the appropriate 
constituent can be identified based on its first termi- 
nal child, this gestalt information can be transferred 
to the constituent through the combination units at 
the time when an output  needs to be produced. 

We also want to define a single fixed output  pat- 
tern for each sentence. This is necessary since we use 
simple Backpropagation Through Time, plus it gives 
the network a stable mapping to learn. This desired 
output  pat tern is called the target pattern. The net- 
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Input Output Accumulated 
Output 

NP(w) w w 

NP I I 
(John) NP NP 

X 
x 

vvz(x) w.~] 
v v z  

(loves) v v z  NP VVZ 

X × 

AT(y) AT ~ yl ~ ~  

(a) AT NP VVZ AT 
X 

y\ 
(woman) NN NP VVZ AT NN 

Figure 3: A parse of "John loves a woman". 

work is trained to try to produce this exact pattern, 
even though other patterns may be interpretable as 
the correct parse. To define a unique target output 
wc need to specify which constituents in the corpus 
map to which constituents in the network, and at 
what point in the sentence each piece of informa- 
tion in the corpus needs to be output. The first 
problem is solved by the assumption that the first 
terminal child of a constituent is its head. 2 We map 
cach constituent in the corpus to the constituent in 
the network that  has the same head. Network con- 
stituents whose head is not the first terminal child of 
any corpus constituent are simply never mentioned 
in the output,  as is true of z in figure 3. The second 
problem is solved by assuming that outputs should 
occur as soon as theoretically possible. As soon as 
all the constituents involved in a piece of information 
have been introduced into the network, that  piece 
of information is required to be output.  Although 
this means that  there is no point at which the entire 
parse for a sentence is being output  by the network, 
we can simply accumulate tile network's incremen- 
tal outputs and thereby interpret the output of the 
parser as a complete parse. 

To specify an unlabeled parse tree it is sufficient 
to output  the tree's set of parent-child relationships. 
For parent-child relationships that  are between a 
constituent and a terminal, wc know the constituent 
will have been introduced by the time the termi- 
nal's tag is input because a constituent is headed 
by its first terminal child. Thus this parent-child 
relationship should be output when the terminal's 

2 T h e  c a s e s  w h e r e  c o n s t i t u e n t s  in  t h e  c o r p u s  h a v e  n o  t e r -  
m i n a l  c h i l d r e n  a r e  d i s c u s s e d  in  t h e  n e x t  s u b s e c t i o n .  

tag is input. This is done using a "parent" output 
unit, which is active in synchrony with the parent 
constituent when the terminal's tag is input. In fig- 
ure 3, these parent outputs are shown structurally as 
parent-child relationships with the input tags. Tile 
first three tags all designate the constituents intro- 
duced with them as their parents, but the fourth tag 
(NN) designates the constituent introduced with tile 
previous tag (y) as its parent. 

For parent-child relationships that  are between 
two nonterminal constituents, the earliest this in- 
formation can be output  is when the head of the 
second constituent is input. This is done using a 
"grandparent" output  unit and a "sibling" output 
unit. The grandparent output unit is used when 
the child comes after the parent's head (i.e. right 
branching constituents like objects). In this case 
the grandparent output  unit is active in synchrony 
with the parent constituent when the head of the 
child constituent is input. This is illustrated in the 
third row in figure 3, where AT is shown as having 
the grandparent x. The sibling output unit is used 
when the child precedes the parent's head (i.e. left 
branching constituents like subjects). In this case 
the sibling output  unit is active in synchrony with 
the child constituent when the head of the parent 
constituent is input. This is illustrated in tim sec- 
ond row in figure 3, where VVZ is shown as having 
the sibling w. These parent, grandparent, and sib- 
ling output  units are sufficient to specify ally of the 
parse trees that  we require. 

While training the networks requires having a 
unique target output,  in testing we can allow any 
output pattern that  is interpretable as the correct 
parse. Interpreting the output  of the network has 
two stages. First, the continuous unit activations 
are mapped to discrete parent-child relationships. 
For this we simply take the maximums across com- 
peting parent outputs (for terminal 's parents), and 
across competing grandparent and sibling outputs 
(for nonterminal 's parents). Second, these parent- 
child relationships are mapped to their equivalent 
parse "tree". This process is illustrated in the right- 
most column of figure 3, where the network's incre- 
mental output  of parent-child relationships is accu- 
mulated to form a specification of the complete tree. 
This second stage may have some unexpected re- 
sults (the constituents may be discontiguous, and 
the structure may not be connected), but it will 
always specify which words in the sentence each 
constituent includes. By defining each constituent 
purely in terms of what words it includes, we call 
compare the constituents identified in the network's 
output to the constituents in the corpus. As is stan- 
dard, we report the percentage of the output  con- 
stituents that are correct (precision), and percentage 
of the correct constituents that  are output (recall). 
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3.2 A C o r p u s  fo r  SSNs  

The Susanne 3 corpus is used in this paper as a source 
of preparsed sentences. The Susanne corpus consists 
of a subset of the Brown corpus, preparsed accord- 
ing to the Susanne classification scheme described 
in (Sampson, 1995). This data  must be converted 
into a format suitable for the learning experiments 
described below. This section describes the conver- 
sion of the Susanne corpus sentences and the preci- 
sion/recall evaluation functions. 

We begin by describing the part of speech tags, 
which form the input to the network. The tags 
in the Susanne scheme are a detailed extension of 
the tags used in the Lancaster-Leeds Treebank (see 
Garside el al, 1987). For the experiments described 
below the simpler Lancaster-Leeds scheme is used. 
Each tag is a two or three letter sequence, e.g. ' John'  
would be encoded 'NP' ,  the articles 'a '  and ' the'  are 
encoded 'AT', and verbs such as 'is' encoded 'VBZ'. 
These are input to the network by setting one bit in 
each of three banks of inputs; each bank representing 
one letter position, and the set bit indicating which 
letter or space occupies that  position. 

The network's output  is an incremental represen- 
tation of the unlabeled parse tree for the current 
sentence. The Susanne scheme uses a detailed clas- 
sification of constituents, and some changes are nec- 
essary before the data  can be used here. Firstly, the 
experiments in this paper are only concerned with 
parsing sentences, and so all constituents referring 
to the meta-sentence level have been discarded. Sec- 
ondly, the Susanne scheme allows for 'ghost'  mark- 
ers. These elements are also discarded, as the 'ghost'  
elements do not affect the boundaries of the con- 
stituents present in the sentence. 

Finally, it was noted in the previous subsection 
that  the SSNs used for these learning experiments 
require every constituent to have at least one termi- 
nal child. There are very few constructions in the 
corpus that  violate this constraint, but one of them 
is very common, namely the S-VP division. The lin- 
guistic head of the S (the verb) is within the VP, 
and thus the S often occurs without any tags as im- 
mediate children. For example, this occurs when S 
expands to simply NP VP. To address this problem, 
we collapse the S and VP into a single constituent, 
as is illustrtated in figure 3. The same is done for 
other such constructions, which include adjective, 
noun, determiner and prepositional phrases. This 
move is not linguistically unmotivated, since the re- 
sult is equivalent to a form of dependency grammar 
(Mel~uk, 1988), which have a long linguistic tradi- 
tion. The constructions are also well defined enough 

3 We acknowledge the roles of the Economic and  Social Re- 
search Council (UK) as sponsor and the University of Sussex 
as grantholder  in providing the Susanne corpus used in the 
exper iments  described in this paper.  

Expt Training Cross val Test 
Prec Rec Prec Rec Prec Rec 

(1) 75.6 79.1 66.7 71.9 60.4 66.5 
(2) 71.6 75.8 68.2 73.8 62.6 69.4 
(3) 64.2 71.4 58.6 66.9 59.8 68.5 

Table 1: Results of experiments on Susanne corpus. 

that  the collapsed constituents could be separated 
at the interpretation stage, but  we don' t  do that  in 
these experiments. Also note that  this limitation is 
introduced by a simplifying assumption, and is not 
inherent to the architecture. 

3.3 Experimental  Results  

The experiments in this paper use one of the Susanne 
genres (genre A, press reportage) for the selection 
of training, cross-validation and test data. We de- 
scribe three sets of experiments, training SSNs with 
the input-output  format  described in section 3.1. In 
each experiment, a variety of networks was trained, 
varying the number of units in the hidden and com- 
bination layers. Each network is trained using an 
extension of Backpropagation Through Time until 
the sum-squared error reaches a minimum. A cross- 
validation data  set is used to choose the best net- 
works, which are then given the test data, and pre- 
cision/recall figures obtained. 

For experiments (1) and (2), the first twelve files in 
Susanne genre A were used as a source for the train- 
ing data, the next two for the cross-validation set 
(4700 words in 219 sentences, average length 21.56), 
and the final two for testing (4602 words in 176 sen- 
tences, average length 26.15). 

For experiment (1), only sentences of length less 
than twenty words were used for training, resulting 
in a training set of 4683 words in 334 sentences. The 
precision and recall results for the best network can 
be seen in the first row of table 1. For experiment 
(2), a larger training set was used, containing sen- 
tences of length less than thir ty words, resulting in 
a training set of 13,523 words in 696 sentences. We 
averaged the performance of the best two networks 
to obtain the figures in the second row of table 1. 

For experiment (3), labeled parse trees were used 
as a target output,  i.e. for each word we also output  
the label of its parent constituent. The output  for 
the constituent labels uses one output  unit for each 
of the 15 possible labels. For calculating the preci- 
sion and recall results, the network must also output  
the correct label with the head of a constituent in 
order to count that constituent as correct. Further, 
this experiment uses data  sets selected at random 
from the total set, rather than taking blocks from 
the corpus. Therefore, the cross-validation set in 
this case consists of 4551 words in 186 sentences, 
average length 24.47 words. The test set consists of 
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4485 words in 181 sentences, average length 24.78 
words. As in experiment (2), we used a training set 
of sentences with less than 30 words, producing a set 
of 1079 sentences, 27,559 words. For this experiment 
none of the networks we tried converged to nontriv- 
ial solutions on the training set, but one network 
achieved reasonable performance before it collapsed 
to a trivial solution. The results for this network are 
shown in the third row of table 1. 

From current corpus based statistical work on 
parsing, we know that sequences of part of speech 
tags contain enough information to achieve around 
75% precision and recall on constituents (Charniak, 
forthcoming). On the other extreme, the simplistic 
parsing strategy of producing a purely right branch- 
ing structure only achieves 34% precision and 61% 
recall on our test set. The fact that SSNs can achieve 
63% precision and 69% recall using much smaller 
training sets than (Charniak, forthcoming) demon- 
strates that SSNs can be effective at learning the 
required generalizations from the data. While there 
is still room for improvement, we conclude that SSNs 
can learn to parse real natural language. 

3.4 Ex t endab i l i t y  
The initial results reported above are very promis- 
ing for future developments with Simple Synchrony 
Networks, as they are likely to improve in both the 
near and long term. Significant improvements are 
likely with larger training sets and longer training 
sentences. While other approaches typically use over 
a million words of training data, the largest training 
set we use is only 13,500 words. Also, fine tuning of 
tile training methodology and architecture often im- 
proves network performance. For example we should 
be using larger networks, since our best results came 
from the largest networks we tried. Currently the 
biggest obstacle to exploring these alternatives is the 
long training times that are typical of Backpropa- 
gation Through Time, but there are a number of 
standard speedups which we will be trying. 

Another source of possible improvements is to 
make the networks' input-output format more lin- 
guistically motivated. As an example, we retested 
the networks from experiment 2 above with a dif- 
ferent mapping from the output of the network to 
constituents. If a word chooses an earlier word's 
constituent as its parent, then we treat these two 
words as being in the same constituent, even if the 
earlier word has itself chosen an even earlier word 
as its parent. 10% of the constituents are changed 
by this reinterpretation, with precision improving by 
1.6% and recall worsening by 0.6%. 

In thc longer term the biggest improvement is 
likely to come from using words, instead of tags, 
as the input to the network. Currently all the best 
parsing systems use words, and back off to using tags 
for infrequent words (Charniak, forthcoming). Be- 

cause connectionist networks automatically exhibit a 
frequency by regularity effect where infrequent cases 
are all pulled into the typical pattern, we would ex- 
pect such backing off to be done automatically, and 
thus we would expect SSNs to perform well with 
words as inputs. The performance we have achieved 
with such small training sets supports this belief. 

4 C o n c l u s i o n  
This paper demonstrates for the first time that a 
connectionist network can learn syntactic parsing. 
This improvement is the result of extending a stan- 
dard architecture (Simple Recurrent Networks) with 
a technique for representing linguistic constituents 
(Temporal Synchrony Variable Binding). This ex- 
tension allows Simple Synchrony Networks to gen- 
eralize what they learn across constituents, thereby 
solving the sparse data problems of previous connec- 
tionist architectures. Initial experiments have em- 
pirically demonstrated this ability, and future ex- 
tensions are likely to significantly improve on these 
results. We believe that the combination of this gen- 
eralization ability with the adaptability of connec- 
tionist networks holds great promise for many areas 
of Computational Linguistics. 
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