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A b s t r a c t  

We introduce an approach to the automatic ac- 
quisition of new concepts from natural language 
texts which is tightly integrated with the under- 
lying text understanding process. The learning 
model is centered around tile 'quality' of differ- 
ent forms of linguistic and conceptual evidence 
which underlies the incremental generation and 
refinement of alternative concept hypotheses, 
each one capturing a different conceptual read- 
ing for an unknown lexical item. 

1 I n t r o d u c t i o n  

The approach to learning new concepts as a 
result of understanding natural language texts 
we present here builds on two different sources 
of evidence - -  the prior knowledge of the do- 
main the texts are about, and grammatical con- 
structions in which unknown lexical items oc- 
cur. While there may be many rea+sonable inter- 
pretations when an unknown item occurs for the 
very first time in a text, their number rapidly 
decreases when more and more evidence is gath- 
ered. Our model tries to make explicit tile rea- 
soning processes behind this learning pattern. 

Unlike the current mainstream in automatic 
linguistic knowledge acquisition, which can be 
characterized as quantitative, surface-oriented 
bulk processing of large corpora of texts (Hin- 
(tie, 1989; Zernik and aacobs, 1990; Hearst, 
1992; Manning, 1993), we propose here a 
k++owledge-intensive model of concept learning 
from few, positive-only examples that  is tightly 
integrated with tile non-learning mode of text 
understanding. Both learning and understand- 
ing build on a given core ontology in tile format 
of terminological assertions and, hence, make 
abundant  use of terminological reasoning. The 
'plain' text understanding mode can be consid- 
ered as tile instantiation and continuous filling 
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Figure 1: Architectnre of the Text Learner 

of roles with respect to single concepts already 
available ill tile knowledge base. Under learning 
conditions, however, a set of alternative concept 
hypotheses has to be maintained for each nn- 
known item, with each hypothesis denoting a 
newly created conceptual interpretation tenta- 
tively associated with tile unknown item. 

Tile underlying methodology is summarized 
in Fig. 1. Tile text parser (for an overview, cf. 
BrSker et al. (1994)) yields information from 
tile grammatical constructions in which an un- 
known lexical item (symbolized by the black 
square) occurs in terms of the corresponding de- 
pendency parse tree. The kinds of syntactic coll- 
structions (e.g., genitive, apposition, compara- 
tive), in which unknown lexical items appear, 
are recorded and later assessed relative to the 
credit they lend to a particular hypothesis. The 
conceptual interpretation of parse trees involv- 
ing unknown lexical items in the domain knowl- 
e@e base leads to the derivation of concept hy- 
potheses, which are further enriched by concep- 
tual annotations. These reflect structurM pat- 
terns of consistency, mutual justification, anal- 
ogy, etc. relative to already available concept 
descriptions in the domain knowledge base or 
other hypothesis spaces. This kind of initial ev- 
idence, in particular its predictive "goodness" 
for tile learning task, is represented by corre- 
sponding sets of linguistic and concepZual qual- 
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Table 2: Axioms for 
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ity labels. Multiple concept hyt)otheses tbr each 
unknown lexical item are organized in terms of 
corresponding hypothesis spaccs, each of which 
holds differe.nt or further specialized conceptual 
readings. 

The quality machine estimates the overall 
credibility of single concept hyl)otheses by tak- 
ing tile available set of quality labels for each 
hypothesis into account. The linal computa- 
tion of' a preference order for tile entire set of 
competing hypotheses takes place ill the qual- 
ifier, a termi,lological classifier extended by an 
evaluation metric for quality-based selection cri- 
teria. The output  of the quality machine is a 
ranked list of concept hypothe.ses. The ranking 
yields, in decreasing order of signiticance, either 
the most plausible concel)t classes which classify 
the considered instance or more general concept 
classes subsuming the considered concept class 
(cf. Schnatt inger and l lahn (1998) for details). 

2 Methodological Framework 
In this section, we present the major method- 
ological decisions underlying our at)proach. 

2.1 T e r m i n o l o g i c a l  Logics  

We use a s tandard terminological, Kb-ONE- 
style concept description language, here referred 
to as C~D£ (for a survey of this paradigm, cf. 
Woods and Schmolze (1992)). It has several 
constructors combining atomic concepts, roles 
and individuals to define the terminologicM the- 
ory of a domain. Conccpts are unary predicates, 
rolcs are binary predicates over a domain A, 
with individuals being the elelnents of A. We 
~ssume a common set-theoretical semantics for 
(?7)£ - an interpretation Z is a function that  
assigns to each concept symbol (the set A) a 
subset of the domain A, 27 : A -4 2 A, to each 
role symbol (the set P)  a binary relation of A, 
Z : P ~ 2 AxA, and to each individual symbol 
(the set I) an element of A, I : I -9 A. 

Concept terms and role terms are defined in- 
ductively. Table 1 contains some constructors 
and their semantics, where C and D denote con- 
cept tin'ms, while R and S denote roles, l{ z (d) 
represents tile set of role fillers of tile individual 
d, i.e., the set of' individuals c with (d, c) E t{ z. 

By means of terminological axioms (for a sub- 
set, see Table 2) a symbolic name can be intro- 
duced for each concept to which are assigned 
necessary and sufticient constraints using the 
definitional o p e r a t o r ' " = .  A finite set of such 
axioms is called the terminology or TBoz. Con- 
cepts and roles are associated with concrete in- 
divkhlals by assertional axioms (see Ta.ble 2; a, b 
denote individuals). A tinite set of such axioms 
is called the world description or ABox. An in- 
terpretation Z is a model of all ABox with re- 
gard to a TBox, iff Z satisfies the assertioual 
and terminological axioms. 

Cons,dining, e.g., ~ phrase such as 'The 
switch of the Itoh-Ci-8 ..', a straightforward 
translation into corresponding terminological 
concet)t descriptions is illustrated 1)3,: 

(Pl) switch.l : Swn'cn 
(P2) Itoh-Ci-8 hAS-SWITCh switch.1 
(pa) tlAS-SW1TCII 

(OuTPu'rDtgv U 1NPUTI)tgV LI ]IIAS-I'ARTISwl'rCH 
STORAGEDEV U COMPUTER) 

Assertion P l  indicates that  the instance 
switch.1 belongs to tile concept class SWlq'Cn. 
P2 relates ]toh-Ci-8 and switch.1 via the re- 
lation tIAS-SWlTCIt. The relation tlAS-SWITCtt 
is defined, finally, as the set of all IIAS-PAf{T 
relations which have their domain restricted to 
the disjunction of the concepts OUTPUTDEV, 
INPUTI)EV, STORAGE])EV or COMPUTEII and 
dmir range restricted to SW1TCtI. 

In order to represent and reason about  COl> 
cept hypotheses we have to properly extend tl~e 
formalism of CD£. Terminological hypotheses , 
in our framework, are characterized by the fol- 
lowing properties: for all stipulated hypotheses 
(1) the same domain A holds, (2) the same co,> 
cept definitions are used, and (3) only different 
a~ssertionM axioms can be established. ']'hese 
conditions are sufficient, because each hyl)oth- 
esis is based on a unique discourse enti ty (cf. 
(1)), which ca.n be directly mapped to associ- 
ated instances (so concept definitions are stable 
(2)). Only relations (including the lsa-relation) 
~mong the instances may be different (3). 
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Axiom Semantics 
(a : C)t, a z e C z" 
(~ R b)h (a z, b z) ~ rF~ 

Table 3: Axioms in CD£ hvv° 

Given these constraints, we may annotate  
each assertional axiom of the f o r m ' a  : C '  and 
'a R b' by a corresponding hypothesis label h so 
that  (a :O)h and (a R b)h are valid terminolog- 
ical expressions. The extended terminolo~;ical 
language (cf. Table 3) will be called 02?£ avp°. 
Its semantics is given by a special interpreta- 
tion function Zh for each hypothesis h, which is 
applied to each concept and role symbol in the 
canonical way: Zh : A --+ 2A; Zh : P -+ 2 AxA. 
Notice tha t  the instances a, b are interpreted by 
the interpretat ion function 27, because there ex- 
ists only one domain A. Only tile interpretation 
of the concept symbol C and the role symbol R 
may be different in each hypothesis h. 

Assume that  we want to represent two of tile 
four concept hyt)otheses that  call be derived 
from (p3), viz. Itoh-Ci-8 considered as a storage 
device or an output  device. The corresponding 
ABox expressions are then given by: 

(Itoh-Ci-8 ItAS-SWITCH switch.1)h~ 
(ltoh-Ci-8 : STOP~AGEDEV)h, 
(Itoh-Ci-8 IIAS-SWlTCH switch.1)ha 
(Itoh-Ci-8 : OUTPUTDEv)h2 

The semantics associated with this ABox 
fragment has the following form: 

Zh, 0IAS-SWlTCII) = {(Itoh-Ci-8, switch.I)}, 
~Thl (STOaAGED~;v) = {Itoh-Ci-8}, 
Zh, (OuTPUTDEV) = (~ 
Zhz (HAS-SWITCH) = { (Itoh-Ci-8, switch. I) }, 
Zh~(STORAGEDEV) = O, 
Zhf(OuTPUTDEV) = {Itoh-Ci-8} 

2.2 Hypothes i s  Generat ion  Rules  

As mentioned above, text parsing and con- 
cept acquisition from texts are tightly coupled. 
Whenever,  e.g., two nominals or a nominal and 
a verb are supposed to be syntactically related 
in the regular parsing mode, tile semantic in- 
terpreter  simultaneously evaluates tile concep- 
tual compatibility of tile items involved. Since 
these reasoning processes are fully embedded in 
a terminological representation system, checks 
are made as to whether  a concept denoted by 
one of these objects is allowed to fill a role of 
the other one. If one of the items involved is 
unknown, i.e., a lexical and conceptual gap is 

encountered, this interpretation mode generates 
initial concept hypotheses about tile class mem- 
bership of the unknown object, and, as a conse- 
quence of inheritance mechanisms holding for 
concept taxonomies, provides conceptual role 
information for the unknown item. 

Given the structural  foundations of termi- 
nological theories, two dimensions of concep- 
tual learning can be distinguished - -  the tax- 
onomic one by which new concepts are located 
in conceptual hierarchies, and tile aggregational 
one by which concepts are supplied with clus- 
ters of conceptual relations (these will be used 
subsequently by the terminological classifier to 
determine the current  position of tile item to 
be learned in tile taxonomy).  In the follow- 
ing, let target.con be an unknown concept de- 
noted by the corresponding lexical item tar- 
get.lex, base.con be a given knowledge base con- 
cept denoted by the corresponding lexical item 
base.lcx, and let tawet.Iex and base.lex be re- 
lated by some dependency relation. Further- 
more, in the hypothesis generation rules below 
variables are indicated by names with leading 
'?'; the operator  T E L L  is used to initiate tile 
creation of a ssertional axioms in C2)£ hyp°. 

Typical linguistic indicators that  call be ex- 
ploited for taxonomic integration are apposi- 
tions ('.. the printer @A@ ..'), exemplification 
phrases ('.. printers like the @A @ .. ') or nomi- 
nal compounds ('.. the @A©prin ter  .. 9. These 
constructions ahnost unequivocally determine 
'@A~' (targct.lez) when considered as a proper 
name I to denote an instance o f a  PRtNTER (tar- 
get.con), given its characteristic dependency re- 
lation to 'printer' (base.lex), the conceptual cor- 
relate of which is the concept class PalNTEa 
(base.con). This conclusion is justified indepen- 
dent of conceptual conditions, simply due to the 
nature of these linguistic constructions. 

The generation of corresponding concept hy- 
potheses is achieved by the rule sub-hypo  (Ta- 
ble 4). Basically, the type of target.con is carried 
over from base.con (function W p e - o f ) .  hi addi- 
tion, the syntactic label is ~ se r t ed  which char- 
acterizes the grammatical  construction figuring 
as the structural  source for tha t  particular hy- 

1Such a part-of-speech hypothesis can be derived 
fl'om the inventory of valence and word order specifi- 
cations underlying the dependency grammar model we 
use (BrSker et al., 1994). 
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sub-hypo  (target.con, base.con, h, litbel) 
?type := type-of(base.con) 
TELL (taryet.con : ?type)h 
add- labe l  ( (tar qet.con : ?type)h, label) 

Table 4: Taxonomic llypothesis Generation Rule 

pothesis (h denotes tile identitier lbr the selected 
hypothesis space), e.g., AP POSITION, EXEM P LI- 
FICATION, or NCOMPOUND. 

The aggrcyational dimension of terminologi- 
cal theories is addressed, e.g., by grammatical  
constructions causing case frame assignments. 
In the example '.. @B@ is equippcd with 32 MB 
of R A M  ..', role filler constraints of the verb 
form 'cquippcd' that  relate to its PATIENT role 
carry over to '~.q3@'. After subsequent seman- 
tic interpretat ion of the entire verbal complex, 
'((:~B~' may be anything that  can be equipt)ed 
with memory. Constructions like prepositional 
phrases ('.. @C@ f lwn IIgM .. ') or genitives ('.. 
H]M's @C@ . . )  in which either targct.lez or 
base.low occur as head or modifier have a simi- 
lar effect. At tachments  of prepositional phrases 
or relations among nouns in genitives, however, 
open a wider interpretation space for ~c~C~' 
than for '(~B@', since verbal case frames provide 
a higher role selectivity than PP a t tachments  
or, even more so, genitive NPs. So, any concept 
that  can reasonably be related to tile concept 
IBM will be considered a potential hyl)othesis 
for %~C(~b', e.g., its depa.rtments, products, For- 
tune 500 ranking. 

Generalizing from these considerations, we 
state a second hyl)othesis generation rule which 
accounts for aggregational pat terns of concept 
learning. The basic assumption behind this 
rule, perm-hypo (cf. Table 5), is that  targct.cmz 
tills (exactly) one of the n roles of base.con it 
is currently permit ted to fill (this set is deter- 
mined by tile function perm-filler), l)epend- 
ing on the actual linguistic construction one en- 
counters, it may occur, in particular for PP 
and NP constructions, that  one cannot decide 
on the correct role yet;. Consequently, several 
alternative hypothesis spaces are opened and 
target.con is assigned as a potential tiller of 
the i-th role (taken from ?roleSet, the set of 
admit ted roles) in its corresponding hypothesis 
space. As a result, the classifier is able to de- 
rive a suitable concept hypothesis by specializ- 
ing target.coTt according to the value restriction 
of base.con's i-th role. The function member-of 

perm-hypo  ( tar get.co~z, ~-asc.con, h, label)- 
?roleSet :=perra-f i l l e r (  targct.con, base.cm~, It) 
?r := l?roleSetl 
F O R A L L  ?i :=?r D O W N T O  1 DO 

? rolei := member-of ( ?roleSet ) 
?roleSet :=?roleSet \ {?rolei} 
IF ?i = 1 

T H E N  ?hypo := h 
E L S E  ?hypo := gen-hypo(h)  

TELL (base.con ?rolei lar(qet.co'lt).?hypo 
a d d - l a b e l  ( (base .con  ?rolei taryet.con)%Vz, o, label) 

Table 5: Aggregational IIypothesis Generation Rule 

selects a role from the set ?roleSet; gen-hypo 
creates a new hypothesis space by asserting 
the given axioms of h and outputs  its identi- 
tier. Thereupon, the hypothesis space identified 
by ?hgpo is augmented through a T E L L  oI> 
eration by the hypothesized assertion. As for 
sub-hypo,  perm-hypo assigns a, syntactic qual- 
ity label (function a d d - l a b e l )  to each i-th hy- 
pothesis indicating the type of syntactic con- 
struction in which target.lez and base.lex are 
rela.ted in the text, e.g., CAS[.;|"RAME, I'PA~r- 
TACIt or (.~ENlrI'IVENI). 

Getting back to our example, let us assume 
that  the target  ltoh-Ci-8 is predicted already as 
a PRODUCT as a result of preceding interpreta- 
tion processes, i.e., Itoh-Ci-8 : PI{O1)UCT holds. 
l , e t  PI',ODUCq' be defined as: 

PRODUCT 
VIIAS-t'AI{T.I)IIYSICALOBJECT [7 VI[AS-SIZE.~IZE [7 
VHAS-PRICI~;.PRICI~; UI VIIAS-WEIGIVI'.\¥EIGIIT 

At this level of conceptual restriction, four 
roles have to be considered for relating the tar- 
get Itoh-Ci-8 as a tentat ive PROI)UCT - to 
the base concept SWITCI| when interpreting the 
phrase 'The switch of the Itoh-Ci-8 .. '. Three of 
them~ tlAS-SIZE~ ltAS-PRICE, and IIAS-WEIGIIT~ 
are ruled out due to the violation of a simple 
integrity constraint  ( ' swi tch 'does  not denote a 
measure unit). Therefore, only the role IIAS- 
PAICI' must be considered in terms of the exl)res- 
sion Itoh-Ci-8 ItAS-t'ART switch. 1 (or, equiva- 
lently, switch.1 I,APJr--oI.' ltoh-Ci-8). Due to the 
definition of HaS-SWI'rcH (of. P3, Subsection 
2.1), the instantiation of HAS-PAler is special- 
ized to IIAS-SWITC[1 by the classifier, since the 
range of the tlAS-I'AItT relation is aJready re- 
stricted to SwH'cn  (Pl) .  Since the classifier ag~ 
gressively pushes hypothesizing to be maximally 
specific, the disjunctive concept referred to ill 
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the domain restriction of the role HAS-SWITCH 
is split into four distinct hypotheses, two of 
which are sketched below. Hence, we assume 
Itoh-Ci-8 to denote either a STORAGEDEvice 
or an OUTPUTDEViee or an INPUTDEvice or a 
COMPUTER (note that  we also include parts of 
the Is-a hierarchy in the example below). 

(Itoh-Ci-8 : STORAGEDEV)hl, 
(Itoh-Ci-8 : DEVICE)h~, .., 
(Itoh-Ci-8 HAS-SWITCH switch.1)h, 
(Itoh-Ci-8 : OUTPUTDEV)h2, 
( l loh-Ci-8 : DEVlCE)h2, .., 
(Itoh-Ci-8 HAS-SWITCH switch.1)h~ . . . .  

2.3 H y p o t h e s i s  A n n o t a t i o n  R u l e s  

In this section, we will focus on the quality as- 
sessment of concept hypotheses which occurs at 
the knowledge base level only; it is due to the 
operation of hypothesis annotation rules which 
continuously evaluate the hypotheses that  have 
been derived fi'om linguistic evidence. 

The M-Deduction rule (see Table 6) is trig- 
gered for any repetitive assignment of the same 
role filler to one specific conceptual relation that  
occurs in different hypothesis spaces. This rule 
captures the assulnption that  a role filler which 
has been multiply derived at different occasions 
must be granted more strength than one which 
has been derived at a single occasion only. 

EXISTS ol,o2,R, hl,h2 : 
(ol /~ O~)h~ /X (o~ /~ o~.)h~ /X h~ ¢ h2 

TELL (O 1 ~r~ O2)/,, : h i - D E D U C T I O N  

Table 6: Tile Rule M-Deduction 

Considering our example at the end of subsec- 
tion 2.2, for 'Itoh-Ci-8' the concept hypotheses 
STORAGEDEV and OUTPUTDEV were derived 
independently of each other in different hypoth- 
esis spaces. Itence, DEVICE as their common 
supereoncept has been multiply derived by the 
classifier in each of these spaces a.s a result of 
transitive closure computat ions,  too. Accord- 
ingly, this hypothesis is assigned a high degree 
of confidence by the classifier which derives the 
conceptual quality label M-DEDUCTION: 

(I toh-Ci-8 : DEVICE)h, A ( l toh-Ci-8 : DEVlCE)h~ 
( I toh-Ci-8:  DEVICE)h, : M-DEDUCTION 

The C-Support  rule (see Table 7) is triggered 
whenever, within tile same hypothesis space, 
a hypothetical  relation, R1, between two in- 
stances can be justified by another relation, R2, 

involving the same two instances, but where the 
role fillers occur in ' inverted'  order (R1 and R2 
need not necessarily be semantically inverse re- 
lations, as with 'buy' and 'sell). This causes 
the generation of the quality label C-SUPPORT 
which captures the inherent symmet ry  between 
concepts related via quasi-inverse relations. 

E X I S T S  o l ,  02, R1,  f~2, h : 
(o~ I~ O2)h A (o2 I~2 0~)h A 1~1 ¢ t~2 

TELL (Ol R1 O2)h :C-SuPPORT 

Table 7: Tile Rule C-Support  

Example: 
(Itoh SELLS Itoh-Ci-8)h A 
(Itoh-Ci-8 DEVELOPED-BY Itoh)h 

(itoh SELLS Itoh-Ci-8)h : C-SuPPORT 

Whenever an already filled conceptual rela- 
tion receives an additional, yet different role 
filler in the same hypothesis space, the Add- 
Filler rule is triggered (see Table 8). This 
application-speciIic rule is l)articularly suited to 
our natural language understanding task and 
has its roots in the distinction between manda- 
tory and optional case roles for (ACTION) verbs. 
Roughly, it yields a negative assessment in 
terms of the quality label ADDFILLER for any 
a t t empt  to fill the same manda tory  case role 
more than once (unless coordinations are in- 
volved). In contradistinction, when the same 
role of a non-ACTION concept (typically de- 
noted by nouns) is multiply filled we assign the 
positive quality label SUPPORT, since it reflects 
the conceptual proximity a relation induces on 
its component  fillers, provided that  they share 
a common, n o n - a c T i O N  concep t  class. 

E X I S T S  Ol, o2, o3, It, h : 
(O 1 R 02)1, /~ (O 1 P~ o3)1, A (o 1 : ACTION)h ==¢" 

TELL (Ol R o2)/, : ADDFILLER 

Table 8: The Rule AddFiller 

We give examples both for tile assignment of 
an ADDFILLER as well as for a SUPPORT label: 

Examples: 
(produces.1 : ACTION)h A 
(produces.1 AGENT Itoh)h A 
(produces.1 AGENT IBM)a 

(produces.1 AGENT Itoh)h : ADDFILLER 

(Itoh-Ci-8:PRINTElt)h A (ltoh-Ct : PRINTER)h A 
(Itoh SELLS Itoh-Ci-8)h A (Iloh SEI,LS itoh-Ct)h A 
(ltoh :-~AcTION)h 

(Itoh-Ci-8: PRINTElt)h : SUPPORT 
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2.4 Quality  D imens ions  

The criteria from which concept hypotheses 
are derived differ in the dimension from which 
they are drawn (grammatical  vs. conceptual ev- 
ide,lce), as well as tile s trength by which they 
lend support  to the corresponding hypotheses 
(e.g., apposition vs. genitive, multiple deduc- 
tion vs. additional role filling, etc.). In order 
to make these distinctions explicit we have de- 
veloped a "quality calculus" at the core of which 
lie the definition of and inference rules for qual- 
ity labels (cf. Schnatt inger and t lahn (1998) for 
more details). A design methodology for specific 
quality calculi may proceed along the follow- 
ing lines: (1) Define the dimensions from which 
quality labels can be drawn. In our a pt)lication, 
we chose tile se t /2Q := {ll, • •., 1,,,} of linguistic 
quality labels and CQ := {Cl, . . . ,c ,~} of con- 
cel)tual quality labels. (2) Determine a partial 
orderi'n 9 p among the quality labels fl'om one di- 
mension rettecting different degrees of strength 
among the quality labels. (3) Determine a total 
ovderin 9 among the dimensions. 

In our application, we have empirical evi- 
dence to grant  linguistic criteria priority over 
conceptual ones. llence, we state the following 
constraint: Vl E £ Q, Vc E C Q : l > o c 
The d i n m n s i o n  12~. Linguistic quality labels 
reflect structuraJ properties of phra.sal patterns 
or discourse contexts in which unknown lexi- 
ca l items occur 2 - -  we here assume that  the 
type of" granamatical construction exercises a 
particular interpretative force on tile unknown 
item and, at the same time, yields a particu- 
lar level of credibility for the hypotheses being 
derived. Taking the considerations from Sub- 
section 2.2 into account, concrete examples of 
high-quality labels are given by APPOSITION or 
NCOMPOUND labels. Still of good quality but 
aJready less constraining are occurrences of the 
unknown item in a CASEFRAME construction. 
l:inMly, in a PPATTACH or GENI'rIvENP coil- 
struction tile unknown lexical item is still less 
constrained. IIence, at tile quality level, these 
latter two labels (just as tile first two labels we 
considered) form an equivalence class whose eb 
ements cannot  be further discriminated. So we 
end up with the following quality orderings: 

2In the future, we intend to integrate additional types 
of constraints, e.g., quality criteria reflecting the degree 
of completeness v s .  partiality of the parse. 

NCOMPOUND ~p APPOSITION 
NCOMPOUND ~>p CASI,'FRAMt~ 
APPOSITION >p CASEFRAIvlE 
CASEI~RAME >p GENITIVENP 
CASEFRAME ~p PPATTACII 
Gt~.NrrlvENP =p PPATTACH 

The d imens ion  CQ. Conceptual quality labels 
result from comparing the conceptual represen- 
tation structures of a concept hypothesis with 
already existing representation structures in the 
underlying domain knowledge base or other  con- 
cept hypotheses from the viewpoint of struc- 
tural similarity, compatibility, etc. The closer 
the match, the more credit is lent to a hypoth- 
esis. A very positive conceptual quality label, 
e.g., is M-DEI)UCTION, whereas ADDIPlLLEII is 
a negative one. Still positive strength is ex- 
pressed by SUPPORT or C-SuPPO~t'p, both being 
indistinguishable, however, from a quality point 
of view. Accordingly, we may state: 

~/I-DEI)UCTION ~>p ~UI't'ORT 
M.-DEDuCTION ~>p C-SUPPOICI" 
SUPPORT zp  C-SUPPORT 
SUPPORT ),p AI)D f"II,LEI{ 
C-SuPPORT >P ADD I~'II'LER 

2.5 Hypothes i s  Ranking  

Each new chic available for a target  concept to 
be learned results in the generation of ad(litional 
linguistic or conceptual quality labels. So hy- 
pothesis spaces get incrementally augmented by 
quality statements.  In order to select tile most 
credible one(s) among them we apply a two-step 
procedure (tile details of which are explained 
ill Schnattinger and Ilahn (1998)). First, those 
concept hypotheses are chosen which have ac- 
cumulated the greatest  amount  of high-quality 
labels according to tile linguistic dimension £Q.  
Second, further hypotheses are selected from 
this linguistically plausible candidate set based 
on the quality ordering underlying CQ. 

We have also made considerable efforts to 
evaluate the performance of the text  learner 
based on the quality calculus. In order to ac- 
count for the incrementali ty of the learning pro- 
cess, a new evaluation measure capturing the 
system's on-line learning accuracy was defined, 
which is sensitive to taxonomic hierarchies. The 
results we got were consistently favorable, as 
our system outi)erformed those closest in spirit, 
CAMILLE (tlastings, 1996) and Sclsot l  (Rau et 
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al., 1989), by a gain in accuracy on the or- 
der of 8%. Also, the system requires relatively 
few hypothesis spaces (2 to 6 on average) and 
prunes the concept search space radically, re- 
quiring only a few examples (for evaluation de- 
tails, cf. Hahn and Schnattinger (1998)). 

3 R e l a t e d  W o r k  

We are not concerned with lexical acquisition 
from very large corpora using surface-level collo- 
cational da ta  as proposed by Zernik and Jacobs 
(1990) and Velardi et al. (1991), or with hy- 
ponym extraction based on entirely syntactic 
criteria as in Hearst (1992) or lexico-semantic 
associations (e.g., Resnik (1992) or Sekine et al. 
(1994)). This is mainly due to the fact that  
these studies aim at a shallower level of learn- 
ing (e.g., selectionM restrictions or thematic re- 
lations of verbs), while our focus is on much 
more fine-grained conceptual knowledge (roles, 
role filler constraints,  integrity conditions). 

Our approach bears a close relationship, how- 
ever, to the work of Mooney (1987), Berwick 
(1989), Rat, eL al. (1989), Gomez and Segami 
(1990), and Hastings (1996), who all aim at the 
au tomated  learning of word meanings from con- 
text using a knowledge-intensive approach. But 
our work differs from theirs in that  the need to 
cope with several competing concept hypotheses 
and to aim at a rcason-based selection in terms 
of the quality of arguments  is not an issue in 
these studies. Learning fl'om real-world texts 
usually provides the learner with only sparse 
and f ragmentary  evidence, such that  multiple 
hypotheses are likely to be derived and a need 
for a hypothesis evaluation arises. 

4 C o n c l u s i o n  

We have introduced a solution for the semantic 
acquisition problem on the basis of the auto- 
matic processing of expository texts. The learn- 
ing methodology we propose is based on the 
incremental assignment and evaluation of the 
quality of linguistic and conceptual evidence for 
emerging concept hypotheses. No specialized 
learning algorithm is needed, since learning is 
a reasoning task carried out by the classifier 
of a terminological reasoning system. However, 
strong heuristic guidance for selecting between 
plausible hypotheses comes from linguistic and 
conceptual quality criteria. 
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