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Abstract 

One of the most exciting recent directions in 
machine learning is the discovery that the 
combination of multiple classifiers often 
results in significantly better performance 
than what can be achieved with a single 
classifier. In this paper, we first show that 
the errors made from three different state of 
the art part of speech taggers are strongly 
complementary. Next, we show how this 
complementary behavior can be used to our 
advantage. By using contextual cues to 
guide tagger combination, we are able to 
derive a new tagger that achieves 
performance significantly greater than any 
of the individual taggers. 

Introduction 

Part of speech tagging has been a central 
problem in natural language processing for 
many years. Since the advent of manually 
tagged corpora such as the Brown Corpus and 
the Penn Treebank (Francis(1982), 
Marcus(1993)), the efficacy of machine learning 
for training a tagger has been demonstrated 
using a wide array of techniques, including: 
Markov models, decision trees, connectionist 
machines, transformations, nearest-neighbor 
algorithms, and maximum entropy 
(Weischedel(1993), Black(1992), Schmid(1994), 
Brill(1995),Daelemans(1995),Ratnaparkhi(1996 
)). All of these methods seem to achieve roughly 
comparable accuracy. 

The fact that most machine-learning- 
based taggers achieve comparable results could 
be attributed to a number of causes. It is 
possible that the 80/20 rule of engineering is 
applying: a certain number of tagging instances 

are relatively simple to disambiguate and are 
therefore being successfully tagged by all 
approaches, while another percentage is 
extremely difficult to disambiguate, requiring 
deep linguistic knowledge, thereby causing all 
taggers to en:. Another possibility could be that 
all of the different machine learning techniques 
are essentially doing the same thing. We know 
that the features used by the different algorithms 
are very similar, typically the words and tags 
within a small window from the word being 
tagged. Therefore it could be possible that they 
all end up learning the same information, just in 
different forms. 

In the field of machine learning, there 
have been many recent results demonstrating the 
efficacy of combining classifiers, l In this paper 
we explore whether classifier combination can 
result in an overall improvement in lexical 
disambiguation accuracy. 

1 Different Tagging Algorithms 

The experinaents described in this paper are 
based oi1 four popular tagging algorithms, all of 
which have readily available implementations. 
These taggers are described below. 

1.1 Unigram Tagging 

This is by far the simplest of tagging algorithms. 
Every word is simply assigned its most likely 
part of speech, regardless of the context in which 
it appears. Surprisingly, this simple tagging 
method achieves fairly high accuracy. 
Accuracies of 90-94% are typical. In the 
unigram tagger used in our experiments, for 
words that do not appear in the lexicon we use a 

I See Dietterich(1997) for a good summary of these 
techniques. 
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collection of simple manually-derived heuristics 
to guess the proper tag for the word. 

1.2 N - G r a m  Tagging 

N-gram part of speech taggers (Bahl(1976), 
Church(1992), Weischedel(1993)) are perhaps 
the most widely used of tagging algorithms. 
The basic model is that given a word sequence 
W, we try to find the tag sequence T that 
maximizes P(TIW). This can be done using the 
Viterbi algorithm to find the T that maximizes: 
P(T)*P(WIT). In our experiments, we use a 
standard trigram tagger using deleted 
interpolation (Jelinek (1980)) and used suffix 
information for handling unseen words (as was 
done in Weischedel (1993)). 

1.3 T r a n s f o r m a t i o n - B a s e d  Tagging 

In transformation-based tagging (Brill (1995)), 
every word is first assigned an initial tag, This 
tag is the most likely tag for a word if the word 
is known and is guessed based upon properties 
of the word if the word is not known. Then a 
sequence of rules are applied that change the 
tags of words based upon the contexts they 
appear in. These rules are applied 
deterministically, in the order they appear in the 
list. As a simple example, if race appears in the 
corpus most frequently as a noun, it will initially 
be mistagged as a noun in the sentence : 

We can race all day long. 

The rule Change a tag from NOUN to 
VERB if the previous tag is a MODAL would be 
applied to the sentence, resulting in the correct 
tagging. The environments used for changing a 
tag are the words and tags within a window of 
three words. For our experiments, we used a 
publicly available implementation of 
transformation-based tagging, 2 retrained on our 
training set. 

maximally agnostic with respect to all 
parameters for which no data exists. It is a nice 
framework for combining multiple constraints. 
Whereas the transformation-based tagger 
enforces multiple constraints by having multiple 
rules fire, the maximum-entropy tagger can have 
all of these constraints play a role at setting the 
probability estimates for the model's parameters. 
In Ratnaparkhi (1996), a maximum entropy 
tagger is presented. The tagger uses essentially 
the same parameters as the transformation-based 
tagger, but employs them in a different model. 
For our experiments, we used a publicly 
available implementation of maximum-entropy 
tagging) retrained on our training set. 

2 T a g g e r  C o m p l e m e n t a r i t y  

All experiments presented in this paper were run 
on the Penn Treebank Wall Street Journal corpus 
(Marcus (1993)). The corpus was divided into 
approximately 80% training and 20% testing, 
giving us approximately 1.1 million words of 
training data and 265,000 words of test data. 
The test set was not used in any way in training, 
so the test set does contain unknown words. 

II1 Figure 1 we show the relative 
accuracies of the four taggers. In parentheses 
we include tagger accuracy when only 
ambiguous and unknown words are considered. 4 

Tagger Accuracy (%) Num Errors 
Unigram 93.26 (87.9) 17856 
Trigram 96.36 (93.8) 9628 

Transform. 96.61 (94.3) 8980 
Max. Ent. 96.83 (94.7) 8400 

Figure 1: Relative Tagger Accuracies 

Next, we examine just how different the 
errors of the taggers are. We define the 
complementary rate of taggers A and B as : 

1.4 Maximum-Entropy Tagging 

The maximum-entropy framework is a 
probabilistic framework where a model is found 
that is consistent with the observed data and is 

2 http://www.cs.jhu.edu/-brill 

3 http://www.cis.upenn.edu/~adwait 

4 It is typical in tagging papers to give results in 
ambiguity resolution over all words, including words 
that are unambiguous. Correctly tagging words that 
only can have one label contributes to the accuracy. 
We see in Figure 1 that when accuracy is measured 
on truly ambiguous words, the numbers are lower. In 
this paper we stick to the convention of giving results 
for all words, including unambiguous ones. 
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Comp(A, B) = (1 - 
# of  common errors 

) ' 1 0 0  
# of  errors in A only 

In other words, Comp(A,B) measures the 
percentage of time when tagger A is wrong that 
tagger B is correct. In Figure 2 we show the 
complementary rates between the different 
taggers. For instance, when the maximum 
entropy tagger is wrong, the transformation- 
based tagger is right 37.7% of the time, and 
when the transformation-based tagger is wrong, 
the maximum entropy tagger is right 41.7% of 
the time. 

Unigram 
Trigram 
Transf. 
MaxEnt 

Unigram Trigram 

0 32.1 
63.4 0 
59.7 39.0 
69.4 42.0 

Transf. 

20.0 
34.6 

0 
41.7 

MaxEnt 

34.9 
33.5 
37.7 

Figure 2: Comp(A,B). Row = A, Column = B 

The complementary rates are quite high, 
which is encouraging, since this sets the upper 
bound on how well we can do in combining the 
different classifiers. If all taggers made the 
same errors, or if the errors that lower-accuracy 
taggers made were merely a superset of higher- 
accuracy tagger errors, then combination would 
be futile. 

In addition, a tagger is much more likely 
to have misclassified the tag for a word in 
instances where there is disagreement with at 
least one of the other classifiers than in the case 
where all classifiers agree. In Figure 3 we see, 
for instance that while the overall error rate for 
the Maximum Entropy tagger is 3.17%, in cases 
where there is disagreement between the four 
taggers the Maximum Entropy tagger error rate 
jumps to 27.1%. And discarding the unigram 
tagger, which is significantly less accurate than 
the others, when there is disagreement between 
the Maximum Entropy, Transformation-based 
and Trigram taggers, the Maximum Entropy 
tagger error rate jumps up to 43.7%. These 
cases account for 58% of the total errors the 
Maximum Entropy tagger makes (4833/8400). 

Next, we check whether tagger 
complementarity is additive. In Figure 4, the 
first row shows the additive error rate an oracle 
could achieve on the test set if the oracle could 
pick between the different outputs of the taggers. 

For example, when the oracle can examine the 
output of the Maximum Entropy, 
Transformation-Based and Trigram taggers, it 
could achieve an error rate of 1.62%. The 
second row shows the additive error rate 
reduction the oracle could achieve. If the oracle 
is allowed to choose between all four taggers, a 
55.5% error rate reduction is obtained over the 
Maximum Entropy tagger error rate. If the 
unigram output is discarded, the oracle 
improvement drops down to 48.8% over 
Maximum Entropy tagger error rate. 

Max.Ent 

Overall Error 3.17% 
Rate (8400) 

27.1 
(5535) 

Error Rate When 
Disagreement 
Error Rate When 
Disagreement 
(excluding 
unigram) 

43.7 
(4833) 

Trans- Tri- Uni- 
form gram gram 
3.39 3.64 6.74 
(8980) (9628) (17856) 
29.9 33.1 73.4 
(6115) (6763) (14991) 
49.0 54.9 
(5413) (6061) 

Figure 3: Disagreement 
Indication of Error 

Is A Strong 

MaxEnt +Transf. 

% of time all 3.17 1.98 
are wrong 
% Oracle 37.7 
Improvement 

+Tri- +Uni- 
gram gram 
1.62 1.41 

48.8 55.5 

Figure 4 : Complementarity Is Additive. 

From these results, we can conclude that there is 
at least hope that improvments can be gained by 
combining the output of different taggers. We 
can also conclude that the improvements we 
expect are somewhat additive, meaning the more 
taggers we combine, the better results we should 
expect. 

3 Tagger Combinat ion  

The fact that the errors the taggers make are 
strongly complementary is very encouraging. If 
all taggers made the exact same errors, there 
would obviously be no chance of improving 
accuracy through classifier combination. 
However, note that the high complementary rate 
between tagger errors in itself does not 
necessarily imply that there is anything to be 
gained by classifier combination. 

We ran experiments to determine 
whether the outputs of the different taggers 
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could be effectively combined. We first 
explored combination via simple majority-wins 
voting. Next, we attempted to automatically 
acquire contextual cues that learned both which 
tagger to believe in which contexts and what 
tags are indicated by different patterns of tagger 
outputs. Both the word environments and the 
tagger outputs for the word being tagged and its 
neighbors are used as cues for predicting the 
proper tag. 

3.1 S imp le  Vo t ing  

The simplest combination scheme is to have the 
classifiers vote. The part of speech that 
appeared as the choice of the largest number of 
classifiers is picked as the answer, with some 
method being specified for breaking ties. We 
tried simple voting, using the Maximum 
Entropy, Transformation-Based and Trigram 
taggers. In case of ties (all taggers disagree), the 
Maximum Entropy tagger output is chosen, 
since this tagger had the highest overall accuracy 
(this was determined by using a subset of the 
training set, not by using the test set). The 
results are shown in Figure 5. Simple voting 
gives a net reduction in error of 6.9% over the 
best of the three taggers. This difference is 
significant at a >99% confidence level. 

Tagger Error Rate Num Errors 
Max Ent 3.2% 8400 
Simple Voting 3.0% 7823 

Figure 5 Results of Simple Voting 

3.2 Contextual Cues 

Next, we try to exploit the idiosyncracies of the 
different taggers. Although the Maximum 
Entropy, Transformation-based and Trigram 
taggers use essentially the same types of 
contextual information for disambiguation, this 
information is exploited differently in each case. 
Our hope is that there is some regularity to these 
differences, which would then allow us to learn 
what conditions suggest that we should trust one 
tagger output over another. 

We used a version of example-based 
learning to determine whether these tagger 
differences could be exploited. 5 To determine 

5 Example-based learning has also been applied 
succesfully in building a single part of speech tagger 

the tag of a word, we use the previous word, 
current word, next word, and the output of each 
tagger for the previous, current and next word. 
See Figure 6. 

Wordj. t Wordj Word j÷ k 
Unigram_Tagj.a Unigram_Tagj Unigram_Tag m 
Trigram_Tagj4 Trigram_Tag i Trigram_Tagi, ~ 
Transform_Tagj4 Transform Tagj Transform_Tag m 
MaxEnt_Tag H MaxEnt Tagj MaxEnt_Tag m 

Figure 6 Features Used To Determine The 
Proper  Tag for Word  j. 

For each such context in the training set, 
we store the probabilities of what correct tags 
appeared in that context. When the tag 
distribution for a context has low entropy, it is a 
very good predictor of the correct tag when the 
identical environment occurs in unseen data. 
The problem is that these environments are very 
specific, and will have low overall recall in a 
novel corpus. To account for this, we must back 
off to more general contexts when we encounter 
an environment in the test set that did not occur 
in the training set. This is done by specifying an 
order in which fields should be ignored until a 
match is found. The back-off ordering is learned 
automatically. 

We ran two variants of this experiment. 
In the first case, given an instance in the test set, 
we find the most specific matching example in 
the training set, using the prespecified back-off 
ordering, and see what the most probable tag 
was in the training set for that environment. 
This is then chosen as the tag for the word. Note 
that this method is capable of learning to assign 
a tag that none of the taggers assigned. For 
instance, it could be the case that when the 
Unigram tagger thinks the tag should be X, and 
the Trigram and Maximum Entropy taggers 
think it should be Y, then the true tag is most 
frequently Z. 

In the second experiment, we use 
contexts to specify which tagger to trust, rather 
than which tag to output. Again the most 
specific context is found, but here we check 
which tagger has the highest probability of being 
correct in this particular context. For instance, 
we may learn that the Trigram tagger is most 
accurate at tagging the word up or that the 
Unigram tagger does best at tagging the word 

(Daelemans(1996)). 
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race when the word that follows is and. The 
results are given in Figure 7. We see that while 
simple voting achieves an error reduction of 
6.9%, using contexts to choose a tag gives an 
error reduction of 9.8% and using contexts to 
choose a tagger gives an error reduction of 
10.4%. 

Tagger Error Rate Num Errors 
Max Ent 3.2% 8400 

Simple Voting 3.0% 7823 
Context: Pick Ta~ 2.9% 7580 

Context: Pick Tagger 2.8% 7529 

Figure 7 Error  Rate Reduction For Different 
Tagger Combination Methods 

Conclusion 

In this paper, we showed that the error 
distributions for three popular state of the art 
part of speech taggers are highly 
complementary. Next, we described 
experiments that demonstrated that we can 
exploit this complementarity to build a tagger 
that attains significantly higher accuracy than 
any of the individual taggers. 

In the future, we plan to expand our 
repertoire of base taggers, to determine whether 
performance continues to improve as we add 
additional systems. We also plan to explore 
different methods for combining classifier 
outputs. We suspect that the features we have 
chosen to use for combination are not the 
optimal set of features. We need to carefully 
study the different algorithms to find possible 
cues that can indicate where a particular tagger 
performs well. We hope that by following these 
general directions, we can further exploit 
differences in classifiers to improve accuracy in 
lexical disambiguation. 
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