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A b s t r a c t  
Cross-document coreference occurs when the same 
person, place, event, or concept is discussed in more 
than one text source. Computer recognition of this 
phenomenon is important  because it helps break 
"the document boundary" by allowing a user to ex- 
amine information about a particular entity from 
multiple text sources at the same time. In this paper 
we describe a cross-document coreference resolution 
algorithm which uses the Vector Space Model to re- 
solve ambiguities between people having the same 
name. In addition, we also describe a scoring algo- 
rithm for evaluating the cross-document coreference 
chains produced by our system and we compare our 
algorithm to the scoring algorithm used in the MUC- 
6 (within document) coreference task. 

1 I n t r o d u c t i o n  
Cross-document coreference occurs when the same 
person, place, event, or concept is discussed in more 
than one text source. Computer recognition of this 
phenomenon is important  because it helps break 
"the document boundary" by allowing a user to ex- 
amine information about a particular entity from 
multiple text sources at the same time. In partic- 
ular, resolving cross-document coreferences allows 
a user to identify trends and dependencies across 
documents. Cross-document coreference can also be 
used as the central tool for producing summaries 
from multiple documents, and for information fu- 
sion, both of which have been identified as advanced 
areas of research by the T I P S T E R  Phase III  pro- 
gram. Cross-document coreference was also identi- 
fied as one of the potential tasks for the Sixth Mes- 
sage Understanding Conference (MUC-6) but was 
not included as a formal task because it was consid- 
ered too ambitious (Grishman 94). 

In this paper we describe a highly successful cross- 
document coreference resolution algorithm which 
uses the Vector Space Model to resolve ambiguities 
between people having the same name. In addition, 
we also describe a scoring algorithm for evaluating 
the cross-document coreference chains produced by 
our system and we compare our algorithm to the 

scoring algorithm used in the MUC-6 (within docu- 
ment) coreference task. 

2 C r o s s - D o c u m e n t  Coreference :  T h e  
P r o b l e m  

Cross-document corefereuce is a distinct technology 
from Named Entity recognizers like IsoQuest 's Ne- 
tOwl and IBM's Textract because it a t tempts to 
determine whether name; matches are actually the 
same individual (not all John Smiths are the same). 
Neither NetOwl or Textract have mechanisms which 
try to keep same-named individuals distinct if they 
are different people. 

Cross-document coreference also differs in sub- 
stantial ways from within-document coreference. 
Within a document there is a certain amount of 
consistency which cannot be expected across doc- 
uments. In addition, the problems encountered dur- 
ing within document coreference are compounded 
when looking for coreferences across documents be- 
cause the underlying principles of linguistics and 
discourse context no longer apply across docu- 
ments. Because the underlying assumptions in cross- 
document coreference are so distinct, they require 
novel approaches. 

3 A r c h i t e c t u r e  and  the  M e t h o d o l o g y  

Figure 1 shows the architecture of the cross- 
document system developed. The system is built 
upon the University of Pennsylvania's within docu- 
ment coreference system, CAMP, which participated 
in the Seventh Message Understanding Conference 
(MUC-7) within document coreference task (MUC- 
7 1998). 

Our system takes as input the coreference pro- 
cessed documents output by CAMP. It  then passes 
these documents through the SentenceExtractor 
module which extracts, for each document, all the 
sentences relevant to a particular entity of interest. 
The VSM-Disambiguate module then uses a vector 
space model algorithm to compute similarities be- 
tween the sentences extracted for each pair of docu- 
ments. 
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Figure 1: Architecture of the Cross-Document Coreference System 

John Perry, of Weston Golf Club, an- 
nounced his resignation yesterday. He was 
the President of the Massachusetts Golf 
Association. During his two years in of- 
flee, Perry guided the MGA into a closer 
relationship with the Vdomen's Golf Asso- 
ciation of hfassachusetts. 

Oliver "Biff" Kelly of Weymouth suc- 
ceeds John Perry as president of the Mas- 
sachusetts Golf Association. "~Ve will have 
continued growth in the future," said Kelly, 
who will serve for two years. "There's been 
a lot of changes and there will be continued 
changes as we head into the year 2000." 

Figure 2: Extract from doc.36 

( ~  ) I I 

Figure 3: Coreference Chains for doc.36 

Details about each of the main steps of the cross- 
document coreference algorithm are given below. 

• First, for each article, CAMP is run on the ar- 
ticle. It produces coreference chains for all the 
entities mentioned in the article. For example, 
consider the two extracts in Figures 2 and 4. 
The coreference chains output by CAMP for the 
two extracts are shown in Figures 3 and 5. 

Figure 4: Extract from doc.38 

I I 

I 

I 
I 

Figure 5: Coreference Chains for doc.38 

Next, for the coreference chain of interest within 
each article (for example, the coreference chain 
that contains "John Perry"), the Sentence Ex- 
tractor module extracts all the sentences that 
contain the noun phrases which form the coref- 
erence chain. In other words, the SentenceEx- 
tractor module produces a "summary" of the ar- 
ticle with respect to the entity of interest. These 
summaries are a special case of the query sensi- 
tive techniques being developed at Penn using 
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CAMP. Therefore, for doc.36 (Figure 2), since 
at least one of tile three noun phrases ("John 
Perry," "he," and "Perry") in the coreference 
chain of interest appears in each of the three 
sentences in the extract, the summary produced 
by SentenceExtractor is the extract itself. On 
the other hand, the summary produced by Sen- 
tenceExtractor for the coreference chain of in- 
terest in doc.38 is only the first sentence of the 
extract because the only element of the corefer- 
ence chain appears in this sentence. 

,, For each article, the VSM-Disambiguate mod- 
ule uses the summary extracted by the Sen- 
tenceExtractor and computes its similarity with 
the suminaries extracted from each of the other 
articles. Summaries having similarity above a 
certain threshold are considered to be regard- 
ing the same entity. 

4 U n i v e r s i t y  of  P e n n s y l v a n i a ' s  
CAMP System 

The University of Pennsylvania's CAMP system re- 
solves within document coreferences for several dif- 
ferent classes including pronouns, and proper names 
(Baldwin 95). It ranked among the top systems 
in the coreference task during the MUC-6 and the 
MUC-7 evaluations. 

The coreference chains output by CAMP enable 
us to gather all the information about the entity of 
interest in an article. This information about the 
entity is gathered by the SentenceExtractor mod- 
ule and is used by the VSM-Disambiguate module 
for disambiguation purposes. Consider the extract 
for doc.a6 shown in Figure 2. We are able to in- 
clude the fact that  the John Perry mentioned in this 
article was the president of the Massachusetts Golf 
Association only because CAMP recognized that  the 
"he" in the second sentence is coreferent with "John 
Perry" in tile first. And it is this fact which actually 
helps VSM-Disambiguate decide that  the two John 
Perrys in doc.36 and doc.38 are the same person. 

5 T h e  V e c t o r  S p a c e  M o d e l  

The vector space model used for disambiguating en- 
tities across documents is the standard vector space 
model used widely in information retrieval (Salton 
89). In this model, each summary extracted by the 
SentenceExtractor module is stored as a vector of 
terms. The terms in the vector are in their mor- 
phological root form and are filtered for stop-words 
(words that  have no information content like a, the, 
of, an, . . .  ). If $1 and $2 are the vectors for the two 
summaries extracted fl'om documents D1 and D2, 
then their similarity is computed as: 

Sim (S l ,S2 )  = ~ Wlj  x w2j  
common terms tj 

where tj is a term present in both $1 and S~, wl j  is 
the weight of the term tj in $1 and w2j is the weight 
of tj in $2. 

The weight of a term t j  in the vector Si for a 
summary is given by: 

t f  x log 
Wij ~ + . . . + 2 -  ~S21 -~ 8i2 8i n 

where t f  is the frequency of the term tj in the sum- 
mary, N is the total number of documents in the 
collection being examined, and df is the number of 
documents in the collection that  the term t j  occurs 

2 2 in. x/s~l + si2 + . . .  + si, , is tile cosine normaliza- 
tion factor and is equal to the Euclidean length of 
the vector Si. 

The VSM-Disambiguate module, for each sum- 
mary Si, computes the similarity of that  summary 
with each of the other summaries. If the similarity 
computed is above a pre-defined threshold, then the 
entity of interest in the two summaries are consid- 
ered to be coreferent. 

6 E x p e r i m e n t s  
The cross-document coreference system was tested 
on a highly ambiguous test set which consisted of 
197 articles from 1996 and 1997 editions of tile 
New York Times. The sole criteria for including 
an article in the test set was the presence or the 
absence of a string in the article which matched 
the " /John.*?Smi th /"  regular expression. In other 
words, all of the articles either contained the name 
John Smith or contained some variation with a mid- 
dle initial/name. The system did not use any New 
York Times data for training purposes. The answer 
keys regarding the cross-document chains were man- 
ually created, but the scoring was completely auto- 
mated. 

6.1 Analysis of the Data 
There were 35 different John Smiths mentioned in 
the articles. Of these, 24 of them only had one ar- 
ticle which mentioned them. The other 173 articles 
were regarding the 11 remaining John Smiths.  The 
background of these John Smiths , and the number 
of articles pertaining to each, varied greatly. De- 
scriptions of a few of the John Smiths are: Chairman 
and CEO of General Motors, assistant track coach at 
UCLA, the legendary explorer, and the main charac- 
ter in Disney's Pocahontas, former president of the 
Labor Party of Britain. 

7 S c o r i n g  t h e  O u t p u t  

In order to score the cross-document coreference 
chains output by the system, we had to map the 
cross-document coreference scoring problem to a 
within-document coreference scoring problem. This 
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was done by creating a meta  document consisting 
of the file names of each of the documents that the 
system was run on. Assuming that  each of the docu- 
ments in the data set was about a single John Smith, 
the cross-document coreference chains produced by 
the system could now be evaluated by scoring the 
corresponding within-document coreference chains 
in the meta  document. 

We used two different scoring algorithms for scor- 
ing the output. The first was the standard algorithm 
for within-document coreference chains which was 
used for the evaluation of the systems participating 
in the MUC-6 and the MUC-7 coreference tasks. 

The shortcomings of the MUC scoring algorithm 
when used for the cross-document coreference task 
forced us to develop a second algorithm. 

Details about both these algorithms follow. 

7.1 T h e  M U C  C o r e f e r e n c e  Scoring 
Algorithm 1 

The MUC algorithm computes precision and recall 
statistics by looking at the number of links identi- 
fied by a system compared to the links in an answer 
key. In the model-theoretic description of the al- 
gorithm that  follows, the term "key" refers to the 
manually annotated coreference chains (the truth) 
while the term "response" refers to the coreference 
chains output by a system. An equivalence set is the 
transitive closure of a coreference chain. The algo- 
rithm, developed by (Vilain 95), computes recall in 
the following way. 

First, let S be an equivalence set generated by the 
key, and let R 1 . . .  Rm be equivalence classes gener- 
ated by the response. Then we define the following 
functions over S: 

• p(S) is a partition of S relative to the response. 
Each subset of S in the partition is formed by 
intersecting S and those response sets Ri that  
overlap S. Note that  the equivalence classes de- 
fined by the response may include implicit sin- 
gleton sets - these correspond to elements that 
are mentioned in the key but not in the re- 
sponse. For example, say the key generates the 
equivalence class S = {A B C D}, and the re- 
sponse is simply <A-B>.  The relative partition 
p(S) is then {A B} {C} and {D}. 

• e(S) is the minimal number of "correct" links 
necessary to generate the equivalence class S. It 
is clear that  c(S) is one less than the cardinality 
of s, i.e., c(S) = (ISl-  1).  

• re(S) is the number of "missing" links in the 
response relative to the key set S. As noted 
above, this is the number of links necessary to 

1The exposition of this scorer has been taken nearly en- 
tirely from (Vilain 95). 

g g h g P  

Figure 6: Truth 

Figure 7: Response: Example 1 

fully reunite any components of the p(S) parti- 
tion. We note that  this is simply one fewer than 
the number of elements in the partition, that  is, 
m(S) = ( ]p (S) I -  1) . 

Looking in isolation at a single equivalence class 
in the key, the recall error for that  class is just the 
number of missing links divided by the number of 
correct links, i.e., c(S) " 

Recall in turn is ~ which equals e(s) , 

(PSI- 1) - (]P(S)I- 1) 
I s l -  1 

The whole expression can now be simplified to 

I S ] -  Ip(S)I 
I s l -  1 

Precision is computed by switching the roles of the 
key and response in the above formulation. 

7.2 Shortcomings of the M U C  Scoring 
Algorithm 

While the (Vilain 95) provides intuitive results for 
coreference scoring, it however does not work as well 
in the context of evaluating cross document corefer- 
ence. There are two main reasons. 

1. The algorithm does not give any credit for sep- 
arating out singletons (entities that  occur in 
chains consisting only of one element, the en- 
tity itself) from other chains which have been 
identified. This follows from the convention in 
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Figure 8: Response: Example 2 

coreference annotation of not identifying those 
entities that  are markable as possibly coreferent 
with other entities in the text. Rather, entities 
are only marked as being coreferent if they ac- 
tually are coreferent with other entities in the 
text. This shortcoming could be easily enough 
overcome with different annotation conventions 
and with minor changes to the algorithm, but 
it is worth noting. 

2. All errors are considered to be equal. The MUC 
scoring algorithm penalizes the precision num- 
bers equally for all types of errors. It  is our po- 
sition that,  for certain tasks, some coreference 
errors do more damage than others. 

Consider the following examples: suppose the 
t ruth contains two large coreference chains and 
one small one (Figure 6), and suppose Figures 7 
and 8 show two different responses. We will ex- 
plore two different precision errors. The first 
error will connect one of the large coreferenee 
chains with the small one (Figure 7). The sec- 
ond error occurs when the two large coreference 
chains are related by the errant coreferent link 
(Figure 8). It is our position that  the second er- 
ror is more damaging because, compared to the 
first error, the second error makes more entities 
coreferent that  should not be. This distinction 
is not reflected in the (Vilain 95) scorer which 
scores both responses as having a precision score 
of 90% (Figure 9). 

7.3 O u r  B - C U B E D  Scor ing  A l g o r i t h m  2 

Imagine a scenario where a user recalls a collection 
of articles about John Smith, finds a single arti- 
cle about the particular John Smith of interest and 
wants to see all the other articles about that  indi- 
vidual. In commercial systems with News data, pre- 
cision is typically the desired goal in such settings. 
As a result we wanted to model the accuracy of the 
system on a per-document basis and then build a 
more global score based on the sum of the user's 
experiences. 

2The  main  idea of this  a lgor i thm was initially put  forth by 
Alan W. B ie rmann  of Duke University. 

Consider the case where the user selects document 
6 in Figure 8. This a good outcome with all the 
relevant documents being found by the system and 
no extraneous documents. If the user selected doc- 
ument 1, then there are 5 irrelevant documents in 
the systems output - precision is quite low then. 
The goal of our scoring algorithm then is to model 
the precision and recall on average when looking for 
more documents about the same person based on 
selecting a single document. 

Instead of looking at the links produced by a sys- 
tem, our algorithm looks at the presence/absence 
of entities from the chains produced. Therefore, we 
compute the precision and recall numbers for each 
entity in the document. The numbers computed 
with respect to each entity in the document are then 
combined to produce final precision and recall num- 
bers for the entire output. 

For an entity, i, we define the precision and recall 
with respect to that  entity in Figure 10. 

The final precision and recall numbers are com- 
puted by the following two formulae: 

N 

Final Precision = ~ Wi * Precision, 
i= l  

N 

Final Recall = E wi * Recalli 
i~-i 

where N is the number of entities in the document, 
and wi is the weight assigned to entity i in the doe- 
ument. For all the examples and the cxperiments in 
this paper we assign equal weights to each entity i.e. 
wi = 1IN. We have also looked at the possibilities 
of using other weighting schemes. Nlrther details 
about the B-CUBED algorithm including a model 
theoretic version of tile algorithm carl be found in 
(Bagga 98a). 

Consider the response shown in Figure 7. Using 
the B-CUBED algorithm, the precision for entity-6 
in the document equals 2/7 because the chain out- 
put for the entity contains 7 elements, 2 of which are 
correct, namely {6,7}. The recall for entity-6, how- 
ever, is 2/2 because the chain output for the entity 
has 2 correct elements in it and the "truth" chain for 
the entity only contains those 2 elements. Figure 9 
shows the final precision and recall numbers com- 
puted by the B-CUBED algorithm for the examples 
shown in Figures 7 and 8. The figure also shows the 
precision and recall numbers for each entity (ordered 
by entity-numbers). 

7.4 O v e r c o m i n g  the  S h o r t c o m i n g s  o f  t h e  
M U C  A l g o r i t h m  

The B-CUBED algorithm does overcome the the two 
main shortcomings of the MUC scoring algorithm 
discussed earlier. It implicitly overcomes the first 
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Output MUC Algorithm B-CUBED Algorithm (equal weights for every entity) 

P: (90%) p : l  = 76% 
Example 1 

5 5 5 5 5 5 R: ~ (100%) R: ~2 * [5+ 5 +  g +  g +  5 + 2 + ~ + 5 + g +  g + g +  g] = 100% 

• 2 2 P: 9 (90%) P : ~  [ ~ +  ~ + ~ + ~ + ~ o  + ~ +  ~ + ~ +  ~ +  ~ +  ~o + ~] = 58% 
Example 2 

5 

Precisioni = 

Figure 9: Scores of Both Algorithms o11 the Examples 

number of correct elements in the output chain containing entityi 

Recalli = 

number of elements in the output chain containing entity~ 
number of correct elements in the output chain containing entityi 

number of elements in the truth chain containing entityi 

(1) 

(2) 

Figure 10: Definitions for Precision and Recall for an Entity i 

shortcoming of the MUC-6 algorithm by calculating 
the precision and recall numbers for each entity in 
the document (irrespective of whether an entity is 
part of a coreference chain). Consider the responses 
shown in Figures 7 and 8. We had mentioned earlier 
that the error of linking the the two large chains in 
the second response is more damaging than the error 
of linking one of the large chains with the smaller 
chain in the first response. Our scoring algorithm 
takes this into account and computes a final preci- 
sion of 58% and 76% for the two responses respec- 
tively. In comparison, the MUC algorithm computes 
a precision of 90% for both the responses (Figure 9). 

8 R e s u l t s  

Figure 11 shows the precision, recall, and F-Measure 
(with equal weights for both precision and recall) 
using the B-CUBED scoring algorithm. The Vector 
Space Model in this case constructed the space of 
terms only from the summaries extracted by Sen- 
tenceExtractor. In comparison, Figure 12 shows 
the results (using the B-CUBED scoring algorithm) 
when the vector space model constructed the space 
of terms from the articles input to the system (it 
still used the summaries when computing the simi- 
larity). The importance of using CAMP to extract 
summaries is verified by comparing the highest F- 
Measures achieved by the system for the two cases. 
The highest F-Measure for the former case is 84.6% 
while the highest F-Measure for the latter case is 
78.0%. In comparison, for this task, named-entity 
tools like NetOwl and Textract would mark all the 
John Smiths the same. Their performance using our 
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Figure 11: Precision, Recall, and F-Measure Us- 
ing the B-CUBED Algorithm With Training On the 
Summaries 

scoring algorithm is 23% precision, and 100% recall. 

Figures 13 and 14 show the precision, recall, and 
F-Measure calculated using the MUC scoring algo- 
rithm. Also, the baseline case when all the John 
Smiths are considered to be the same person achieves 
83% precision and 100% recall. The high initial pre- 
cision is mainly due to the fact that the MUC algo- 
rithm assumes that all errors are equal. 

We have also tested our system on other classes of 
cross-document coreference like names of companies, 
and events. Details about these experiments can be 
found in (Bagga 98b). 
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Figure 12: Precision, Recall, and F-Measure Using 
the B-CUBED Algorithm With Training On Entire 
Articles 
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Figure 13: Precision, Recall, and F-Measure Using 
the MUC Algorithm With Training On the Sum- 
maries 

9 Conclus ions  

As a novel research probleni, cross document coref- 
erence provides an different perspective from re- 
lated phenomenon like named entity recognition and 
within document coreferenee. Our system takes 
summaries about an entity of interest and uses vari- 
ous information retrieval metrics to rank the similar- 
ity of the summaries. We found it quite challenging 
to arrive at a scoring metric that satisfied our intu- 
itions about what was good system output v.s. bad, 
but we have developed a scoring algorithm that is an 
improvement for this class of data over other within 
document coreference scoring algorithms. Our re- 
suits are quite encouraging with potential perfor- 
mance being as good as 84.6% (F-Measure). 
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Figure 14: Precision, Recall, and F-Measure Using 
the MUC Algorithm With Training On Entire Arti- 
cles 
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