Hierarchical Clustering of Words

~Akira Ushioda*
ATR Interpreting l'eleccommunications Rescarch Laboratories
2-2 Hikaridai, Scika-cho, Soraku-gun, Kyoto, Japan 619-02

cmnail:

Abstract

This paper describes a data-driven
method for hierarchical clustering of
words in which a large vocabulary of b
glish words is clustered bottom-up, with
respect 1o corpora rangig in size {rom
5 to B0 million words, using a greedy al-
gorithm that tries (o mininize average
loss of mutual information of adjacent
classes. 'The resultiug hierarchical clus-
ters of words are then naturally trans-
formed to a bit-string representation of
(i.e. word bits for) all the words in the vo-
cabulary. Introducing word bits into the
ATR Decision-"Tree POS ‘Tagger is shown
to significantly reduce the tagging error
rate. Portability of word bits lrom one
domain to another is also disscussed.

1 Introduction

One of the fundamental issues concerning corpus-
bhased NLP is the data sparseness problem. In
view of the eflectiveness of class-based n-graim lan-
guage models against the data sparseness problem
(Kneser and Ney 1993), it is expected that classes
of words are also useful for NLP tasks in such a
way that statistics on classes are used whenever
statistics on individual words are unavailable or
unreliable. An ideal type of clusters for NLP is
the one which guarantees mutual substitutability,
in terms of hoth syntactic and semnantic sound-
ness, among words in the same class.

Furthermore, clustering is much more useful if
the clusters are of variable granularity, or hierar-
chical. We will consider a (ree representation of
all the words in the vocabulary in which the root
node represents the whole vocabulary and a leal
node represents a word in the vocabulary. Also,
any setl of nodes in the tree constilutes a parti-
tion (or clustering) of the voeabulary if there ex-
ists one and only one node in the set along the
path from the root node to each leafl node. In the
following sections, we will describe a method of
crealing binary tree representation of words and
present results of evaluating and comparing the
quality of the hierarchical clusters obtained from
texts of very different sizes.

*Current address: Media Tutegration Laboratory,
Fujitsu Laboratories Lid., Kawasaki, Japan. Email:
ushioda@(lab. fujitsu.co.jp.

1159

ushioda®itl.atr.co.jp

2 Word Bits Construction

Our word bits construction algorithm is a modi
fication and an extension of the mutual informa-
tion clustering algorithm proposed by Brown et
al. (1992). We will first illustrate the difference
between Lthe original formulae and the ones we
used, and then introduce the word bits construc-
tion algorithm. We will use the same notation as
in Brown ot al. to make the comparison easier.

2.1 Mutual Information Clustering
Algorithm
Mutual information clustering method employs a
bottum-up merging procedure with the average
mutual information (AMI1) of adjacent classes in
the text as an objective function. In the initial
stage, each word in the vocabularly ol size V is
assigned 1o its own distinct class. We then merge
two classes if the merging of them mduces min-
imun AMI reduction among all pairs of classes,
and we repeat the merging step until the number
of the classes is reduced to the predefined num-
ber C. Time coraplexity of this basic algorithm is
O(V*) when implemented straightforwardly. By
storing the result of all the trial merges al the pre-
vious merging step, however, the time complexity
can be reduced to O(V¥) as shown below.
Suppose that, starting with V classes, we have
already made V - k merges, leaving k classes,
Cr(1), Crp(2) , Cr(k). The AMI at this stage
is given by the following equations.

=Y aullm) (1)

Im

mlm)
oy (2)
ol (Dpry(m)
where pr(4,1n) is the probability that a word in
Cy (D) 1s followed by a word in (' (n), and

pli () = Zpk(l,m), pr(m) Lm (I, m)

In equation L, ¢g’s are summed over the entire & x
k class bigrain table in which (I,m) cell represents
qp({,m). In this merging step we invesligale a
trial merge of Cy (1) and Cp(J) for all class pairs
(7,7), and compute the AMI reduction Ly(4,j) =
I — 1i(1, §) elfected by this merge, where 117,)
is the AMI afler the merge.

Suppose that the pair (Cy % (9))
sen to merge, thal is, 1;(7,) 3 IR

a(l,m) = pr(l,m)log

was cho-
;) Tor all

pairs ({,m). In the next merging step, we have
to calculate 1/“’“ [,m) for all the pairs (I, m).

Here we use Lhe supers sulpt (4, 7) to indicate that
(Cr(2), Cr (7)) was merged in the previous merging
step.

Now note that the difference be-
tween Lgfﬂ (I,m) and Ly(l,m) only comes from
the terms which are affected by merging the pair

(Ce(i), (7). ;
Since Ly(I,m) = Iy — Ie(l,n) and L) (1 m) =

) ,(:_’jl) -1 ii_’jl)(l, m), we have

LSC ’J)(I m) — Ly(l,m) =

— (2 m) = B(Lm)) + (I8 = 1),
Some part of the summation region of I(i’j)(l ™m)
and Ip cancels out with a part of]k 1 or a part

of Iy(I,m). Let I}(f Jlj(l m) Ix(1,m), [}E ’JlJ, and

I denote the values of IL ’“(l,m),lk(l,m), I}vf_’ﬂ)
and Iy, respectively, after all the common terms
among them which can be canceled are canceled
out. Then, we have

LS m) — Ly(l,m) =
(1D m) - L(l,m)) + (I8~ 1), (3)

where

f,gﬁjl)(l,n’z) = qep1({4+m, i)+ qu-1 (i, L+ m)
In(,m) = g +m, i)+ g, +m)+
(U +m,) + (G, L+ m)
B = gD+ geea(im) +
qe-1(1,4) + qe-1(m, i)
L = @00 +a(m)+ai)+

(Ik(j; m)+ (]k(l, 7’) + Qk(laj) +
(Ik(rn) 1‘) + Qk(m)j)

Because equation 3 is expressed as the summation
of a fixed number of ’s, its value can be calculated
in constant time, whereas the calculation of equa-
tion | requires O(V?) time. Therefore, the total
time complexity is reduced by O(V?).

The summation regions of I’s in equation 3 are
illustrated in Figure 1. Brown et al. seem to have
ignored the second term of the right hand side of
equation 3 and used only the first term to calculate
Lk’”(l m)—Lg({,m) . However,since the second
term has as much weight as the first term, we used
equation 3 to mdke the model complete.

Even with the O(V?®) algorithm, the calculation
is not practical for a large vocabulary of order 10%
or higher. Brown et al. proposed the following

! Actually, it is the first term of equation 3 times
(-1) that appeared in their paper, but we believe that
it is simply due to a misprint.

: 1 mkl @

Taj (1,])

I 1(Im)
Figure 1: Summation Regions for 1’s
Merging History: Dendrogram
Merge(A, B > A)

Mergo(C.D > C) —=

Merge(C, E > C)
Merge(A,C = A)

Merge(X,Y->Z) reads A 6_
"merge X and Y and name TL&
@ ©

the new class as Z"

Figure 2: Dendrogram Construction

method, which we also adopted. We first make V
singleton classes out of the V words in the vocab-
ulary and arrange the classes in descending order
of frequency, then define the merging region as the
first C + 1 positions in the sequence of classes. At
each mergmg step melgjmg of only the classes in
the merging region is considered, thus reducing
the number of trial merges from O(V) to O(C?).
After each actual merge, the most frequent single-
ton class outside of the merging region is shifted
into the region. With this algorithm, the time
complexity is reduced to O(C*V).

2.2 Word Bits Construction Algorithm

The simplest way to construct a tree structured
representation of words is to construct a dendro-
gram from the record of the merging order. A sim-
ple example with a five-word vocabulary is shown
in Figure 2. If we apply this method to the above
O(C?V) algorithm, however, we obtain for each
class an extremely unbalanced, almost left branch-
ing subtree. The reason is that after classes in the
merging region are grown to a certain size, it is
much less expensive, in terms of AMIL, to merge a
singleton class with lower frequency into a higher
frequency class than merging two higher frequency
classes with substantial sizes.
A new approach we adopted is as follows.

1. MI-clustering: Make C classes using the mutual
information clustering algorithm with the merging

1160

1
1
VOO ON IO M AP YETUY YO T ugd YUY 59T Ty DY
EIYER R P R
AR EEC R R LA
8 SENEGRRRRAGY CSERR Ty PUad
B3 g A

Figure 3: Sample Subtree for One Class

region constraint mentioned in (2.1).

2. Quter-clustering: Replace all words in the text
with their class token® and execute binary merg-
ing without the merging region constraint until all
the classes are merged into a singe class. Make a
dendrogram out of this process. ‘This dendrogram,
Droor, constitutes the upper part of the final tree.
3. Inner-clustering: Let {C(1), C(2), ..., C{()} be
the set of the classes obtained at step L. I'or each
1 (1 <7<) do the following,.

(a) Replace all words in the text except those in
C(i) with their class token. Define a new vocabu-
lary V’ = Vi U Vy, where Vi = {all the words in
(:(I)}, Vg = {(,7] s (/‘2, ey C‘i—] y ,;‘i+1 , C‘(j }, and (/V]
is a token for C(3) for 1 < j < . Assign each
element in V’ to its own class and execute binary
merging with a merging constraint such that only
those classes which only contain elements of ¥y
can be merged.

(b) Repeat merging until all the elements in V)
are put in a single class.

Make a dendrogram Dy, out of the merging pro-
cess for each class. This dendrogram constitutes a
subtree for each class with a leaf node represent-
ing each word in the class.

4. Combine the dendrograms by substituting each
leaf node of Dy, with coresponding 1),,5.

This algorithin produces a balanced binary tree
representation of words in which those words
which are c¢lose in meaning or syntactic feature
come close in position. Figure 3 shows an exam-
ple of D, for one class out of 500 classes con-
structed using this algorithm with a vocabulary
of the 70,000 most frequently occurring words in
the Wall Street Journal Corpus. Finally, by trac-
ing the path from the root node to a leaf node and
assigning a bit to each branch with zero or one rep-
resenting a left or right branch, respectively, we
can assign a bit-string (word bits) to each word in
the vocabulary.

?Tn the actual implementation, we only have to
work on the bigram table instead of the whole text.

slumped

Fvent-128:

{{ ward(), “like” } { word(-1), “Mlies”)
{ word(1),“an” } (word(2), “arrow” }
{ tag(-1), “Verb-3rd-Sg-lyped”} { tag(-2), “Noun-Sg-typeld” }

{Basic Questions)

{ word(-2), “time”)

{ Inclass?(word{0), (lass295), “yes”" }
{ WordBits(Word(-1), 29), “1" }
L (WordBits Questions)
{ IsPrefix?(Word(0), “anti”), “no” }
D (Tinguist’s Questions)
(Tag, “Prep-typed” } }

Figure 4: Iixample of an event

3 Experiments

We used plain texts from six years of the WSJ
Corpus to create word bits. 'T'he sizes of the texls
are 5 million words (MW), IOMW, 20MW, and
50MW. 'The vocabulary is selected as the 70,000
most frequently occurring words in the entire cor-
pus. We set the number C of classes to 500.
The obtaiued hierarchical clusters are evaluated
via the ervor rate of the ATR Decision-"T'ree Part-
Of-Speech ‘lagger which is based on SPAT'TER
(Magerman 1994). The tagger employs a set of
443 synlactic tags. In the training phase, a set of
evenls are extracted from the traimng texts. An
event is a set of feature-value pairs or queslion-
answer pairs. A feature can be any atiribute of
the context in which the current word word(0) ap-
pears; 1t is conveniently expressed as a question.
Iigure 4 shows an example of an event with a cur-
rent word “like”. 'The last pair in the event is a
special itemn which shows the gnswer, 1.e., the cor-
rect tag of the current word. The first three lines
show questions about identity of words around the
current word and tags for previous words. These
questions are called busic questions and always
used. The second type of questions, word bils
questions, are on clusters and word bils such as
what s the 29th bit of the previous word’s word
bits?. 'The third type of questions are called lin-
guist’s questions and these are compiled by an ex-
pert grammarian.

Qut of the set of events, a decision tree is
constructed whose leaf nodes contain conditional
probability distributions of tags, conditioned by
the feature values. In the test phase the system
looks up conditional probability distributions of
tags for each word in the test text and chooses the
mosl probable tag sequences using beam search.

We used WSJ texts and the ATR corpus (Black
et al. 1996) for the tagging experiment. Both cor-
pora use the ATR syntactic tag set. Since the
ATR corpus is still in the process of developiment,
the size of the texts we have at hand for this ex-
periment is rather minimal considering the large
size of the tag set. 'T'able | shows the sizes of texts
used for the expertment. Figure 5 shows the tag-
ging error rates plotted against various clustering

1161

28—
Text: WSJ Text]

26} H WordBits

@ LingQuest & WordBits

Text: ATR Corpus
A WordBits

Reshuffled (WSJ] Text)

1 WordBits
O LingQuest & WordBits

Tagging Error Rate (%)
3

16
14} z Reshuffled
12
10
0 10 20 30 40 50 60

Clustering Text Size (Million Words)

I'igure 5: Tagging brror Rate

Text Size D -

(words) Training Test | Ifeld-Out
WSJ Text 75,130 | 5,831 6,534
ATR Text 76,132 | 23,163 6,680

Table 1: Texts for Tagging Fxperiments

text sizes. Qut of the three types of questions, ba-
sic questions and word bits questions are always
used in this experiment. To see the effect of in-
troducing word bits information into the tagger,
we performed a separate experiment in which a
randomly generated bit-string is assigned to each
word?® and basic questions and word bits questions
are used. The results are plotted at zero clustering
text size. For both WSJ texts and ATR corpus,
the tagging error rate dropped by more than 30%
when using word bits information extracted from
the 5MW text, and increasing the clustering text
size further decreases the error rate. At 50MW,
the error rate drops by 43%. This shows the im-
provement of the quality of the hierarchical clus-
ters with increasing size of the clustering text. In
Figure 5, introduction of linguistic questions? is
also shown to significantly reduce the error rates
for the WSJ corpus. The dependency of the er-
ror rates on the clustering text size is quite sim-
ilar to the case in which no linguistic questions
are used, indicating the effectiveness of combin-

*Since a distinctive bit-string is assigned to each
word, the tagger also uses a bit-string as an 1) nurmber
for each word in the process. In this control experi-
ment bit-strings are assigned in a random way, but no
two words are assigned the same word bits. Random
word bits are expected to give no class information to
the tagger except for the identity of words.

*The linguistic questions we used here are still in
the imitial stage of development and are by no means
comprehensive.

ing automatically created word bits and hand-
crafted linguistic questions. Figure 5 also shows
that reshuffling the classes several times just after
step 1 (MI-clustering) of the word bits construc-
tion process further improves the word bits. One
round of reshuffling corresponds to moving each
word in the vocabulary from its original class to
another class whenever the movement increases
the AMI, starting from the most frequent word
through the least frequent one. The figure shows
the error rates with zero, two, and five rounds
of reshuffling®. Overall high error rates are at-
tributed to the very large tag set and the small
training set. Another notable point in the figure is
that introducing word bits constructed from WSJ
texts is as effective for tagging ATR texts as it is
for tagging WSJ texts even though these texts are
from very different domains. ‘T'o that extent, the
obtained hierarchical clusters are considered to be
portable across domains.

4 Conclusion

We presented an algorithm for hierarchical clus-
tering of words, and conducted a clustering exper-
iment using large texts of varying sizes. High qual-
ity of the obtained clusters are confirmed by the
POS tagging experiments. By introducing word
bits into the ATR Decision-Tree POS Tagger, the
tagging error rate is reduced by up to 43%. The
hierarchical clusters obtained from WSJ texts are
also shown to be useful for tagging ATR texts
which are from quite different domains than WSJ
texts.

Acknowledgements

We thank John Laflerty for his helpful suggestions.

References

Black, F., Eubank, S., Kashioka, H., Magerman, D.,
Garside, R., and Lecch, G. (1996) “Beyond Skcle-
ton Parsing: Producing a Compreheusive Large-Scale
General-Tnglish Trecbank With Full Grammatical
Analysis”. Proceedings of the 16th International Con-
ference on Computational Linguistics.

Brown, P., Della Pietra, V., deSouza, P., Lai, J., Mer-
cer, R. (1992) “Class-Based n-gram Models of Natural
Language”. Computational Linguistics, Vol. 18, No 4,
pp. 467--479.

Kneser, R. and Ney, H. (1993) “Tmproved Clustering
Techniques for Class-Based Statistical Language Mod-
elling”. Proceedings of Furopean Conference on Speech
Communication and Technology.

Magerman, D. (1994) Natural Language Parsing as

Statistical Pattern Recognition. Doctoral dissertation,
Stanford University, Stanford, California.

p . .

"The vocabulary used for the reshuflling experi-
ments is the one used for a preliminary experiment
and its size 1s 63850,

1162

