An Education and Research Tool for Computational Semantics

Karsten Konrad!, Holger Maier!, David Milward? and Manfred Pinkal'

(1) Computerlinguistik,
Universitat des Saarlandes

66041 Saarbriicken, Germany
konrad, maier, pinkal@coli.uni-sh.de

Abstract

This paper describes an interactive
graphical environment for computational
semantics. The system provides a teach-
ing tool, a stand alone extendible gra-
pher, and a library of algorithms to-
gether with test suites. The teaching
tool allows users to work step by step
through derivations of semantic repre-
sentations, and to compare the proper-
ties of various semantic formalisms such
as Intenstonal Logic, DRT, and Situation
Semantics. The system is freely available
on the Internet.

1 Intreduction

The CLEARS tool (Computational Linguistics Iid-
ucation and Research Tool in Semantics) was de-
veloped as part of the IraCa$S project' which
aimed to encourage convergence between different
semantic formalisms. Although formalisins such
as Intensional Logic, DRT, and Situation Seman-
tics look different on first sight, they share many
common assumptions, and provide similar treat-
ments of many phenomena. The CLEARS tool al-
lows exploration and comparison of these different
formalisms, enabling the user to get an idea of the
range of possibilities of semantic construction. It
is intended to be used as both a research tool and
a tutorial tool.

The first part of the paper shows the poten-
tial of the system for investigating the properties
of different semantic formalisms, and for teach-
ing students formal semantics. The next section
outlines the library contents and the system archi-
tecture, which was designed to reflect convergence
between theories. 'The result is a highly modular
and, we believe, a highly flexible systemn which

YA Tramework for Computational Semantics, Fu-
ropean Community LRIE 62-051.

(2) SRI International,
Suite 23, Millers Yard
Cambridge, CB2 1RQ, GB

milward@cam.sri.com

app(1,2)

np vp
id id
pn \4

anlna laughs

B

LA, ®A (B) AC.
anna (B} laughs(C)

Iigure 1: Initial Representation of Anna laughs
with A-DRT

allows user programs to be integrated at various
levels. The {inal part of the paper describes the
grapher which was designed as a stand alone tool
which can be used by various applications.

2 A Tutorial System for
Computational Semantics

As a tutorial tool, CLEARS allows students to in-
vestigate certain formalisms and their relation-
ship. It also provides the possibility for the
teacher to provide interactive demonstrations aid
to produce example slides and handouts.

In this section we show how a user can inter-
actively explore the step-by-step construction of a
semantic representation out of a syntax tree. Fig-
ures 1 and 2 show a possible initial display for the
sentence “Anna laughs” in a compositional ver-
sion of DRT (Bos et al., 1994) and in ‘Montague
Grammar’ (Dowty et al., 1981).

The user controls the semantic construction
process by moving to particular nodes in the
derivation tree, and performing operations by us-
ing rmouse double-clicks, or by selecting from a
pop-up menu. For example, clicking on app(2,1)

1098

app(2,1)
np vp
id id
pn
anma laughs

anna AA.laughs(A)

I'igure 2: Initial Representation of Anna laughs
with ‘Montague Grammar’

s
laughs (anna)
app(2,1)
anna AA . laughs (A}
id id
pn v
anna laughs
anna AA.laughs (A)

Figure 3: Final Representation of Anna laughs in
‘Montague-Grammar’

in the tree shown in Figure 2 has the effect of ap-
plying the lambda-expression AA.laughs(A) to
anna. The resulting display is given in Figure 3.

The pop-up menu allows a user to per-
form single derivation steps. T'or example,
the user can first form an application termn
AA laughs(A)(anna) and then reduce this at
the next step. Menu options include the possibil-
ity of cancelling intensional operators, performing
lambda reduction, applying meaning postulates,
and DRS merging. The menu also allows a user
to choose whether or not to perform quantifier
storage or discharge, and thereby pick a particu-
lar reading for a sentence. Alternatively the user
can choose to fully process a node, in which case
all readings are siraultancously displayed.

J
C
= | loves{C,J)
man(C)
woman (J)

vC.{man(C) = 3J.(loves(C,J) » woman(J)))

Figure 4: '[ranslating DRT to Predicate Logic

3 Comparing Theories

A major use of the tool is for comparison of dif-
ferent semantic theories and methods of seman-
tic construction. To aid comparison of theories,
there arc translation routines between some se-
mantic formalisms. For example, I'igure 4 shows
a translation from a DRS to a formula in Predi-
cate Logic.

The user can try out various options for seman-
tic construction by using a menu to set various
paramecters. An illustrative subset of the parame-
ters and their possible values is given below:

semantic formalisin
Logic of Generalized Quantificrs,
Intensional Logic,
Compositional DRRI' (Muskens, 1993),
A-DRT (Bos et al., 1994),
"Top-Down-DRT (Kamp and Reyle, 1993),
Situation Semantics.
grammar
simple PSG, PSG with features,
Categorial Grammar with features.
parser
top-down, incremental (for CG only).
lexicon
stmple lexicon, lexicon with features.
syntax-semantics mapping
rule-to-rule; syntactic template.
syntax-semantics construction
serial, parallel.
subject applied to verb phrase
yes, no.
quantifier storage mechanism
Cooper Storage (Cooper, 1983),
Nested Cooper Storage (Keller, 1988)
G-reduction
unification based, substitution based.

1099

4 The Library

Because a tutorial system of this kind has to be
based largely on standard routines and algorithms
that are fundamental for the area of computa-
tional semantics, a secondary aim of the project
was to provide a sct of well documented programs
which could form the nucleus of a larger library
of reusable code for this field. Most of the library
contents correspond directly to particular values
of parameter settings. However there are some ex-
tra library routines, for example a very generalised
form of function composition. The library is be-
ing expanded with routines for semantic construc-
tion driven by semantic types. It is also intended
to integrate a wider range of grammars, parsing
strategies and pronoun resolution strategies. Tfor
program documentation we largely have followed
the approach taken in LEDA (Naher, 1993)).

Apart from the routines concerned directly with
computational semantics, there are also routines
designed to aid application developers who want
to provide a graphical output for semantic repre-
sentations. These routines are mainly concerned
with translating from Prolog syntax into the de-
scription string syntax used by the CLiG grapher.
Currently they rely on the Tcl/Tk library package
provided by Sicstus 3.

4.1 Modularisation Principles

A standard approach to modularisation is to split
a problem into indcpendent black bozes, e.g. a
grammar, a parscr etc. This top-down modulari-
sation is then followed by some bottom-up mod-
ularisation in the sense of supplying general utihi-
ties which each of the larger modules can use. For
this application, such an approach had obvious in-
adequacies. For example, there are subtle differ-
ences in some steps of quantifier storage according
to the formalism being used, similarly, differences
even in lambda reduction (for intensional logic it
is natural to interleave the step of operator can-
cellation between f-reductions). Even the parsing
stage cannot be totally independent unless we gen-
cralise to the worst case (the Situation Semantics
fragment requires an utterance node as well as a
sentence node).

One of the aims in buillding the tool was to
show where semantic formalisms converge. Thus
there was theoretical motivation to ensure compo-
nents of the system were shared wherever possible.
There was also practical motivation, since there is
more chance of finding errors in shared code. The
solution adopted was to use parameterised modu-
larisation. This allows differences to be located in
as small pieces of code as possible (e.g. single lines

b

&rameterised node formation

parser2

parser 1

semantic Constructior]

parameterised extraction from nodes

bt
ofolclc

Figure b: Architecture of a part of

the Syntax-Semantics Interface

of the quantifier storage routine), with the param-
eters picking up the correct piece of code at run
time. There are some small costs due to indirec-
tion (instead of calling e.g. a f-reducer directly,
a program first calls a routine which chooses the
B-reducer according to the parameters). But with
these parameterisation layers we provide natural
points where the system can be extended or modi-
fied by the user. The approach also gets rid of the
need to create large data structures which include
information which would be relevant for one choice
of parameters, but not the current choice. Tor ex-
ample, In parsing, a parameterised level chooses
how to annotate nodes so that the syntax trees
only have the relevant information for the chosen
syntax-semantics strategy. The architecture is 1l-
lustrated in Figure 5.

The result of the parameterised approach is a
system which provides several thousand possible
valid combinations of semantic formalism, gram-
mar, reducer etc. using a small amount of code.

5 The Graphical Interface

A major part of our work on the educational
tool was the development of a general graph-
ical browser or grapher for the graphical no-
tations used in computational linguistics, espe-~
cially those in computational semantics such as
trees, Attribute-Value-Matrices, EKN (Barwise
and Cooper, 1993) and DRSs. The grapher was

1100

written in Tel/ Tk, a programming system for
developing graphical uscr interfaces (Ousterhout,
1994). Two atiributes of 'T'el/ Tk which were 1m-
portant for this application were the provision of
translation routines from graphic canvasses into
Postscript (allowing generation of diagrams such
as ligures 1 to 4), and the case of providing scal-
ing routines for zooming,.

The grapher was designed to be extendible for
future applications. Graphical structures are de-
scribed using a description string, a plain text hi-
crarchical description of the object to be drawn
without any exact positioning information. Ior
example, the following tree:

S

P
is created by the description siring:

{tree {plain-text "S"}
{plain-text "NP"}
{plain-text "VP"}}

CuLiG can display leractive graphical structures
which allow the user to perform actions by click-
ing on mousc-scusitive regions in the display arca.
The grapher and an underlying application there-
fore can behave tin a way that the grapher s not
only a way 1o visnalise the data of the application,
but also provides a real interface between user and
application.

6 Availability of the Systemn

T'he system currently requires Stestus 3 plus
Tel version 7.4 and 'tk version 4.0 (or later
It 1s available at the fip address:
ftp.coli.uni-sb.de:/pub/fracas or on the
WWW at the URL:

versiotls).

http://coli.uni~sb.de/ clears/clears.html

Further documentation of the system is given in
(FraCa$, 1996a) and (I'vaCaS, 1996b), which are
available from:

http://wuw.cogsci.ed.ac.uk/ " fracas/

7 Conclusion

Initial reactions to demonstrations of the educa-
tional tool suggest that it has the potential to
become a widely used educational aid. We also
believe that the programs ninplemented and docu-
mented in this work provide the nucleus of a larger
library of reusable programs {or computational se-
mantics. Qur current plans arc to test the system

1101

with a wide class of users to discover arcas requir-
ing extension or modification. A longer term aim
1s to integrate the system with existing grammar
development environments.

Acknowledgements

"T'his work would not have been possible without
the enconragement and support of the other men-
bers of the FraCaS Project. We would especially
like to thank Robin Cooper, Massimo Pocsio and
Steven Puliman for contributions to the code.

References

J. Barwise and R. Cooper. 1993, Bxtended Kamp
notation. In Y. Katagiri P. Aczel, D). Israel and
S. Peters, editors, Situation Theory and its Ap-
plication Vol. 3, chapter 2, pages 29-54. CSLI,
Stanford.

J. Bos, k. Mastenbrock, 5. McGlashan, S. Mil-
lies, and M. Pinkal. 1994. A compositional
DRS-based formalisi for nlp-applications. [n
Proceedings of the International Workshop
o Compulationadd Semantics, pages 21 31,
Tilburg.

1. Cooper. 1983, Quantification and Syntactic
Theory. SLAP. Reidel, Dordrecht.

D. Dowty, R. Wall, and S. Peters. 1981, Intro-
duction to Montague Scmantics. SLAP. Reidel,
Dordrecht.

IraCaS. 1996a. Building the framework. Iracas

Deliverable D15.

IraCaS. 1996b.
Deliverable D16.

Using the framework. [racas

H. Kamp and U. Reyle. 1993, from Discourse Lo
Logic. Kluwer, Dordrecht.,

W. Keller. 1988. Nested cooper storage. In
U. Reyle and C. Rohrer, editors, Natural Lan-
guage Parsing and Linguistic Theories, pages
432 -447. Reidel, Dordrecht,

R. Muskens. 1993. A compositional discoursce
representation theory. In P. Dekker and
M. Stokhof, editors, Procecdings of the 9th Am-
sterdam Colloquium, pages 467-486. 1L1LC, Uni-
versity of Amsterdam.

w

. Naher. 1993, Leda manual version 3.0. Techni-
cal Report MP1-1-93-109, Max-Planck-Institut
fiir Informatik, Saarbricken, February.

J. OQusterhout. 1994, Tcl and the Tk Toolkil. Pro-
fessional Computing. Addison-Wesley, Reading,
Massachusctis.

