
G A T E  - a G e n e r a l  A r c h i t e c t u r e  for  T e x t  E n g i n e e r i n g  

Hamish  C u n n i n g h a m  
In s t i t u t e  for Language ,  

Speech and  Hear ing  / 

Dept .  C o m p u t e r  Science 

Univ. Sheffield, UK 

hamish@dcs ,  s h e f .  ac .  uk 

Y o r i c k  W i l k s  

In s t i t u t e  for Language ,  

Speech and  Hear ing  / 

Dept .  C o m p u t e r  Science 
Univ. Sheffield, UK 

y o r i c k @ d e s ,  s h e f .  a c .  uk 

Robert  J. Gaizauskas 
In s t i t u t e  for Language ,  

Speech and  Hear ing  / 

Dept .  C o m p u t e r  Science 
Univ. Sheffield, UK 

r o b e r t g ~ d c s ,  s h e f .  a c .  uk 

h t t p : / / w w w ,  d e s .  s h e f .  a c .  u k / r e  s e a r c h / g r o u p s / n i p / n i p ,  h t m l  

Abstract  

Much progress has been made in the 
provision of reusable data resources for 
Natural Language Engineering, such as 
grammars, lexicons, thesauruses. Al- 
though a number of projects have ad- 
dressed the provision of reusable algo- 
rithmic resources (or 'tools'), takeup of 
these resources has been relatively slow. 
This paper describes GATE, a General 
Architecture for Text Engineering, which 
is a freely-available system designed to 
help alleviate the problem. 

1 Resource  Reuse  and Natura l  
Language Engineering 

Car designers don't reinvent the wheel each time 
they plan a new model, but software engineers of- 
ten find themselves repetitively producing roughly 
the same piece of software in slightly ditfenmt 
R)rm. The reasons for this inefficency have been 
extensively studied, and a number of solutions are 
now available (Prieto-Diaz and t~h'eeman, 1987; 
Prieto-Diaz, 1993). Similarly, the Natural Lan- 
guage Engineering (NLE l) community has identi- 
fied the potential benefits of reducing repetition, 
and work has been flmded to promote reuse. This 
work concerns either reusable resources which are 
primarily data or those which are primarily algo- 
rithmic (i.e. processing 'tools', or programs, or 
code libraries). 

Successflfl examples of reuse of data resources 
include: the WordNet thesaurus (Miller el; al., 
1993); the Penn Tree Bank (Marcus et al., 1993); 
the Longmans Dictionary of Contemporary Eng- 
lish (Summers, 1995). A large number of pa- 
pers report results relative to these and other re- 
sources, and these successes have spawned a num- 

1See (Boguraev et al., 1995) or (Cunningham et al., 
1995) for discussion of the significance of this label. 

ber of projects with similar directions, one of the 
latest examples of which being ELRA, tile Euro- 
I)ean Language Resources Association. 

The reuse of algorithmic resources remains more 
limited (Gunninghaln et al., 1994). There are a 
number of reasons for this, including: 

1. cultural resistance to reuse, e.g. mistrust of 
'foreign' code; 

2. integration overheads. 

In some respects these probleIns are insoluble 
without general changes in the way NLE research 
is done researchers will always be reluctant to 
use poorly-documented or unreliable systems as 
part of their work, for exmnple. In other respects, 
solutions are possible. They include: 

1. increasing the granularity of the units of 
reuse, i.e. providing sets of small building- 
blocks instead of large, Inonolithic systems; 

2. increasing the confidence of researchers in 
available algorithmic resources by increasing 
their reuse and the amount of testing and 
evaluation they are subjected to; 

3. separating out, the integration problems that 
are independent of the type of information 
being processed and reducing the overhead 
caused by these problems by providing a soft- 
ware architecture for NLE systems. 

Our view is that succesful algorithmic reuse in 
NLE will require the provision of support soft- 
ware for NLE in the form of a general architecture 
and development environment which is specifically 
designed for text processing systems. Under 
EPSRC 2 grant GR/K25267 the NLP group at, the 
University of Sheffield are developing a system 
that aims to implement this new approach. The 
system is called GATE - the General Architecture 
for Text Engineering. 

~The Engineering and Physical Science Research 
Council, UK funding body. 

1057 



GATE is an architecture in the sense tha t  it 
provides a common infrastructure for building lan- 
guage engineering (LE) systems. It  is also a de- 
velopment environment that  provides aids for the 
construction, testing and evaluation of LE systems 
(and particularly for the reuse of existing compo- 
nents in new systems). Section 2 describes GATE. 

A substantial  amount  of work has already been 
done on architecture for NLE systems (and GATE 
reuses this work wherever possible). Three exist- 
ing systems are of particular note: 

• ALEP (Simpkins, Groenendijk 1994), which 
turns out to be a rather  different enterprise 
from ours; 

• MULTEXT (Thompson, 1995), a different 
but largely complimentary approach to some 
of the problems addressed by GATE, partic- 
ularly strong on SGML support;  

• T I P S T E R  (ARPA, 1993a) whose architec- 
ture (TIPSTER,  1994; Grishman, 1994) has 
been adopted as the storage substructure of 
GATE, and which has been a pr imary influ- 
ence in the design and implementation of the 
system. 

See (Cunningham et al., 1995) for details of the 
relation between GATE and these projects. 

2 G A T E  

A r c h i t e c t u r e  o v e r v i e w  

GATE presents LE researchers or developers with 
an environment where they can use tools and 
linguistic databases easily and in combination, 
launch different processes, say taggers or parsers, 
on the same text  and compare the results, or, con- 
versely, run the same module on different text  col- 
lections and analyse the differences, all in a user- 
friendly interface. Alternatively module sets can 
be assembled to make e.g. IE, IR or MT systems. 
Modules and systems can be evaluated (using e.g. 
the Parseval tools), reconfigured and reevaluated 
- a kind of edi t /compi le / tes t  cycle for LE compo- 
nents. 

GATE comprises three principal elements: 

• a database for storing information about  
texts and a database schema based on an 
object-oriented model of information about  
texts (the GATE Document Manager - 
GDM); 

• a graphical interface for launching process- 
ing tools on da ta  and viewing and evaluating 
the results (the GATE Graphical Interface - 
GGI);  

• a collection of wrappers for algorithmic and 
data  resources that  interoperate with the 

database and interface and constitute a Col- 
lection of REusable Objects for Language En- 
g inee r ing-  CREOLE.  

GDM is based on the T I P S T E R  document man- 
ager. We are planning to enhance the SGML ca- 
pabilities of this model by exploiting the results 
of the MULTEXT project. 

GDM provides a central repository or server 
tha t  stores all the information an LE system gen- 
erates about  the texts it processes. All commu- 
nication between the components of an LE sys- 
tem goes through GDM, insulating parts  fi'om 
each other and providing a uniform API  (applica- 
tions programmer  interface) for manipulat ing the 
data  produced by the system. 3 Benefits of this 
approach include the ability to exploit the ma- 
turi ty and efficiency of database technology, easy 
modelling of blackboard-type distributed control 
regimes (of the type proposed by: (Boitet and 
Seligman, 1994) and in the section on control in 
(Black ed., 1991)) and reduced interdependence of 
components.  

GGI  is in development at Sheffield. It  is a 
graphical launchpad for LE subsystems, and pro- 
vides various facilities for viewing and testing re- 
sults and playing software lego with LE compo- 
nents - interactively assembling objects into dif- 
ferent system configurations. 

All the real work of analysing texts (and maybe 
producing summaries of them, or translations, or 
SQL statements,  etc.) in a GATE-based LE sys- 
tem is done by CREOLE modules. 

Note that  we use the terms module and ob- 
ject rather loosely to mean interfaces to resources 
which may be predominantly algorithmic or pre- 
dominantly data, or a mixture of both. We exploit 
object-orientation for reasons of modularity, cou- 
pling and cohesion, fluency of modelling and ease 
of reuse (see e.g. (Booch, 1994)). 

Typically, a CREOLE object will be a wrap- 
per around a pre-existing LE module or database 
-- a tagger or parser, a lexicon or n-gram index, 
for example. Alternatively objects may be devel- 
oped from scratch for the architecture - in either 
case the object provides a standardised API  to the 
underlying resources which allows access via GGI  
and I / O  via GDM. The CREOLE APls may also 
be used for programming new objects. 

The initial release of GATE will be delivered 
with a CREOLE set comprising a complete MUC- 
compatible IE system (ARPA, 1996). Some of 

h 

3Where very large data sets need passing between 
modules other external databases can be employed if 
necessary. 

1058 



the objects will be based on freely available soft- 
ware (e.g. the Brill tagger (Brill, 1994)), while 
others are derived from Sheffield's MUC-6 en- 
trant,  LaSIE 4 (Gaizauskas et al., 1996). This 
set is called V I E  a Vanilla IE system. CRE- 
OLE should expmld quite rapidly during 1996-7, 
to cover a wide range of LE I{&D components,  
but for the rest of this section we will use IE as 
an example of the intended operation of GATE. 

The recent MUC competition, the 6th, detlned 
four IE tasks to be carried out on Wall Street 
Journal articles. Developing the MUC system 
upou which VIE is based took approximately 24 
person-months,  one significant element of which 
was coping with the strict MUC output  specifica- 
tions. What  does a research group do which either 
does not have the resources to tmiht such a large 
system, or even if it did would not want to spend 
effort on areas of language processing outside of its 
particular specialism? The answer until now has 
been that  these groups cannot take part  in large- 
scale system building, thus missing out on the 
chance to test; their technology in an application- 
oriented environment and, perhaps more seriously, 
missing out on the extensive quantitat ive ewdua- 
lion mechanisms developed in areas such as MUC. 
in GATE and VIE we hope to provide an environ- 
ment where groul/s can mix and match elements 
of our MUC technology with componeuts of their 
own, thus allowing the benefits of large-scale sys- 
tems without the overheads. A parser developer, 
for example, can replace the parser sut)plied with 
VIE. 

Liceneing restrictions preclude tile distribution 
of MUC scoring tools with GATE, but Shetfield 
may arrange for evaluation of da ta  I)rodu(:ed by 
other sites. In this way, G A T E / V I E  will sup- 
port  comparat ive evaluation of LE conq)olmnts 
at a lower cost than the ARPA programmes 
(ARPA, 1993a) (partly by exploiting their work, 
of course!). Because of the relative informality of 
these evaluation arrangelnents, and as the range 
of evaluation facilities in GATE expands beyond 
the four IE task of tile current MUC we should 
also be able to offset the tendency of evaluation 
progralnnms to (lamt)en imlovation. By increasing 
the set of widely-used and evaluated NLP compo- 
nents GATE aims to increase the eonfiden(:e~ of LE 
researchers in algorithinie reuse. 

Working with G A T E / V I E ,  the researcher will 
Don, the outset reuse existing components,  I;he 
overhead for doing so being much lower than is 
conventionally the case instead of learning new 
tricks for each mo<lule reused, tile common APIs 

41~m'ge-S(:alc IE. 

of GDM and CREOLE mean only one integration 
nmchatiisih must be learnt. And as CREOLE (,'x- 
pands, more and more modules and datahases will 
be available at low cost. We hope to move to- 
wards sub-component  level reuse at some fl~ture 
point, possibly providing C + +  libraries as part  of 
all OO LE framework (Cunningham et al., 1994). 
This addresses the need for increased granularity 
of the units of reuse as noted in section 1. 

As we built our MUC system it; was often the 
case that  we were unsure of the implications for 
system performance of using tagger X instead of 
tagger Y, or gazeteer A instead of pat tern  marcher 
B. In GATE, substitution of <'omponents is a 
t)oint-and-click operation in tile GGI  interface. 
(Note that  delivered systems, e.g. EC proje, ct 
demonstrators,  can use GDM and CREOLE with- 
out GGI  see below.) This facility supports  hy- 
brid systems, ease of upgrading and open systems- 
style module inte, rchangeability. 

Of course, GATE does not; solve all the prob- 
lems involved in plugging <liverse LE modules to- 
gether. There are two barriers to such integration: 

• incompatabili ty of 7~presentation of informa- 
tion about  text and tile mechanisms for stor- 
age, rctriewJ and inter-module communica- 
tion of that  information; 

• in(:ompatability of type of information used 
and produced by different modules. 

GATE enforces a separation between these two 
and provides a solution to the former (based on 
the work of the T I P S T E R  architecture group 
(TIPSTER,  1994)). This solution is to adopt  a 
common model for expressing information about  
text, and a common storage mechanism for man- 
aging that  information, thereby cutting out s ignif  
leant parts of the integration overheads that  often 
block algorithmic reuse. Because GATE places 
no constraints on the linguistic formalisms or im 
formation content used by CREOLE objects (or, 
for that  matter ,  the programming language they 
are iinplemented in), the latter problem must be 
solved by dedicated translation functions e.g. 
tagsct- to-tagset  m a p p i n g  and, in solne cases, by 
extra  processing - e.g. adding a semantic proces- 
sor to complement a bracke, ting parser in order 
to produce, logical form to drive a discourse inter- 
preter. As more of this work is done we can expect 
the overhead involved to fall, as all results will be 
available as CIt,EOLE objects, hi the early stages 
SheflMd will provide some resources for this work 
in order to get the ball rolling, i.e. we will pro- 
vide help with CREOLEising existing syst;ems and 
with developing interface routines where practical 
and necessary. We are confident that  integration 

1059 



is possible (partly because we believe that dif- 
ferences between representation formalisms tend 
to be exaggerated) - and others share this view, 
e.g. the MICROKOSMOS project (Onyshkevych 
et al., 1994). 

GATE is also intended to benefit the LE system 
developer (which may be the LE researcher with 
a different hat on, or industrialists implementing 
systems for sale or for their own text process- 
ing needs). A delivered system comprises a set 
of CREOLE objects, the GATE runtime engine 
(GDM and associated APIs) and a custom-built 
interface (maybe just character streams, maybe 
a Visual Basic Windows GUI, ... ). The interface 
might reuse code from GGI, or might be developed 
from scratch. The LE user has the possibility to 
upgrade by swapping parts of the CREOLE set if 
better technology becomes available elsewhere. 

GATE cannot eliminate the overheads involved 
with porting LE systems to different domains (e.g. 
from financial news to medical reports). Tuning 
LE system resources to new domains is a cur- 
rent research issue (see also the LRE DELIS and 
ECRAN projects). The modularity of GATE- 
based systems should, however, contribute to cut- 
ting the engineering overhead involved. 

R e f e r e n c e s  

Advanced Research Projects Agency. 1993. Pro- 
ceedings of TIPSTER Text Program (Phase I). 
Morgan Kaufman. 

Advanced Research Projects Agency. 1996. Pro- 
ceedings of the Sixth Message Understanding 
Conference (MUC-6). Morgan Kaufmann. 

Black W.J. (ed.). 1991. PLUS - a Pragmatics- 
Based Language Understanding System, FLlnc- 
tional Design. ESPRIT P5254 Deliverable 
D1.2. 

Boguraev B., R. Garigliano, J. Tait. 1995. Edito- 
rial. Journal of Natural Language Engineering, 
Vol. 1 Part 1, Cambridge University Press. 

Boitet C., M. Seligman. 1994. The "Whiteboard" 
Architecture: A Way to Integrate Heteroge- 
neous Components of NLP Systems. Proceed- 
ings of COLING. 

Booch G. 1994. Object-oriented Analysis and 
Design 2nd. Ed. Addison Wesley. 

Brill E. 1994. Some Advances in Transformation- 
Based Part of Speech Tagging. Proceedings of 
The Twelfth National Conference on Artificial 
Intelligence (AAAI-94), Seattle, Washington. 

Cunningham H., M. Freeman, W.J. Black. 1994. 
Software Reuse, Object-Orientated Frameworks 
and Natural Language Processing. Conference 
on New Methods in Natural Language Process- 
ing, Manchester. 

Cunningham H., R.J. Gaizauskas, Y. Wilks. 1995. 
A General Architecture for Text Engineering 
(GATE) - a new approach to Language Engi- 
neering R&D. Technical Report CS - 95 - 21, 
Department of Computer Science, University of 
Sheffield. 

Gaizausl~s R.J., K. Humphreys, T. Wakao, H. 
Cunningham, Y. Wilks. 1996. LaSIE - a 
Large-Scale Information Extraction System. In 
(ARPA, 1996). 

Grishman R. 1994. TIPSTER II Architecture De- 
sign Document Version 1.52 (Tinman Architec- 
ture). TIPSTER working paper 1995, available 
at http://www.cs.nyu.edu/tipster. 

Marcus M., B. Santorini, M. Marcinkiewicz. 1993. 
Building a large annotated corpus of English: 
the Penn Treebank. Computational Linguistics 
19(2). 

Miller G.A., R. Beckwith, C. Fellbaum, D. Gross, 
K. Miller. 1993. Introduction to WordNet: an 
On-line Lexical Database. Distributed with the 
WordNet software, 1993. 

Onyshkevych B., Boyan, S. Nirenburg. 1996. Ma- 
chine Translation 10:1-2, 1996. (Special issue on 
building lexicons for machine translation.) 

Prieto-Diaz R., P. Freeman. 1987. Status Report: 
Software Reusability. IEEE Software, Vol. 4, 
No. 1. 

Prieto-Diaz R. 1993. Status Report: Software 
Reusability. IEEE Software, Vol. 10, No. 3. 

Simpkins N., M. Groenendijk. 1994. The ALE.P 
Project. Cray Systems / CEC, Luxemburg. 

Summers D. et al. eds. 1995. Longman Dictionary 
of Contemporary English, 3rd Edition. Long- 
man, Harlow. 

Thompson H. 1995. MULTEXT Workpackage 2 
Milestone B Deliverable Overview. LRE 62-050 
MULTEXT Deliverable 2. 

TIPSTER Architecture Committee. 1994. TIP- 
STER Text Phase II Architecture Concept. 
TIPSTER working paper 1994, available at 
http://www.cs.nyu.edu/tipster. 

1060 


