
Distributing and Porting General Linguistic Tools

Damien Genthial, Jacques Courtin and Jacques Men6zo
TRILAN-CLIPS, IMAG-Campus, BP 53
F-38040 GRENOBLE Cedex, FRANCE

{ Damien.Genthial Jacques.Courtin Jacques.Menezo }@imag.fr

Abstract
Our main motivation is to build general
and adaptable linguistic tools and we
have faced the problem of their
portability. We first make a quick de-
scription of the linguistic tools we have
at hand and we explain why linguistic
tools, unlike other software tools, present
pmticular portability problems. We then
discuss code portability and also data
portability and we describe the method
we have used for a French lexicon,
showing that portability leads to a more
"natural" computational lexicon. We
then propose the use of a command
language to interface the tools with more
complex applications and we show that
this technique facilitates integration of
tools from various sources, entails a
better exploitation of linguistic resources
and makes easier the distribution of tools
on several machines.

1. Introduction
Our main motivation is to build general and
adaptable linguistic tools and we have filced
the problem of portability of these tools. The
problem has raised sharply when we decided to
implement a distributed version of the tools.
The idea is to have bricks to build complex
linguistic systems and to make possible, and
easy, communication between bricks. We have
three points in mind:
• integration of tools lYom various sources:

the linguistic system must not know the
details of the interred architecture of the
tools it uses, so it should be easier to
substitute one tool by another (for example
you can easily change the morphological
parser);

• better exploitation of linguistic resources by
embedding them in very general tools;

• possibility of a distribution on several
machines of a net, allowing tools to be
shared by several users (and thus the cost
can also be shared).

After a quick description of the tools we
imve at hand, we will explain why linguistic
tools, unlike other software tools, present

particular portability problems. We will then
discuss the user interface portability and we
will propose a simple method which, making
this portability easier, is also a good way
towards d is t r ibuted tools and easy
communication between them.

2. Linguistic tools at hand and
motivation
We have a complete morphological system
based on a general finite state transducer. Its
main characteristics are its reversibility (the
same data are used for parsing and generating)
and its adaptability (the system includes editors
which permit easy and interactive modification
of the data). This system is operational on PC
and Macintosh architecture with a real size
French lexicon, but switching from one
architecture to the other is a painful process,
mainly because switching the system also
implies switching the lexicon (see next:
section).

We also have three lexical correctors: one
based on similarity keys, another on phonetics
and a third, more original, which correct
flexional errors in French. All these tools are
operational on PC architecture only.

Finally, we have two syntactic parsers which
build dependency structures. One is based on
the notion of dependency relations and is very
fast but has a limited power of expression. The
other uses typed-feature structures to increase
this power but pay the bill with slower parses.
Both works on PC and Macintosh.

The interesting point comes when we de-
cided to make all these tools available on Unix
systems. The goal is to gain flexibility and
power by a distribution of the linguistic tools
in a client/server architecture. With such an
architecture, tools are more easy to use and are
sharable among applications. For example, as
p roposed by (Gen th ia l , 1994) a
phonetic/graphic transducer which implements
a lexical correction, can also be used in a
syntactic corrector to determine the most
probable correction. Tools can also be
dispatched on difl)rent machines, such that
one can, for example, write on his PC or Mac
and use the linguistic tools of a Unix server.

So the problem to solve looks like a soft-
ware engineering one: we have a lot of code,

1053

written in different programming languages on
two different machines, and we want to
implement it on a new architecture. But we
have add a more heavy constraint: we want that
code and data obtained on the new architecture
(Unix) can easily - - by easily we mean in only
a few minutes - - be put back on the other ones
(Mac and PC).

3. Code and data portability
Code portability is not specific to computa-
tional linguistics, it is a well known problem in
the software engineering domain, but im-
plementing a linguistic application means also
implementing an important amount of data
and thus raise the problem of data portability.
Considering morphological level for example,
implies coding a lexicon including words with
the i r c a t ego ry , the i r m o r p h o l o g i c a l
properties Categories and properties are
symbols chosen by the linguist and he can
• always choose symbols which can be expressed
in the same way on different machines, and
thus be portable. But words are character
strings, coded with the character set of the
machine used and so the portability of the
word list rely upon the portability of this
character set. The ASCII character set, which is
the basic set on almost every machine, is fully
portable but it does not contain every character
of every natural language: using the French
or a~ or q implies the use of an extended
character set which is not portable.

After a small discussion on code portability,
we will present a method to achieve data
portability.

3.1. Code
Code portability is heavily tied with the
programming language used for writing pro-
grams: the more portable is the language, the
more portable is the code. That is the reason
why we had chosen the Pascal programming
language in the early 70's : the language was
well defined and we used only the standard
features. But the language has evolved and the
evolution leads to incompatibility between
versions.

On the contrary, the C language has been
standardised in 1989 by the ANSI and we can
now speak of a real portability of code from
one architecture to another. We have then
chosen to use C and the biggest part of
rewriting Pascal units to C modules has been
achieved by a Pascal to C translator.

But one problem remains: we want to put
back the C translation on the original machine
with minimal work, and the original code
includes a user interface with pull-down menus
and dialogues which are impossible to translate

as is. So we have made an effort to cut the C
version in two parts:
• the user interface, which is heavily un-

portable and must be rewritten on every
machine (see section 4 for a discussion on
interface portability);

• the tool kemels, written in strict ANSI-C.

Thanks to the l anguage standard, the
kernels (about 8000 lines of code) have been
compiled, without changing even a comma, on
Macintosh, PC and two different Unix
machines.

3.2. Data
Two kinds of data may be used in linguistic
applications: textual data and binary data.
Most of them are textual because they can
easily be printed, displayed and modified with
the standard tools of the host system. But
sometimes you need to compile data to gain
efficiency: the application becomes faster and
use less disk space.

Binary data in linguistic applications are for
example integers, bit vectors coding properties,
floating-point numbers coding statistics and so
on. Their portability is not a real problem
because one can easily translate them in textual
form on the original machine, put this form on
the target machine, and compile them back.

As said before, portability of textual data
rely upon portability of the character set, so
using ASCII set ensures a great portability but
forbids writing special characters. Such special
characters are all French accented letters (d, 4,
~, d, ~) which can be coded (and typed) on
every machine but the codes are different from
one machine to another. Moreover, all special
character codes are above the ASCII maximal
code and this entails a disturbing side effect:
when sorting words of a lexicon you get all
words starting with an accented letter at the end
of the list (see example on Figure 1).

errer
oui

outre
oui"e
vent

6rudit
8ter

Figure 1 : Sorted accented strings on a PC

When the lexicon is big enough, the word
~rudit is far from errer, which is computa-
tionally sounded but unacceptable for the
common user.

We have then defined an internal code for
special characters based on the ASCII
character set. The code is a reduced version of
one defined by GETA in (Boitet, 1982) an
accented letter is coded with the letter without

1054

accent, a vertical bar, and a number cor-
responding to the accent (see examples on
Figure 2) I.

---> a12
a---> a13
6--> ell

--~ el2
---> el3

Figure 2 • Examples o f the code for accented
characters

All textual data are then comple te ly
portable provided that source and target
machines use ASCII. But there are two
drawbacks: you can not ask the user to learn
this code and .you can not use the standard
string comparing functions. For the first
problem, we simply write two procedures: one
for reading strings and one for writing. Their
purpose is to translate from one representation
to the other such that the user has no need to
know the internal code: he can type special
letters as usual on his keyboard. For the
second, the solution is to write our own
comparing function, which is not so difficult
and have an advantage: we can implement a
"natural" order on words (the order used in
paper dictionaries). We then obtain a human
sounded order which can also have a
c o m p u t a t i o n a l advan tage in co r rec t ion
systems. Consider for example the four French
words cote, cote, cotd and cOtO: their proximity
in the lexicon is a guarantee for a corrector to
find the correction if one is used for the other,
guarantee that you cannot have with the
preceding order (765 root words between the
roots co t e and cOt6 in our French root
dictionary, which contains a total of 35 000
roots).

With this code, we get textual portability of
data and a natural dictionary order which is
preserved on all machines where the dictionary
is implemented.

4. Dr iv ing tools with a
command language
Once you have achieved the portability of
your software kernels, you are faced the
portability of the user interfaces. Here you
have two choices:

1. write portable interfaces by using very
simple textual interactions with the user so
that you can write the code in ANSI-C;

I The code defined by the Text Encoding Initiative
(Sperberg, 1994), derived from SGML, is usable for
electronical transfer, but a little cumbersome for a
lexicon which might contains as much as 200 or 300
thousands words

2. write a modem interface, heavily tied with
the graphical interface of the host machine,
and partially or completely rewrite it each
time you want to implement it on a new
architecture.

We have chosen to proceed in two steps:

• first make the first choice even if we get a
very poor user interface, not acceptable on
modem graphic computers; such interfaces
are very easy to write and permit at least to
debug the tools.

• then make the second choice, try to
minimise the rewriting cost and, moreover,
to make the kernels comple t e ly in-
dependent of the interface.

To minimise the rewriting cost, we use a
graphical library which is freely available and
portable from one machine to another.

To make the kernels completely indepen-
dent of the interface, we propose to have a user
in ter face which is s t r ic t ly l imi ted to
communications with the user. The architec-
ture is a client/server one, where the user in-
terface (the client) calls the kernels (the
servers) for linguistic treatments (see Figure 3).

CLI: Command Language Interface

User
interface

Morphological
Parser

Similarity Key]
Correction

Morphological
Generator

Phonetic/Graphic
Transducer

Editors

Figure 3 : Distributed Architecture with
separated user interface

You can imagine as much clients as you
need, for example:

• one for a lemmatiser which calls only the
morphological parser and generator;

• one, more c o m p l e x , for a de tec-
tion/correction system, which uses all tools
to produce correction of lexical errors;

1055

• one, with pull-down menus and windows,
devoted only to the editors (modification of
the lexicons, of the linguistic data,...).

Of course, all interfaces are sharing the
tools with the others and it must be easy to add
a new tool to an interface (for example a new
correction method) or to substitute a given tool
by an other (one can change the
phonetic/graphic transducer to get an im-
proved version).

To obtain this flexibility and to make pos-
sible the distribution of tools (on the same
machines or on all a net), we propose, as
(Boitet, 1994) in the white-board architecture,
to add a manager on each module. Our
manager take the form of a textual command
language which is used to drive the module
(Antworth, 1990) has used such a command
language interface in PC-KIMMO.

The general form of a command would be the
following:

verb(arg I = > paraml;

arg 2 = > param2;
,..)

where verb is the command and where arg i
and param i are respectively the names and
the values of its parameters.

Parameter values could be integers, lloating
point numbers, booleans, objects (denoted with
the same syntax as a command), or a list of the
preceding.

Examples:
Parse (string => "to_be_parsed")

Generate (
word => "aimer";
filter => filter(

category => "verb";
variables => ["present",

"singular",
"3 rd_person"])

List (dictionnary => "dict name")

Add dictionnary(word => "to_add";
like => "paradigm")

Each tool must be build on the same frame:
it reads only from one input stream (its
standard input) and write to only one output
stream (its standard output) and the main
algorithm is an interprcter.

Using such a command language interface
entails 4 main advantages:
• it can be used as the only (but rough) in-

terface for a given tool;

• you can write programs in this language
and thus automate the use of the tool;

the interpreter does not use machine
specific feature so the entire tool can be
written in strict ANSI-C and thus be heavily
portable (without changing a comma);
connecting the tool to a more sophisticated
interface program is very easy: it requires
only the ability of passing text from one
application to the other. You can for
example put a morphological parser on a
machine such that it can be called by
electronic mail: you send the string to be
parsed in a mail and the answer contains the
words, with their category and properties.

5. Conclusion
We have used the portability frame presented
in this paper for the main tools of our system:
a morphological parser and a morphological
generator, which use a root and endings
lexicon to parse or generate about 250 000
French forms. The lexicon must be un-
compiled and compiled back when porting
from Mac to PC but the whole process does
not take more than a dozen minutes. On the
contrary, thanks to the similarity in their
architectures, the same lexicon can be used on
Mac and on Unix machines.

Concerning the code, we have now portable
versions of the tools mentioned above, plus a
lexical desambiguer and a lexical correcter
using similarity keys. We are able to deliver
libraries for these tools (and their data for
French) on Mac, PC and Unix.

References
E.L. Antworth (1990). PC-KIMMO : A Two-

level Processor lor Morphological Analysis,
Summer Institute of Linguistics, Dallas,
Texas.

Christian Boitet (1982). Le point sur ARIANE-
78. Rapport ADI 81/423, GETA-
Champollion et CAP SOGETI France,
Grenoble.

Christian Boitet and Marc Seligman (1994).
The "white-board" architecture: a way to
integrate heterogeneous components of
NLP systems. CoLing'94, Kyoto, Japan,
August 94, Vol. 1, pp 426-430.

Damien Genthial and Jacques Courtin (1994).
Towards a More User-Friendly Correction.
CoLing'94, Kyoto, Japan, August 94, pp
1083-1088.

C.M. Sperberg-McQueen and L. Burnard
(1994). Guidelines for Electronic Text
Encoding and Interchange. in press,
Chicago and Oxford.

1056

