Motivations and Methods for Text Simplification

R. Chandrasekar*
Institute for Rescarch in
Cognitive Science & Center for
the Advanced Study of India

Christine Doran
Department of
Linguistics

B. Srinivas
Department of
Computer &
Information Science

University ol Pennsylvania, ’hiladelphia, PA 19104
{mickeyc,cdoran,srini}@linc.cis.upenn.edu

Abstract

Loug and complicated sentences prove to be
a stumbling block for current systems rely-
ing on NI, input. These systems stand to
gain from methods that syntactically siin-
plifty such scentences. 'To simplify a sen-
tence, we need an idea of the structure of
the sentence, to identify the components to
be scparated out. Obviously a parser could
be used to obtain the complete structure of
the sentence. However, full parsing is slow
and proue to failure, especially on complex
sentences. In this paper, we consider two
alternatives to full parsing which could be
used for simplification. "T'he first approach
uses a I'inite State Grammar (FSG) to pro-
duce noun aud verb groups while the second
uses a Supertagging model to produce de-
pendency linkages. We discuss the impact of
thesc two input representations on the sim-
plification process.

1 Reasons for Text Simplification

Long and complicated sentences prove to be a
stumbling block for current systems which rely on
natural language input. These systems stand to
gain from methods that preprocess such sentences
s0 as to make them simpler. Consider, for exam-
ple, the following sentence:

(1) The embattled Major government survived a
cruciel vote on coal pits closure as its
lust-minuie concessions curbed the extent of
Tory revoll over an issue that generaied
unusual heat in the House of Commons and
brought the miners lo London streels.

Such sentences arc not uncominon in newswire
texts. Compare this with the multi-sentence ver-
sion which has been manually simplified:

(2) The embatiled Major government survived a
cructal vole on coel pits closure. Its
last-minute concessions curbed the extent of

*On lcave from the National Centre for Software

I'echnology, GGulmohar Cross Road No. 9, Juhu,

Bombay 400 049, India

Tory revolt over the coal-mine issuc. This
wssue generated unusual heat in the House of
Commons. Il also brought the miners to
London strects.

I complex text can be made simpler, sen-
tences become easier o process, hoth for pro-
grams and humans. We discuss a simplifica-
tion process which identifies components of a sen-
tence that may be separated out, and transforms
cach of these into frec-standing simpler sentences.
Clearly, some nuances of meaning from the origi-
nal text may be lost in the simplification process.
Simplification is therefore inappropriate for texts
(such as legal documents) where it is important
not to lose any nuance. lowever, one can con-
cetve of several areas of natural language process-
g where such sunplification would be of great
use. This is especially true in dormatns such as ma-
chine translation, which commonly have a manual
post-processing stage, where scmauntic and prag-
matbic repairs may be carried out if neccssary.

e Parsing: Syntactically complex sentences are
likely o gencrate a large number of parses,
and may cause parsers to fail altogether. Re-
solving ambiguitics in attachment of con-
stituents is non-trivial. 'This ambiguity is re-
duced for simpler sentences since they involve
fewer constituents. 'Thus simpler sentences
lead to faster parsing and less parse ambigu-
ity. Once the parscs for the simpler sentences
are obtatned, the subparses can be assembled
to Torm a full parse, or left as is, depending
on the application.

e Machine Iranslation (M'I'): As in the pars-
ing case, simplification resulls in simpler sen-
tential structures and reduced ambiguity. As
argued in (Chandrasekar, 1994), this could
lead to improvements in the quality of ma-
chine translation.

e Information Retrieval: 1R systems usually re-
trieve large segments of texts of which only a
part may be relevant., With sunplified texts,
it is possible to cxtract specific phrascs or
simple sentences of relevance in response to
queries.

1041

e Summarization: With the overload of infor-
mation that pcople face today, it would be
very helpful to have text summarization tools
that reduce large bodies of text to the salient
minimum. Simplification can be used to weed
out irrelevant text with greater precision, and
thus aid in summarization.

e Clarity of Text: Assembly/use/maintenance
manuals must be clear and simple to follow.
Aircraft companies use a Simplified English
for malintenance manuals precisely for this
reason (Wojeik et al., 1993). However, it
iIs not easy to create text in such an artifi-
cially constrained language. Automatic (or
semi-automatic) simplification could be used
to ensure that texts adhere to standards.

We view simplification as a two stage process.
The first stage provides a structural representa-
tion for a sentence on which the second stage ap-
plies a sequence of rules to identify and extract the
components that can be simplified. One could use
a parser to obtain the complete structure of the
sentence. If all the constituents of the sentence
along with the dependency relations are given,
simplification is straightforward. However, full
parsing is slow and prone to failure, especially on
complex sentences. To overcome the limitations of
full parsers, resecarchers have adopted I'SG based
approaches to parsing (Abney, 1994; Hobbs et al.,
1992; Grishman, 1995). These parsers are fast
and rcasonably robust; they produce sequences
of noun and verb groups without any hierarchical
structure. Section 3 discusses an FSG based ap-
proach to simplification. An alternative approach
which is both fast and yields hierarchical struc-
ture is discussed in Section 4. In Section H we
compare the two approaches, and address some
general concerns for the simplification task in Sec-
tion 6.

2 The Basics of Simplification

Text simplification uses the fact that complex
texts typically contains complex syntax, some of
which may be particular to specific domain of dis-
course, such as newswire texts. We assume that
the simplification system will process one sentence
at a time. Interactions across sentences will not be
considered. We also assume that sentences have
to be maximally simplified.

To simplify sentences, we neced to know where
we can split them. We define articulation-points
to be those points at which sentences may be log-
ically split. Possible articulation points include
the beginnings and ends of phrases, punctuation
marks, subordinating and coordinating conjunc-
tions, and relative pronouns. These articulation
points are general, and should apply to arbitrary
English texts. These may, however, be augmented
with domain-specific articulation points. We can

use these articulation-points to define a set of rules
which map from given sentence patterns to sim-
pler sentences patterns. 'These rules are repeat-
cdly applied on each sentence until they do not
apply any more. For example, the sentence (3)
with a relative clause can be simplified into two
sentences (4).

(3) Talwinder Singh, who masterminded the
Kanishka crash in 1984, was killed in «a
fierce two-hour encounter . ..

(4) Talwinder Singh was killed in a fierce
two-hour encounter ... Talwinder Singh
masterminded the Kanishka crash in 1984.

3 FSG based Simplification

(Chandrasekar, 1994) discusses an approach that
uses a IF'SG for text simplification as part of
a machine aided translation prototype named
Vaakya. In this approach, we consider sentences
to be composed of sequence of word groups, or
chunks. Chunk boundaries are regarded as poten-
tial articulation-points. Chunking allows us to de-
fine the syntax of a sentence and the structure of
simplification rules at a coarser granularity, since
we need no longer be concerned with the internal
structure of the chunks.

In this approach, we first tag each word with its
part-of-speech. Chunks are then identificd using a
I'SG. Each chunk is a word group consisting of a
verb phrase or a noun phrase, with some attached
modifiers. The noun phrase recognizer also marks
the number (singular/plural) of the phrase. The
verb phrase recognizer provides some information
on tense, voice and aspect. Chunks identified by
this mechanism include phrases such as the extent
of Tory revolt and have recently been finalized.

The chunked sentences are then simplified using
a set of ordered simplification rules. The ordering
of the rules is decided manually, to take care of
more frequent transformations first, and to avoid
unproductive rule interaction. An example rule
that simplifies sentences with a relative pronoun
is shown in (5).

(5) X:NP, RelPron Y, Z — X:NP Z. X:NP Y.

The rule is interpreted as follows. If a sentence
starts with a noun phrasc (X:NP), and is followed
by a phrasc with a relative pronoun, of the form
(, RelPron Y ,) followed by some (Z), where
Y and Z are arbitrary sequences of words, then
the sentence may be simplified into two sentences,
namely the sequence (X) followed by (2), and (X)
followed by (Y). The resulting sentences are then
recursively simplified, to the extent possible.

The system has been tested on news text, and
performs well on certain classes of sentences. Sece
(Chandrasekar and Ramani, 1996) for details of
quantitative evaluation of the system, including
an evaluation of the acceptability of the resulting

1042

sentences. A set of news storics, consisting of 224
sentences, was simplified by the prototype system,
resulting in 369 simplified sentences.

However, there are certain weaknesses in this
systemn, caused mostly by the relatively simple
mechanisms used to detect phrases and attach-
ments. Sentences which include long distance
or crossed dependencies, and sentences which
have multiply stacked appositives are not handled
properly; nor are sentences with ambiguous or un-
clear attachments. Some of these problems can be
handled by augmenting the rule sct but what is
really required 1s more syntactic firepower.

4 A Dependency-based model

A sccond approach to simplification is to use
richer syntaclic information, in terms of both con-
stituency information and dependency informa-
tion. We use partial parsing and simple depen-
dency attachment techniques as an alternative to
the I'SG based simplilication. This model (the
DSM) is based on a simple dependency repre-
sentation provided by Lexicalized Tree Adjoining
Grammar (KTAG) and uses the “superlagging”
techniques described in (Joshi and Srinivas, 1994).

4.1 Bricf Overview of LTAGs

The primitive elements of T'AG formalism are el-
cmentary trees. Dlementary trees are of two
types: ndlial trees and auziliary irces. Initial
trees are minimal linguistic structures that con-
tain no recursion, such as simple sentences, NPs,
PPs ete. Auxiliary trees are recarsive structures
which represent constituents that are adjuncts to
basic structure (e.g. relative clauses, sentential
adjuncts, adverbials). For a more formal and de-
tailed description ol I/I'AGs sec (Schabes et al.,

1988).

4.2 Supcrtagping

The elementary trees of TAG localize dependen-
cies, Including long distance dependencies, by re-
quiring that all and only the dependent elements
be present within the same tree. As a result of
this localization, a lexical item may be (and al-
most always is) associated with morce than one cl-
cmentary tree, We call these clemientary trees su-
pertags, since they contain more information (such
as subcalegorization and agreement information)
than standard part-of-speech tags. Ilence, each
word 1s associaled with more than one supertag.
At the end of a complete parse, cach word is asso-
cialed with just one supertag (assuming there is
no global ambiguity), and the supertags of all the
words in a sentence are combined by substitution
and adjunction.

As in standard part-of-specch disambiguation,
we can use local statistical information in the form
of N-gram models based on the distribution of su-
pertags in a L'TAG parsed corpus for disambigua-

tion. We use a (rigram model to disambiguate the
supertags so as Lo assign onc supertag for each
word, in a process termed supertagging. ‘The tri-
gram model of supertagging is very efficient (in
linear time) and robust (Joshi and Srinivas, 19941).

To cstablish the dependency links among the
words of the sentence, we exploit the dependency
information present in the supertags. lSach su-
pertag associated with a word allocates slots for
the arguments of the word. These slots have a
polarity value retlecting their orientation with re-
spect to the anchor of the supertag. Also asso-
ciated with a supertag 1s a list of internal nodes
(including the root node) that appear in the su-
pertag. Using this information, a simple algo-
rithm may be used to annotate the sentence with
dependency links.

4.3 Simplification with Dependency links

The output provided by the dependency analyzer
not only contains dependency links among words
but also indicates the constituent structure as en-
coded by supertags. The constituent information
is used to identify whether a supertag contains a
clausal constituent and the dependency links are
used to identify the span of the clause. Thus,
cmbedded clauses can casily be identified and ex-
tracted, along with their arguments. Punctuation
can be used to identify constituents such as appos-
itives which can also be separated out. As with
the finite-state approach, the resulting scgments
may be meomplete as independent clauses, 11 the
segments are 1o he reassembled, no further pro-
cessing need be done on them.

Iigure 1 shows a rule for extracting relative
clauses, in dependency notation. We first iden-
tify the relative clause tree (4), and then extract
the verhb which anchors 1t along with all of its de-
pendents. The right hand side shows the two re-
sulting trees. The gap in the relative clause (Y)
need only be filled if the clauses are not going to
be recombined. Examples (6) and (7) show a sen-
tence before and after this rule has applied.

X:S
7’8

> X:S

Y:NP Y:NP W

Y:NP W

Z:RelClause

Figure 1: Ruale for extracting rclative clauses

(6) ...an issuc [that generated unusual heat
in the House of Commons | ...

(7) An issue [generated unusual heat in the
ouse of Commons |. The issue ...

1043

5 Evaluation

The objective of the evaluation is to examine the
advantages of the DSM over the FSG-based model
for simplification. In the FSG approach since the
input to the simplifier is a set of noun and verb
groups, the rules for the simplifier have to identify
basic predicate argument relations to ensure that
the right chunks remain together in the output.
The simplifier in the DSM has access to infor-
mation about argument structure, which makes
it much easier to specify simplification patterns
involving complete constituents. Consider exam-
ple §,

(8) The creator of Air India, Mr. JRD Tata,
believes that the airline, which celebrated 60
years today, could return to its old days of
glory.

T'he FSG-based model fails to recognize the rel-
ative clause on the embedded subject the airline
in example (8), because Rule 5 looks for matrix
subject NPs. On the other hand, the DSM cor-
rectly identifies the relative clause using the rule
shown in IMigure 1, which holds for relative clauses
in all positions.

Other differences are in the areas of modifier at-
tachment and rule generality. In contrast to the
DSM approach, the FSG output does not have all
modifiers attached, so the bulk of attachment de-
cisions must be made by the simplification rules.
The FSG approach is forced to enumerate all pos-
sible variants of the LHS of each simplification
rule (eg. Subject versus Object relatives, singular
versus plural NPs) whereas in the DSM approach,
the rules, encoded in supertags and the associated
constituent types, are more general.

Preliminary results using the DSM model are
very promising. Using a corpus of newswire data,
and only considering relative clause and apposi-
tive simplification, we correctly recovered 25 out
of 28 relative clauses and 14 of 14 appositives. We
generated 1 spurious relative clause and 2 spuri-
ous appositives. A version of the I'SG model on
the same data recovered 17 relative clauses and 3
appositives.

6 Discussion

Simplification can be used for two general classes
of tasks. The first is as a preprocessor to a full
parser so as (o reduce the parse ambiguity for the
parser. The second class of tasks demands that
the output of the simplifier be free-standing sen-
tences. Maintaining the coherence of the simpli-
fied text raises the following problems:

e Determining the relative order of the simpli-

fied sentences, which impacts the choice of

referring expressions to be used and the over-
all coherence of the text.

e Choosing referring expressions: For instance,
when separating relative clauses from the
nouns they modify, copying the head noun
into the relative clause is simple, but leads
to quite awkward sounding texts. However,
choosing an appropriate pronoun or choosing
between definite and indefinite NPs involves
knowledge of complex discourse information.

e Selecting the right tense when creating new
sentences presents similar problems,

e No matter how sophisticated the simplifica-
tion heuristics, the subtleties of meaning in-
tended by the author may be diluted, if not
lost altogether. For many computer appli-
cations, this disadvantage is outweighed by
the advantages of simplification (i.e. gains of
speed and/or accuracy), or may be corrected
with the use of human post-processing.

Acknowledgements

This work is partially supported by NSI grant NSF-
STC SBR 8920230, ARPA grant N00014-94 and ARO
grant DAAH04-94-(G0426.

References

Steven Abney. 1994. Dependency Grammars and
Context-IFree Grammars., Manuscript, University
of Tubingen, Maxch.

R. Chandrasekar and S. Ramani. 1996. Auto-
matic Simplification of Natural Language 'Text.
Manuscript, National Centre for Software Technol-
ogy, Bombay.

R. Chandrasekar. 1994. A Hybrid Approach to Ma-
chine Translation using Man Machine Communica-
tion. Ph.D. thesis, Tata Institute of Fuudamental
Research/University of Bombay, Bombay.

Ralph Grishman. 1995. Where’s the Syntax? The
New York University MUC-6 System. I[n Procced-
ings of the Sizth Message Understanding Confer-
ence, Columbia, Maryland.

Jerry Hobbs, Doug Appelt, John Bear, David Israel,
and W. Mary Tyson. 1992. FASTUS: a system for
extracting information from natural langnage text.

Technical Report 519, SRI.

Aravind K. Joshi and B. Srinivas. 1994. Disam-
biguation of Super Parts of Speech (or Supertags):
Almost Parsing. In Proceedings of the 17" Inter-
national Conference on Computational Linguistics

(COLING ’94), Kyoto, Japan, August.
Yves Schabes, Anne Abecillé, and Aravind K. Joshi.

1988. Parsing strategies with ‘lexicalized’ gram-
mars: Application to I'tce Adjoining Grammars.
In Proceedings of the 12'" International Conference
on Computational Linguistics (COLING’88), Bu-
dapest, Hungary, Augnst.

Richard II. Wojcik, Philip Harrison, and John Bremer.
1993. Using bracketed parses to evaluate a gram-
mar checking application. In Proceedings of the 31°
Conference of Association of Computational Lin-
guistics, Ohio State University, Columbus, Ohio.

1044

