
C o m p u t i n g P h r a s a l - s i g n s in H P S G pr ior to P a r s i n g

K e n t a r o T o r i s a w a a n d a u n ' i c h i T s u j i i
l) c i) a r t m e n l ; of I n f o r m a t , ion S(:icncc, U n i v e r s i t y of T o k y o ,

l t o n g o 7-3-1, B u n k y o - k u , T o k y o , 113, J a p a n
{ t o r i s a w a , t s u j i i } 0 i s . o . u - ' c o k y o . a c . j p

Abstract
This t)ai)er deseril)es techniques to com-
pile lexical entries in I IPSG (Pollard and
Sag, 1.987; Poll;ml and Sag, 1993)-style
g rammar into a set of finite state au-
tomata. The states in automat~L are
possible signs derived fl'om h',xical en-
tries and contaili information raised fl'om
the lexical entries. The automatt~ are
augmented with feature structures use(l
by a partial unification routine and de-
layed/frozen definite el;rose programs.

1 introduction
Our aim is to 1)uild an e, fli(:ient and robust]tl)SG -
based parser. I IPSG has 1)(;eu re, gar(led as a so-
phisticated but fl:;tgile and inettieient ff~mwwork.
However, its principle-based al'(:hitecture enables
a parser to handle real world texts only by giv-
ing concise core grammar, including principles and
templates for lexicM entries, d e f a u l t l ex ica l en-
t r ies(Horiguchi et al., 1995). The architecture is
different fl'om those of eonvelltional unification-
l)t~sed ff)rmMisms which require hundreds of CFG
skelet;ons to t)arse real world texl;s.

However, tiles(', design prin(:il)les of l l I 'SG have
draw-backs in parsing cost. Tha t is, signs/feature
structures corresponding ~o non-termillal symbols
ill CFG become vi,sible, only after applying t)l'inci-
p ie s a l l d ~t t)&rs0r h a s t o Cl'e~4te ~(;&tlIl;C s t l ' I lCt l l leS
()lie by one using unification.]in addition, identity
checking of non-terlninM symbols used to elimi-
nate spurious signs must be replaced with sub-
sumption checking, which flHther detcrior~tes ef-
fi('ien(:y.

Our g rammar eompih',r COlnputes skeleta.l 1)~rt
of possible phrasal-signs froln individual h!xical
enl;l'ies prior to parsing, and generates a set of
finite state au tomata from h'~xical entries to ;tvoid
the above draw-I)acks. We call this operation Oil-
l ine r a i s ing and an automaton thus generated is
called a Lex iea l E n t r y A u t o m a t o n (LA) . its
states corresponds to 1)art of sigl,s and each tran-
sition between stales (;orrespon(ls to at)plication of
a ru le s c h e m a , which is a nonqexical comt)onent
of grammar.

Our parsing algorithm adopts a two-i)hased
l/arsing method.

P h a s e 1] iot tom-up (:hart-like 1)~rsing with LAs.

Ilewriting lt,ule:
MOTIIEI{([1]), IIEAI)-I)TR ([81) NON-IIEAt)-I)TI~([S])
FS:

sign
[' 't t

S y l l b;I I }) C ~)a,

content[4]
scm iIKlices [3]

, ~ .]
1 l-dr,, [s] '~Y" [.~,l,,:~,: (,~ rl>

S(! l l l i n d i c e s

indices] J

goals arg2 2
arg2
fl ' (! t!z(~

Figur(' 1 : AlL e.xalnph; of a rule s(:hema.

P h a s e 2 Computing part of feature, structures
which cannot l)e (:omputcd at (;oml)ile-tinm.

We call tile tbature structures that are repre-
sented as states in automa,t;~ mtd are COml)uted
at conlpih>time C o r e - s t r u c t u r e s , and the fca-
tllre strllCtlll'es whi(;h are t;o l)e (:Olnl)ut, ed in Phase
2, S u b - s t r u c t u r e s . In l)h~sc 1 parsing, t~ (:ore-
si, ructme. (:orr(,spond to a state in an] ,A. The cost
of comt)uting sub-structures at Phase 2 is inin-
imized by D e p e n d e n c y A n a l y s i s mM P a r t i a l
Un i f i ca t i on .

Tile next section describes rule schcmtm~, cen-
tral eompouents of the. formalism, and gives ~ def-
inition of Definite Clause Programs. Section 3 de-
scribes how to obtain LAs h'om lexical entries and
how to perform the Phase i p;~rsing. Section 4 ex-
plMns the Phase 2 Parsing algorithm. A parsing
exmnple is ln'es(;iLted in Section 5. The effective-
ness of our method is exeinplified with a series (117
eXl)eriments in Section 6.

2 Rule Sch(:nmta and Definite
C l a u s (; l) r o g r a m s

Our fonmdism has only one type of compolmnt
g-tS llOll-10xic&l (;ollll)Ollellt,q o f ~ r a l l l l n a r , i .e . , ru le
s c h e m a t a . I An example is showll in Figure 1. A
ruh' s(:henl;~ consists of the following two items.

Ih l ()Ill' cilrr(!ilt, sysLeil/~ rill(', s(;h(2mltt~ ~l'('. goltc.r-
i~t('.(1 froul principh,.s and rewriting rules ~m(:ording (;c)
;L SlmCifical, ion given by ~ progr~mmter.

9 4 9

r u l e (R) a rewriting rule without specific syntac-
tic categories;

f s (R) a feature structure.

A characteristic of HPSG is in the flexibility
of principles which demands complex operations,
such as append or subtraction of list-value feature
structures. In our formalism, those operations are
treated by a Definite Clause Program. A DCP can
be seen as a logic program language whose argu-
ments are feature structures. An auxiliary term, a
query to a DCP augmenting a rule schema, is em-
bedded in a feature structure of a rule schema as
the value of goa l s . The rule schema in the exam-
pie has an auxiliary term, append([1], [2], [3]).

The bot tom-up application of the rule schema
R is carried out as follows. First, two daugh-
ter signs are substituted to the HEAD-DTP~ position
and NOR-HEAD-DTI~ position of the rewriting rule
rule(R). Then, the signs are unified with the
h e a d - d t r value and the n o n - h e a d - d t r value of
the feature structure of the schema, f s (R) . Fi-
nally, the auxiliary term for DCPs given in the
schema is evaluated•

Our definition of a DCP has a more operational
flavor than that given by Carpenter(Carpenter ,
1992)• The definition is crucial to capture the cor-
rectness of our method. 2

D e f i n i t i o n 1 (D C P) A definite clause program
(DCP) is a finite set of feature structures, each of
which has the following form.

goals (HI 1-13) J
n e x t - s t e p s [g o a S s (1~o, B1 , ' ' ' , ~ , [1])]

a where 0 <_ n and H, Bo," • •, B,~ are feature struc-
tures.

A feature structure of the above form corre-
sponds to a clause in Prolog. H, B 0 , . . . , B ~ cor-
responds to literals in Prolog. H is the head and
B o , " ' , B,~ are literals in the body of a clause.

D e f i n i t i o n 2 (E x e c u t i o n of D C P) Execution
of a DCP P for the query,

C2~e~y = [go~Ss (qo, q~,'" qz)]

is a sequence of unification,

Query U rl U r2 U . . . U r n

where ri = [(n e x t - s t e p s) i-1 Ci], C, ¢ P or
Ci = [g o a l s 0]. / f the execution is terminated,
C~ must be unifiable wi th[g o a l s ()]. In this
case, we call the sequence (r l , ' " , r ,~} a r e s o l u -
t i o n s e q u e n c e .

2Though, through the rest of the paper, we treat
the definition as if it were used in an actual implemen-
tation, the actual implementation uses a more efficient
method whose output is equivalent with the result ob-
tained by the defiifition.

a (H0, . - ' , H~, [1]) is an abbreviation of

r e s t " ' r e s t [1]

E21[• N
~,bcat 0

My colleague

[sig,! ~d]
S 2 maJ

subcat (

'ql ms.) V
subcat ([2]NP)

ln~i
sutJcat (~

m a j V

subcat ([lJNI',
[2]NP)

wrote a good paper

Figure 3: A parsing example

(n e x t - s t e p s) i-1 [goa l s of QueryHrl Hr2 H. • • H
ri represents the goals which are to be solved in
the steps following the i-th step. The goals are
instantiated by the steps fi'om the first one to i-th
one, through structure sharings. The result of ex-
ecution in a Prolog-like sense appears in the query,
Figure 2 is an example of execution for the query

a p p e n d ([a] , [b] ,X) , whose definition is based
on a s tandard definition of append in Prolog.

Given this definition of DCPs, an application
of a rule schema to two (laughter signs D1 and
D2 can be expressed in the following form, where
@1, r 2 , . " , r,~} is a resolution sequence:

M = [head-dtrnon_head_dtr D~D2]Ufs(R)U','tUr.2U...Ur,~

3 L e x i c a l E n t r y A u t o m a t a
This section presents a Lex ica l E n t r y A u t o m a -
t o n (LA) . The ineifieiency of parsing in HPSG
is due to the fact that what kind of constituents
phrasal-signs would become is invisible until the
whole sequence of applications of rule schemata
is completed. Consider the parse tree in Figure
3. The phrasal-signs $1 and $2 are invisible until
a parser creates the feature structures describing
them, using expensive unification.

Our parsing method avoids this on-line con-
struction of phrasal-signs by computing skeletal
part of parse trees prior to parsing. [n Figure
3, our compiler generates $1 and $2 only from
the lexical entry "wrote," without specifying the
non-head daughters indicated by the triangles in
Figure 3. Since the non-head daughters are token-
identical with subca t values of the lexical entry
for "wrote", the obtained skeletal parse tree con-
tains the information that St takes a noun phrase
as object and $2 selects another noun-phrase.
Then unifying those non-head daughters with ac-
tual signs constructed from input, parsing can be
done. An LA expresses a set of such skeletal parse
trees. A state in an LA corresponds to a phrasal-
sign suc h as Sj and $2. They are called c o r e -
s t r u c t u r e s . A transition arc is a domination link
between a phrasal-sign and its head daughter, and
its condition for transition on input is a non-head

950

Q t l e r y :

P l"Ogt'iUll:

I,'~xecut iott :

Q10 (J2 =:

C; I =:
goals

llext-steps

goals

1
/ i~l'g, 1 (}
/ lll'g~ [2] I[]] ,
L ,,,.ga [21
m,,,l.~ [J]]

n e x t - s t e p s

.

.-,,.~a [(!~'q][l[~i)]}
argl 4 [e-list]

arg'3 6

&rgl (: goals arg2

(21 I I (;2 U [nca:t-.sL,ep.s C I] =:

(goals

(' 2 =

next-steps

l[7][(,-list 1}

[;~, [[{![)e list])

[(2 31[8]]([q[,, }))

a,'g2 arg, (f:~t[[4]) [[7]
g l ' g a ([3J l [~ })

goals arg2 4 i[r]
re'g3

I[r)[e-list])

n e x t - s t e p s
/ ,u~J 4 [,<i.~t]

goals / arg2 5 b

.... xt-steps goals <)]

I[r][,!-li,~t])]

Figure 2: An examl)le of D C P ' s execution

daughter , such as signs tagged [1] and [2] in Fig-
ure 3. Kasper c.t al. 1)resented an idea similar to
this @ l i n e raising in their work on H P S G - T A G
compiler(Kasper et al., 1995). The difference, is
tha t our a lgori thm is based ou subst i tut ion, not
adjoining, Fur thermore , it is not clear in their
work how off l ine raising is used to improve ef[i-
cicncy of parsing.

Before giving the definition of LAs, we detine
the notion of a quasi-sign, which is part of a sign
and const i tutes l~As.

D e f i n i t i o n 3 (q u a s i - s i g n (n)) For a given inte-
ger n, a fcatu,e structure S is a q 'aasi-sign(n)
if it has some of tile following four attributes:
syn, sem, h e a d - d t r , n o n - h e a d - d t r and does
not /Lave values for the paths (h e a d - d t r +
non-head-dtr)"".

A qua,.si-sign('n) cannot rel)resent a parse tree
whose height is inore than n, while a sign can
express a parse tree with any height. T lm)ugh the
rest of this 1)aper, we often extract a quasi-sig"n.(n)
S from a sign or a quasi-sig',,(,n/) S ' where '., <
n ' . This operat ion is denote(l by S' = c'x(S',,n).
This means tha t 5' is equivMent to S ' except ff)r
the a t t r ibutes h e a d - d t r mM n o n - h e a d - d t r whose
root is the (head-dtr + non-head-dtr) '~ value in
S' . Note tha t S and S ' are completely different
entities. In other words, S and S ' pose different
scopes on s t ructure sharing tags, in addit ion, we
also extract a feature s t ructure F reached by a
pa th or an a t t r ibu te 1) in a feature s t ructure IP'.
We denote this by F = v a l (F ' , p) and regard F
and F ' as different entities.

D e f i n i t i o n 4 (L e x i c a l E n t r y A u t o n , a t o n (L A))
A Lezical Entry Au toma ton is a tuplc (Q,A,qo}
whel'e~

Q : a set of states, where a .state is a
quasi-s ign(O).

A : a ,set of transition arcs between states, where
a transition arc is a tuple (qd, q N , D , R)
where qd, q,. 6 Q, N is a quasi-s ign(O), D is
a quas i - s ign (I) and R is a rule schema.

qo : tile initial state, which corresponds to a lezi-
cal erLtry.

In a transit ion :-tt'(; < qd, q N , D, 1~} , q,~ denotes
the destination of the transi t ion arc, and qd is the
root of the arc. The N is a non-head daughter
of a l)hrasal-sign, i.e., the dest inat ion state of the
transition, and expresses the input condit ion for
the transition. The D is used to represe, nt: the de-
pendency 1)etween the nn)ther sign and the daugh-
ters th rough s t ructure sharings. This is called a
D e p e n d e n c y F e a t u r e S t r u e t u r e (D F S) of the
transi t ion arc, the role of which will be discussed
in Section 4. 1~, is the rule schema used to create
this arc.

An LA is generated fl'om a lexieal ent ry l by the
following recursive pro(:edure:

1. Let; ,~; 1)e {/}, A be an eml)ty set and sd = /
2. For ea(:h rule, schema 1~, and for each of its

ea(:h resolution sequence (r l , . . . , ' r ,~} obtain,

1) - [h e a d - d t r ,Sd]

uf.s(l~) u r, u . - . o r,~

and if l) is a
feature s tructure, obtain s , , = ex (D,O) and
N = ex(w~l(D, n o n - h e a d - d t r) , 0).

a. If D is a t~ature s t ructure ,

• If the, re is a state s~,~ 6 S such tha t s',~
,s 4 let s,~ be s~,~. Otherwise, add s,,~
to 5".

* If there is no T'r = \'/~"d, '~,,~"', N " , D" , 1~)
A such that .%~ ~ s{',~, s,z ~ sSl, N

4For ~my feature structures f ~md f ' , f ~ f ' iff
f E f '~md f ' E f

951

Phase2-proc-dcp(e : edge);
assume e = (1, r, S, Dep)
return S U sub-structure(e)

sub-structure(e : edge);
assmne e = (l, r, S, Dep)
If Dep = 4)
then return sub(S),
else

for each (D, eh, e~, R) C Dep,
assume that el~ = (lh, rh, Sh, Deph)

and e~ : (In, r~, Sn, Dep,~)
Sh := sub-structure(eh),
S,~ := Sn U sub-strueture(e~)
If neither of Sh and Sn is n i l ,

s%bo :~
fv(dep(D) u sub(fs(R)),

[h e a d - d t r Sh]
non-head-dtr S n '

rs)
............................... (A)

for each resolution sequence
,rd,

sub := .sub0 LIT 1 I~ • • • U Ti
............................... (B)

If sub is not a feature structure or
either of Sh or S~ is n i l ,

then return n i l
else return sub

Figure 4: A recursive procedure for tile Phase 2

N " and D ~ D", then, add the tuple
(s,t, s,,~, N, D, R) to A.

4. If the new quasi-sign(O) (s,~) was added to
S in the previous step, let sd be s,~ and go to
Step 2.

When this terminates, (S, A, l) is the LA for 1.
The major difference of Step 2 and the

normal application of a rule schema is that
n o n - h e a d - d t r values are not specified in Step 2.
In spite of this underspecification, certain parts
of the n o n - h e a d - d t r are instantiated because
they are token-identicM with certain values of the
head-d%r domain. By unifying n o n - h e a d - d t r
values with actual signs to be constructed fl'om in-
put sentences, a parser can obtain parsing results.
For more intuitive explanation, see (Torisawa and
Tsujii, 1996).

However, this simple LA generation algorithm
has a termination problem. There are two poten-
tial causes of non-termination. The first is the
generative capacity of a feature structure of a rule
schema, i.e., a rule schema can generate infinite
variety of signs. The second is non-termination of
the execution of DCP in Step 2 because of lack of
concrete non-head daughters.

For the first case, consider a rule schema with
the following feature structure.

h e a d - d t r s y n [c o u n t e r [1]]]

Then, this can generate an infinite se-
quence of signs, each of which contains a part ,
[c o u n t e r <bar, ba, r , . . . , b a r) l and is not equiv-
alent to any previously generated sign. In order

to resolve this difficulty, we apply tim r e s t r i c t i o n
(Shieber, 1985) to a rule schemata and a lexical
entry, and split the feature structure F = f s (R)
of a rule schema R or a lexical entry F = l,
into two, namely, core(F) and sub(F) such that
F = core(F) U sub(F). The definition of the re-
striction here is given as follows.

Definition 5 (p a t h s) For arty node n in a fea-
ture structure F, pa ths (n ,F) is a set of all the
paths that reaches n from the root of F.
Definition 6 (Restriction Schema) A
restriction schema rs is a set of paths.
Definition 7 (R e s) F ' = Res(F, rs) is a ma.~;i-
real feature structure such that each node n in F ~
satisfies the following conditions.

• The~ is a node no in f: such that
pa ths(no ,F) = path.s(n,F') and type('n) =
t?tpe(no).

• For any p C paths('n,F') , there is no path
p,, 6 rs which prefixes p.

Res eliminates the feature structure nodes
which is specified by a restriction schema. For a
certMn given restriction schema rs , eore(fs(l~,)) -=
R e s (f s (R) , r s) and sub(fs (R)) is a mini-
mM feature structure such that c o r e (f s (R)) U
sub(f s (R)) = f s (R) . Tile nodes eliminated by
Res must appear in sub(fs (R)) . In tile example,
if we add (syn, counter} to a restriction schema
and replace f s (R) with eorc(fs(.R)) in the Mgo-
ri thm for generating LAs, the termination prob-
lenl does not occur because LAs can contain a loop
and equivMent signs are reduced to one state in
LAs. The sub(fs (R)) contains the s y n l c o u n t e r ,
and the value is treated at Phase 2.

The other problem, i.e., termination of DCPs,
often occurs because of underspecification of the
nork-head-d t r wines. Consider the rule schema
in F igure 1. The append does not terminate at
Phase 2 because the i n d i c e s value of non-head
(laughters is [±]. (Consider the case of execut-
ing append(X, (b) ,Y) in Prolog.) We introduce
the .freeze Nnctor in Prolog which delays the
evaluation of the second argument of the func-
tors if the first arguruent is not instantiated. For
instance, f r e e z e (X, append(X, [b] , Z)) means to
delay the ewfluation of append until X is instan-
tinted. We introduce the functor in the following
forln.

goals arg2 (fl
arg3 [~
freeze]

This means the resolution of this query is not
performed if [1] is [±]. The delayed evaluation
is considered later when tile n o n - h e a d - d t r val-
ues are instantiated by an actual sign. Note that
this change does not affect the discussion on the
correctness of our parsing method, because the
difference can be seen as only changes of order of
unification.

Now, tile two phases of our parsing algorithm
can be described in more detail.
P h a s e 1 : Enumerate possible parses or edges in

a chart only with unifiability checking in a
bot tom-up chart-parsing like manner.

952

P h a s e 2 : For comt)leted parse trees, compute
sub-structures by DFSs, , sub(f s (R)) for each
schema R and frozen 1)C1) programs.

Note that, in ['has(; 1, unification is replaced
with nnifiability checking, which is more efficient
than unification in terlns of space an(l time. The
intended side effect by unification, such as build-
ing up logical forms in sere v a l u e s , is COmlntted
at Phase 2 only for the parse trees covering the
whole input.

a.1 P h a s e 1 P a r s i n g

The Phase~ 1 parsing algorithm is quite similar to a
bot tom-up chart parsing for CFG. The Mgorithm
has a chart and edges.

D e f i n i t i o n 8 (e d g e) A n edge is a tupla
(1, r , S, l)ep) where,

• 1 and r arc. vertexes in the chart.
• S is a slate of an LA.
• .l)ep i.s a .set of tuples in the f o rm of

(D, eh, c,,, ll} wh, e, rc. eh a7%d Cn aTY; (:dges,])
i.s a quasi- .s ign(I) and R is a rule .schema.

The intuition behind this definition is,

• £' l)lays the role of a non- / te rmimd in CFG,
though it is actually a quasi-sign(O).

• ch and e,~ denote a head daughter edge and a
non-head daughter edge, respectively.

• Dep represents the dependency of an
edge and its daughter edges. Where
(D, eh,c,~,l~} E Dcp, D is a DIeS of a tran-
sition arc. Basi(:ally, Phase 1 parsing creates
these tuples, and])hase 2 parsing uses them.

The Phase 1 parsing (:onsists of the folh)wing
steps. Assume that a word in i n p u t]n~s a lexical
entry L~ and that an LA (Q,;,A,,q~) generated
fi'om Li is at tached to the word:

1. Create an edge li -= (j.i,ji + 1,q~,()) in the
chart for each Li, for at)propriate .ji.

2. For an edge e. 1 whose state is q~ in the chart,
pick u t) an edge e2 which is adjacent to el
and whose state is q~.

3. For a transition arc (ql, q, N, D, ll), check if
N is unifiable with q2.

4. If the unifiability check is successful, find an
edge (l = ('m,d,'n,d,q, Depd) strictly covering
el and e2.

5. if there is, replace d with a new edge
(m,, , 'na,q, Dep,z U {(D,c , , eu ,B)}) it) the.
chart.

6. Otherwise, create
a new edge (Tn, n, q, {(D, el, e2, R)}) strictly
covering el and e2.

7. Go to steI) 2.

4 P h a s e 2 P a r s i n g

The algorithnl of Phase 2 parsing is given in
Figure 4. The procedure sub-.s tructure is a re-
cursive 1)rocedure which takes an edge as in-
put and builds Ul) sub-structures, which is dif-
fer'ential feature structures representing modifica-
tions to core-structures, in a bottoln-U 1) nlanner.

The obtained sub-structures are unified with core-
structures when 1) the input edge covers a whole
input or 2) the edge is a non-head daughter edge
of sonm other edge. Note that the .~ub-struet'are
treats s u b (f s (R)) , a feature structure eliminated
l)y the restriction in the generation of LAs, (the
(A) 1)art in Figure 4) and frozen goals of DCPs,
by additional ewduation of DCPs. (the (B) part)

Here, we use two techniques: ()tie is dependency
analysis which is eml)odied by the function dep in
Figure 4. The other is a partiM unification routine
expressed by p _ n n i f y in the figure.

The del)endency analysis is represented with
the function, dep(F, 'rs) , where F is a DFS and
rs is a restriction schema used in generation of
LAs:

D e f i n i t i o n 9 (dep) For a feature structure ["'
and the. restriction schema r.s, F = dep(l c~,r,s)
is a maximal fc.atu're~ structure such O~,at any 'node
'n in F sati,~fies the conjunct ion of th, e. following
two conditions:

t. There is a node n' in f i'' ,such, that
v (t m . + , . , P) - ~) , ,m . ,+ , , ' , F ') a, .Z t:,mc.(7,0 :=
typc(n ') .

2. Where A) ha. = 'n or B) n,t is a descendan?
of n, pa, ths (n , z ,F) contains a path. prefixed
by one of (head-dtr), (non-head-dtr) and
<goa:ts>.

3. The diajunetion of the following three condi-
tions is satisfied where A) n,t = n or B) 'n(t
is a descendant of n.

• For .some p G pa, th, s(7t~l,F), t he re i.s a
path, p,,. E ' rs wh, ieh prefixes p.

• Some p ~ p.,th,@n,t,F) is prefixed by
(~m.,ls).

• 7'here is no node 'n. in F .~'uch th, at
i) there is paths Pi,7)'2 ~ paths('n<,., f;')
such that Pi is prefixed by (syn) 07'
(sere) aTtd P2 is 'p'r'efi;Le.d by (head-dtr)
Or (non-head-dtr>, and i/) for a~ty p G
paths(rid, F) there is p,~ E path..s(n,~, F)
which prefixes p.

Roughly, dep eliminates 1) the descendant
nodes of the node which apl)ears both in syn /sem
domains and h e a d - d t r / n o n - h e a d - d t r domains
and 2) the nodes at)peering only in syn /sem do-
mains, excet)t for the node which el)pears in
s'ab(fs(]¢)) or g o a l s domains. In other words,
it removes the feature structures that have I)een
already raised to core-structures or other DFSs,
ex(:ept for the structure sharings, and leaves those
which will be required by DCPs or x u b (f s (R)) .

p_uni f y(Fl , F.2 , r s) is a partial unification rou-
tine where Fl and F2 are feature structures, and
rs is a restriction schema used in generation of
LAs. l{oughly, it performs unification of F, and
l'12 only for common part of Ft, F.2, and it pro-
duces unified results only for the node 'n in Fl if

s'nj is ~t descendant of 'n2 in a feaiure structur{~ l,'
i l l 'nt # n2, and the.r('. ~u:e p a t h s Pl 6 path, s(~,,l, [") ~Hld
I)'2 E pa, th, s(n.2, l ") , nnd p2 l)r('.fixes p l .

953

phon "wrote"

syn , o r v ,]
subcat <NI'[1],NP[2])

rein wrote
sere content agent

object
indices 0

Figure 5: A lexical entry for "wrote"

$2 ? A State

P b T : N T2:N S1
A Transition Arc

T I : N P (N d e n o t e s
L a non-head-dtr.)

Figure 6: The LA derived from "wrote"

n has a counter part in F~. More precisely, it pro-
duces the unification results for a nod(; n in Fj
such that

• there is a path p ~ paths(n, I~) such that the
node reached by 1) is also defined in F2, or

• there is a path p ~ paths(n, F1) prefixed by
some p,, C rs or (goals).

Note that a node is unified if its structure-
shared part has a counter-I)art in F2. Intuitively,
the routing produces unified results for the part of
Fi instantiated by /7'2. The other part, that is not
produced by p_unify, is not required at Phase 2
because it is already computed in a state or DFSs
in LAs when the LAs are generated. Then, a sign
can be obtained by unifying a sub-structure and
the corresponding core-structure.

5 E x a m p l e

This section describes the parsing process of the
sentence "My colleague wrote a good paper." The
LA generated fronl the lexical entry for "wrote"
in Figure 5 is given in Figure 6. The transition arc
T1 between the states L and S1 is generated by
the rule schema in Figure 1. Note thai; the query
to DCP, freeze([1], append(Ill, [2], [3])), is used to
obtain union of indices values of daughters and the
result is written to the indices values of the mother
sign. During the generation of the transition arc,
since the first argument of the query is [±], it is
frozen. The core-structures arid the dependency-
analyzed DFSs that augment the LA are shown
in Figure 7. We assume that we do not use any
restriction, i.e., for any lexical entry l and rule
schenaata 2~, s,bb(1) ~-[±1 and sub(fs(I{)) = [±1.

Note that , in the DFSs, the already raised fea-
ture structures are eliminated and, that the DFS
of the transition arc T contains the frozen query
as the goa l s .

Assmne that the noun phrases "My colleague"
and '% good paper" are already recognized by a
parser. At phase 1, they are checked if they are
unifiable to the condition of transition arcs T1 and
T2, i.e., the NPs which are non-head daughters

$2

syn

senl

5'1

syn

head [..... ior V]]
subcat 0]

rehl wrote content agent ±
object ±

indices ±

head [major V]]
subcat (NP[2])

rein wrote
senl content agent]

object
indices A_

The dependency-anMyzed D F S of T2
syn [~ l [s]]

seln
indices [a]

- synSign 1]]
h~ad-dtr [a] s~beat .[qN;'[r])

Z
[} t f l l l a j o r

syn subcttt)
non-head-dtr [5]

sere indices

goals argl
arg2
arg2

The dependency-analyzed D F S of T1
head 8]

syn subcat {/10]±[9]}]

content [6] agent
sere object

indices [3]
• sign

sy
1 I-dtr [3] 9])

..... [ic'::~itceet: t [2 t (,]

syn [t subcat)
non-head-dtr [5]

sere indices

1]> freeze 1
goals argl

a,-~2 ()
arg2

Nll]

N,I]

Figure 7: States and DFSs in tim LA in Figure 6

The sub-structure for $2

content | agen~ 1]my_colleaque |
. [obje,:t [2]good_p.vJ4' J

indices {[llmy_collea.o [2]good_paper)
The sub-structure for S1

sere [object [1]good_paper]
indices ([1]good_paper)

The goals,head-dtr,non-head- dtr vMues are omitted.

Figure 8: The sub-structures obtained in the pars-
ing

954

__Parsing ~ i t h n l
Phase 1 only
Pheuse 1 & Phase 2
Phase 1 & Phase 2

~ f - ~
naive application of rule sche, ma ta

naive application of rule s<:hentata

~['ylTe. -6f sent;ences
(# of sentences)
glT 7 0 - - - -

<ufly successful~7~)
enD. s ~ s ~

Ass)
onTy ~ f u T - - -

_ (~) _

19.2
19.2
18.8

17.13

3:[.4

Av 3n< e&
1.25 ~L121_
3.00 ~1.65)

85.09

1093.22 ~ 2 . 1 ~

A bracke ted t ime indicates non-(~(] execution tim(< '] 'he eXl)erimeuts was l)(nformed on SparcSta t ion 20 with 128 MI) I I A M

Figure 9: Ext>eriments on a Japanese newsl)aper(Asahi Shinl)un)

<)f $1 and $2. Since all l;he u,dfial)ility <:lwx:k-
ings ,'/.1"o successful, Phase 1 parsing produ(:es the
parse tree whose form is presented in Figure 3.
The Phase 2 1)arsing produces the sub-structures
in Figure 8. Note that the frozen goals are eval-
uated and the i n d i c e s wdues have al)prot)riate
values. A l)arsing result is obtaine{l by unifying
the sub-structure for 5"2 with tim correspon<ling
c o r e - s t r u c t l l r e .

The amount of the feature stru<:ture nodes gen-
erate(1 during t)arsing are r(~<lu(:e(1 (:<m~t>are(l to
the case of the naive at)l)lication of rule schemata
presented in Section 2. The important point is
that they contMn only either the part iu the
DFSs that was instantiated by head daughters '
sub-structures, and non-head daughters ' core-
structures and sub-structures, or the part that
contributes to the DCP ' s exaluation. The feature
structure that does not al)pear i , a sub-structure
appears in the corresponding core-structure. Se, e
Figure 7. Because of these 1)rot>erties, the correct-
ness of our parsing nmthod is guaranteed. ('lbri-
sawa and Tsujii, 1996).

7 C o n c l u s i o n

We have lu'esented a two-phased t)arsing nlethod
tor HPSG. In the first l)hase,, our 1)arser pro-
duces parse trees using Lexical Entry Automnta
compilcxl from lexical entries, in the second
phase, only the feature structures whi<:h luust])e
(:ompute([dynamically are (:omputed. As a re-
suit, amount of the fl;ature structures unifie<l at
1)arsing-time is reduce.d. We also showed the el'-
feet of our optinfization te(:hniques by a series of
exl)erinwats <m a real world text.

]t can l)e noticed that ea<:h transition arc of tim
cOral)ileal l,As can be seen as a rewriting rule in
CFG (or a dott;ed notation in a chart parser.) We
belie.ve this can Ol)en the way to integrate severaJ
n,et;hods deveh)l>ed for CI,'G, including the inside-
outside algorithm tot grmmnar learning or disam
biguation, into an HPSC, framework. We also 1)e-
lieve that, by pursuing this direction for optimiz-
ing tt l)SG parsers, we can reach the point whe.re
g rammar learning from corl)ora can be done with
concise, and linguistically well-defined (:ore grant-
I t t ; t r .

6 E x I) e r i m e n t s

We have implenmnted our parsing metho<l in
Common Lisp Ol)je<:t Systen~. hnprovenmnt by
our method has /)een measured on 70 ra.ndonfly
selected Japanese sentences from a newsl)at)er
(Asahi Shinbun). The used g rammar (',onsists of
just 5 rule schemata, which are generated fl'om
principles and rewriting rules, aim 55 default lex-
ical entries given for each part of speech, with 44
manually tailored lexical entries. The total num-
ber of states in the LAs compiled fl'oln them was
1490. The grammar does not have a semantic
part. The results arc. l)resented in Figure 9. Our
grammar produ<:ed l>ossil)le parse trees for 43 sen-
ten<'.es (61.4%). We compared the. execution time
of our I)arsing method and a more naive algorithm,
which l)erforms Phase 1 parsing with LAs and al)-
plys rule s(:hemata to (:olnph'.ted pars<; trees in the
naive way described in Se<:tion 2. As the. naive al-
gorithm caused thrashing for storage in GC, it is
pointless to compare those tigures simply. How-
ever, it is obvious that our method is much fi~ster
than the naive one. We could not measure the ex-
ecution time for a totally naive algorithm which
t)uilds parse trees without LAs because of Uwash-
ing.

R e f e r e n c e s

Bob Carl>enter. 1992. The Looi<: of "/]qped F.a,t..,.+'.
Str'ucturcs. Cambridge University Press.

Keiko Horiguchi, Kentaro Torisawa, and Jun'ichi
Tsujii. 1995. Automatic acquisition of cont(;nt
words using an IIPSG.-based parser. In NL-
1"1~S'95.

Robert Kasper, Bernd Kiefer, Klaus Netter, and
K. Vijay-Shanker. 1995. Compilation of I IPSG
to TAG. In ACL 95.

Carl Pollard and Ivan A. Sag. 1987. h~,fovmatio,,-
Based Syntaz and Semau, ties Vol. 1. CSLI lec-
ture n o t e s 11o.1 3.

(,'arl Pollard and Ivan A. Sag. 1993. lh..a.d-
Driv<'.n Phrase Structure Grammar. University
of Chicago Press an(l CSLI l)ul)li<:ations.

Stuart C. Shieber. 1985. Using restri<:tion to
extend I)arsing algorithms for conq)lex feature
based formalisms. In A CL85.

Kentaro Torisawa and Jun'ichi Tsujii. 1996. ()if-
line raising, dei)endency analysis an{l l>artial
unifieat;ion. In Third Iu, ternational Conference
on HPSG. In the pr<)ceedings of TALN '96.

955

