Computing Phrasal-signs in HPSG prior to Parsing

Kentaro Torisawa and Jun’ichi T'sujii
Department of Information Science, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo, 113, Japan
{torisawa,tsujii}@is.s.u~tokyo.ac.jp

Abstract

This paper describes techniques to com-
pile lexical entries in IIPSG (Pollard and
Sag, 1987; Pollard and Sag, 1993)-style
grammar into a set of fiuite state au-
tomata. The states in antomata arc
possible signs derived from lexical en-
trics and contain information raised from
the lexical entries. The automata arc
augmented with feature structures used
by a partial unification routine and de-
layed/frozen definite clanse programs.

1 Introduction

Our aiwn is to build an efficient and robust HPPSG-
based parscr. HPSG has been regarded as a so-
phisticated but {ragile and incflicient framework.
However, its principle-based architecture enables
a parser to handie real world texts ouly by giv-
ing concise core grammar, including principles and
templates for lexical entrics, default lexical en-
tries(Horiguchi ¢t al., 1995). The architecture is
different from those of conventional unification-
based formalisms which require hundreds of CI'G
skeletons to parse real world texts.

However, these design principles of HPPSG have
draw-backs in parsing cost. That is, signs/feature
structures corresponding to non-terminal symbols
in CF'G become visible only after applying princi-
ples and a parser has to create feature structures
one by one using unification. In addition, identity
checking of non-terminal symbols used to climi-
nate spurious signs must be replaced with sub-
sumption checking, which further deteriorates ef-
ficiency.

Our grammay compiler computes skeletal part
ol possible phrasal-signs from individual lexical
cntries prior to parsing, and generates a set of
{inite state antomata from lexical entries to avoid
the above draw-backs. We call this operation Off-
line raising and au automaton thus generated is
called a Lexical Entry Automaton (LA). Its
states corresponds to part of sigus and cach tran-
sition between states corresponds to application of
a rule schema, which is a nou-lexical component
of grammmar.

Our parsing algorithm adopts a two-phased
parsing method.

Phase 1 Bottom-up chart-like parsing with LAs.

949

Rewriting Rule:
{\‘/IS'O']'IH‘)R([I]) «— HEAD-D'IR([8])NON-HFEAD-D'IR([5])

r sign . J
svn head [6
sy1 subcat {7

sem content|4
sen indices {3
syn l: head [6)

) subcat 5107

head-dtr (8] st vt ([5]1(7])

{1 content &4}

sem Y 5
indices |2

" syn [subcat ()]
non-head-dtr [5] = content L
.sun[indices [1]]

append

argl 1
goals arg? 2

argz 3

frecze 1

FFigure 1: Au example of a rule schemia.

Phase 2 Computing part of featurc structures
which cannot be computed at compile-time.

We call the featurc structures that are repre-
sented asg states in automata and are computed
at compile-time Core-structures, and the fea-
ture structures which are to be computed in Phase
2, Sub-structures. In Phase 1 parsing, a core-
strueture correspoud 1o a state in an LA, The cost
of computing sub-structures at Phasc 2 is min-
imized by Dependency Analysis and Partial
Unification.

The next section describes rule schemata, cen-
tral compouents of the formalism, and gives a def-
inition of Definite Clause Programs. Scction 3 de-
scribes how to obtain LAs from lexical entries and
how to performn the Phase 1 parsing. Section 4 ex-
plaing the Phase 2 Parsing algorithm. A parsing
exaumple is presented in Section 5. The cffective-
ness of our cethod is exemplified with o series of
experiments in Section 6.

2 Rule Schemata and Definite
Clause Programs

Our formalism has only one type of component
as non-lexical components of grammar, i.c., rule
schemata.! Au example is shown in Figure [A
rule schema consists of the following two itens.

"l our current system, rule schemata are gener-
ated from principles and rewriting rules according to
a specification given by a programuer.

rule(R) a rewriting rule without specific syntac-
tic categories;
fs(R) a feature structure.

A characteristic of HPSG is in the flexibility
of principles which demands complex operations,
such as append or subtraction of list-value feature
structures. In our formalism, those operations are
treated by a Definite Clause Program. A DCP can
be seen as a logic program language whose argu-
ments are feature structures. An auziliary term, a
query to a DCP augmenting a rule schema, is em-
bedded in a feature structure of a rule schema as
the valuc of goals. The rule schema in the exam-
ple has an auxiliary term, append([1], [2], [3]).

The bottom-up application of the rule schema
R is carried out as follows. First, two daugh-
ter signs are substituted to the HEAD-DTR position
and NON-HEAD-DTR position of the rewriting rule
rule(R). Then, the signs are unified with the
head-dtr value and the non-head-dtr value of
the feature structure of the schema, fs(R). Fi-
nally, the auxiliary term for DCPs given in the
schema is evaluated.

Our definition of a DCP has a more operational
flavor than that given by Carpenter(Carpenter,
1992). The definition is crucial to capture the cor-

rectness of our method.?

Definition 1 (DCP) A definite clause program
(DCP) is a finite set of feature structures, each of
which has the following form.

(H|[11)

goals
[goals (Bg, B,

next-steps » Bu, [1])]]
3 where 0 < n and H, By, - -,
tures.

B, are feature struc-

A feature structure of the above form corre-
sponds to a clause in Prolog. H,DBy,---, B, cor-
responds to literals in Prolog. H is the head and
Bg, -+, B, are literals in the body of a clause.

Definition 2 (Execution of DCP) FEzecution
of a DCP P for the query,

Query = [goals (qo,q1, - qt) |
is a sequence of unification,
QueryUr Ura U--- Uy,

where r; = | (next-steps)*! C; |, C; € P or
C; = [goals {)]. If the execution is terminated,
C,, must be unifiable with [goals {) |. In this
case, we call the sequence {ri, --,7,) o resolu-
tion sequence.

?Though, through the rest of the paper, we treat
the definition as if it were used in an actual implemen-
tation, the actual implementation uses a more efficient
method whose output is cquivalent with the result ob-
tained by the definition.

3 (Bo, -+, Bn,[11) is an abbreviation of
first Bo
first B
[ceet []]

sign
So [maj \%]
subcat ()
n sign
[ME N] S maj \]
qubcat () subcat ([2]NP)

/\

My colleague

sign
[1] maj
snubcat

sign

maj

subcat ([1HN]’,
a good paper

2]N P)
wrote

Figure 3: A parsing cxample

(next-steps)’! |goals of Querylir Lryl)-- U
r; Tepresents the goals which are to be solved in
the steps following the i-th step. The goals are
instontiated by the steps from the first one to i-th
one, through structure sharings. The result of ex-
ecution in a Prolog-like sense appears in the query.
Figure 2 is an example of execution for the query
append([al, [b],X) , whose definition is bascd
on a standard definition of append in Prolog.
Given this definition of DCPs, an application
of a rule schema to two daughter signs Dy and
Dy can be expressed in the following form, where
{r1,79, <+, 7, 18 a resolution sequence:

_ | head-dtr
M= [non-head-dtr D

]uf(R)UriUrpl---Ury

3 Lexical Entry Automata

This section presents a Lexical Entry Automa-
ton (LA). The inefficiency of parsing in HPSG
is due to the fact that what kind of constituents
phrasal-signs would become is inwvisible until the
whole sequence of applications of rule schemata
is completed. Consider the parse tree in Figure
3. The phrasal-signs Sy and S, are invisible until
a parser creates the feature structures describing
them, using expensive unification.

Our parsing method avoids this on-line con-
struction of phrasal-signs by computing skeletal
part of parse trees prior to parsing. In Figure
3, our compiler gencrates S; and S; only from
the lexical entry “wrote,” without specifying the
non-head daughters indicated by the triangles in
Figure 3. Since the non-head daughters are token-
identical with subcat values of the lexical entry
for “wrote”, the obtained skelctal parse tree con-
tains the information that S| takes a noun phrase
as object and Sy selects another noun-phrase.
Then unifying those non-head daughters with ac-
tual signs constructed from input, parsing can be
done. An LA expresses a sct of such skeletal parse
trees. A state in an LA corresponds to a phrasal-
sipn such as Sy and S;. They are called core-
structures. A transition arc is a domination link
between a phrasal-sign and its head daughter, and
its condition for transition on input is a non-head

950

append
argl
e v l: ool <[I:EZ ;:E) :}>]
arg3 .
append
SR argl
Program: <y o= gouls arg? 2 1] ,
argd 2
next-steps [goals [1]]
lixecution:
append @l A)
o argl 3| a 4] [e-list
goals arg?2 8] (51 v I
QU Cy == arg3 (I3]0 =~ T}
! 2 append
xt-steps roals argl 4][c-list }
next-steps goals arg2 8] (5] b)
argd G
append
argl 3
goals m';:‘Z (&
argd (3
Q11 Co U neat-steps Cy } =
goals

next-steps

append

gouls mg<HW>|m
o)
append
next-steps goals iiié g] (7]
argd 6

(7 e-list]

H7)[e-list]

[&)[4} elist })
[b))
((“‘]][H"]]<[5][b 1M

append

7] e-list]

argl 4 e-list .
;u-gz 8 [5 i l)] (7] e-lise]
argd 8 St b

next-steps [goals ()

Figure 2: An cxample

daughter, such as signs tagged [1] and [2] in Fig-
ure 3. Kasper ¢t al. presented an idea similar to
this off-line raising in their work on HPSG-TAG
compiler(Kasper et al., 1995). The difference is
that our algorithm is based on substitution, not
adjoining. Furthermore, it is not clear in their
work how off-line raising is used to improve effi-
ciency of parsing.

Before giving the definition of LAs, we define
the notion of a quasi-sign, which is part of a sign
and constitutes LAs.

Definition 3 (quasi-sign(n)) For a given inte-
ger m, a feature structure S is a quasi-sign(n)
of it has some of the following four attributes:
syn, sem, head-dtr,non-head-dtr and does
not have wvalues for the paths (head-dtr +
non-head-dtr)".

A quasi-sign(n) cannot represent a parse tree
whose height is more than n, while a sign can
express a parsc tree with any height. Through the
rest of this paper, we often extract a guasi-sign(n)
S from a sign or a quasi-sign(n') S where n <
n'. This operation is denoted by S = ex{S5’,n).
This means that S is equivalent to S’ except for
the attributes head-dtr and non-head-dtr whosc
root is the (head~dtr + non-head-dtr)” value in
S’. Note that S and S’ are completely different
entities. In other words, S and S’ pose different
scopes on structure sharing tags. In addition, we
also extract a feature structure F' reached by a
path or an attribute p in a feature structure .
We denote this by F = val(F',p) and regard F
and F' as different entities.

Definition 4 (Lexical Entry Automaton(LA))
A Lexical Fniry Autornaton is a tuple (€, A, qo)
where,

Q a sct of states, where state s

quasi-sign(0).

a 42

951

of DCP’s execution

A 1 a set of transition arcs between states, where
a transition arc is o tuple {qu, @m, N, D, R)
where qq, ¢m € Q, N is a quasi-sign(0), D is
a quasi-sign(1) and R is a rule schema.

qo - the matial state, which corresponds to o leai-

cal eniry.

In a transition arc (¢q, ¢m, N, D, 1), ¢, denotes
the destination of the transition arce, and g, is the
root of the arc. The N is a non-head daughter
of a phrasal-sign, i.c., the destination state of the
transition, and expresses the input condition for
the transition. The D is used to represent the de-
pendency between the mother sign and the daugh-
ters through structure sharings. This is called a
Dependency Feature Structure(DFS) of the
transition arc, the role of which will be discussed
i Section 4. B is the rule schema used to create
this arc.

An LA is generated from a lexical entry [by the
following recursive procedure:

1. Let S be {l}, A be an emnpty set and sq =1

2. For cach rule schema I, and for cach of its
cach resolution sequence (ry,---,r,) obtain,

D

[head-dtr sq |
Ufs(Ryuryu---ur,

and if D is a
feature structure, obtain s,, = ex(D,0) and
N = ex(val(D,non-head-dtr), 0).

3. If D is a feature structure,

€ & such that s

m

Otherwise, add s,,

~
~

e If there is a state],
. 1 3 v ogf
Sy ot &, be sl
to .

NI

"'”L7

o If there is no I = (s, 62 N, D" R) €

S . o e e oy M ~

A such that s, =~ s, sq = &), N =~

*For any feature structures f and f', [& f'iff

JEf and fCf

Phase2-proc-dep(e : edge);
assume e = {l, 7,5, Dep)
return S U sub-structure(e)

sub-structure(e : edge);
assume e = (I, 7,5, Dep)
If Dep =
then return sub(.5),
else
for each (D, ep,en, R) € Dep,
assume that e, = (I, 74, Sk, Depy,)
and e, = (I, 7n, Sy, Depy,)
Sy 1= sub-structure(ey,),
Sy = Sy, U sub-structure(e,,)
If neither of S5, and S, is nil,

ubg =
p-uni fy(dep(D) U sub(fs(R)),
head-dtr S,
non-head-dtr S, |°
rS$)
................. e (A)
for each resolution sequence
<7Vla T)Ti>1

swh = subgUri U---Ur;

............................... B

If sub is not a feature structure or
either of Sp, or 5, is nil,

then return nil

else return sub

Figure 4: A recursive procedure for the Phase 2

N" and D = D", then, add the tuple
(845 8m, N, D, R) to A.

4. If the new quasi-sign(0) (s,,) was added to
S in the previous step, let s4 be s, and go to
Step 2.

When this terminates, (S, .A,1) is the LA for /.

The major differcnce of Step 2 and the
normal application of a rule schema is that
non-head-dtr values are not specified in Step 2.
In spite of this underspecification, certain parts
of the non-head-dtr are instantiated because
they are token-identical with certain values of the
head-dtr domain. By unifying non-head-dtr
values with actualsigns to be constructed from in-
put sentences, a parser can obtain parsing results.
For more intuitive explanation, see (Torisawa and
Tsujii, 1996).

However, this simple LA generation algorithm
has a termination problem. There are two poten-
tial causes of non-termination. The first is the
gencrative capacity of a feature structure of a rule
schema, i.c., a rule schema can generate infinite
variety of signs. The second is non-termination of
the execution of DCP in Step 2 because of lack of
concrete non-head daughters.

For the first case, consider a rule schema with
the following feature structure.

counter (bar|[1])]]

[syn
syn [counter [1} |]

head-dtr

Then, this can generate an infinite se-
quence of signs, each of which contains a part,
[counter {bar,bar,--,bar) | and is not cquiv-
alent to any previously generated sign. In order

952

to resolve this difficulty, we apply the restriction
(Shieber, 1985) to a rule schemata and a lexical
entry, and split the feature structure F' = fs(R)
of a rule schema R or a lexical entry F' = [,
into two, namely, core(F) and sub(F") such that
F = core(F) U sub(F). The definition of the re-
striction here is given as follows.

Definition 5 (paths) For any node n in o fea-
ture structure F, paths(n, F) is a set of all the
paths that reaches n from the root of F.

Definition 6 (Restriction Schema) A
restriction schema rs is a set of paths.

Definition 7 (Res) F' = Res(F,rs) is a maxi-
mal feature structure such that each node n in F’
satisfies the following conditions.

o There is a node mn, i I' such that
paths(ng, F) = paths(n, F') and type(n) =
type(no).

o For any p € paths(n,I"), there is no path
p, € 78 which prefizes p.

Res eliminates the feature structure nodes
which is specified by a restriction schema. For a
certain given restriction schemars, core(fs(R)) =
Res(fs(RR),rs) and sub(fs(R)) is a mini-
mal feature structure such that core(fs(R)) L
sub(fs(R)) = fs(R). The nodes eliminated by
Res must appear in sub(fs(R)). In the example,
if we add (syn, counter) to a restriction schema
and replace fs(R) with core(fs(R)) in the algo-
rithm for generating LAs, the termination prob-
lem does not occur because LAs can contain a loop
and equivalent signs are reduced to one state in
LAs. The sub(fs(?)) contains the syn|counter,

an% the value 1 t]lmted at Phase 2.
he other problem, i.e., termination of DCPs,

often oceurs because of undorspecn‘icatlon of tho

~head- dtr alues. Il‘SldCl the rule schema
igure 1. The appenc does not terminate at

Phcxse 2 because the indices value of non-head
daughters is [L]. (Consider the case of execut-
ing append(X,(b),Y) in Prolog.) We introduce
the freeze functor in Prolog which delays the
evaluation of the second argument of the func-
tors if the first argument is not instantiated. For
instance, freeze(X,append(X, [b],Z)) means to
delay the evaluation of append until X is instan-
tiated. We introduce the functor in the following

form.
append
argl Bl
goals arg? (B
argd 2
freeze [1]

This means the resolution of this query is not
performed if [1] is [L]. The delayed evaluation
is considered later when the non-head-dtr val-
ues are instantiated by an actual sign. Note that
this change does not affect the discussion on the
correctness of our parsing method, because the
difference can be seen as only changes of order of
unification.

Now, the two phases of our parsing algorithm
can be described in more detail.

Phase 1 : Enumerate possible parses or edges in
a chart only with unifiability checking in a
bottom-up chart-parsing like manner.

Phase 2 : For completed parse trecs, compute
sub-structures by DFSs, sub(fs(RR)) for each
schema R and frozen DCI programs.

Note that, in Phase 1, unification is replaced
with unifiability checking, which is more eflicient
than unification in terms of space and time. The
intended side effect by unification, such as build-
ing up logical forms in sem values, is computed
at Phase 2 ounly for the parse trees covering the
whole input.

3.1 Phase 1 Parsing
The Phase 1 parsing algorithm is quite similar to a
bottom-up chart parsing for CFG. The algorithm
has a chart and cdges.
Definition 8 (edge) An
{l,7,5, Dep) where,
o [and r are vertexes in the chart.
o S is a state of un LA.
o Dep is o set of tuples in the form of
(D, ey, en, 1) where e, and ¢, are cdges, D
s a quasi-sign(l) and R is a rule schema.

edge is o tuple

The intuition behind this definition is,

e 5 plays the role of a non-/terminal in CFG,
though it is actually a quasi-sign(0).

e ¢;, and e, denote a head daughter edge and a
non-head daughter edge, respectively.

e Dep represents the dependency of an
edge and its daughter edges. Where
(D ep,en, Y € Dep, D is a DFS of a tran-
sition arc. Basically, Phase 1 parsing creates
these tuples, and Phase 2 parsing uses them.

The Phase 1 parsing consists of the following
steps. Assume that a word in input has a lexical
entry L; and that an LA (Q;, A, ¢f) generated
from L; is attached to the word:

1. Create an cdge I; = (5;,7: + 1,45, ¢) in the
chart for cach L;, for appropriate 7;.

2. Tor an edge e; whose state is ¢; in the chart,
pick up an edge e, which is adjacent to ey
and whose state is ¢,.

3. For a transition arc {g1,¢, N, D, I?), check if
N is unifiable with ¢».

4. If the unifiability check is successful, find an
edge d = (mg,nq,q, Depg) strictly covering
ey and ey,

5. if there is, replace d with a new edge
(Mg, g, q, Depy U {{D, ey, ey, R} in the
chart.

6. Otherwise, create
a new edge {m,n,q, {{D,er, e, R)}) strictly
covering e; and es.

7. Go to step 2.

4 Phase 2 Parsing

The algorithm of Phase 2 parsing is given in
Figure 4. The procedure sub-structure is a re-
cursive procedure which takes an edge as in-
put and builds up sub-structures, which is dif-
ferential feature structures representing modifica-
tions to core-structures, in a bottom-up manner.

953

The obtained sub-structures are unified with core-
structures when 1) the input edge covers a whole
input or 2) the edge is a non-head daughter edge
of some other edge. Note that the sub-structure
treats sub(fs(R)), a feature structure eliminated
by the restriction in the gencration of LAs, (the
(A) part in Figure 4) and frozen goals of DCPs,
by additional evaluation of DCPs. (the (B) part)

Here, we use two techniques: One is dependency
analysis which is embodied by the function dep in
Figure 4. The other is a partial unification routine
expressed by punify in the figure.

The dependency analysis is represented with
the function, dep(F,rs), where I is a DFS and
78 18 a restriction schema used in gencration of

LAs:

Definition 9 (dep) For o feature structure I
and the resiriction schema rs, F' = dep({”,rs)
15 a mazimal feature structure such that any node
noin I osatisfies the conjunction of the following
two conditions:

. There is a node n' i F' such that

paths(n, 1) = paths(n', F') and typc(n) =
type(n').

2. Where A) ng = n or B) ng is a descendant®
of n, paths(ng, F') contains a path prefized
by one of (head-dtr), (non-head-dtr) and
(goals).

3. The disjunction of the following three condi-
tions is satisficd where A) ng = n or B) ny
18 a descendant of n.

o Lor some p € paths(ng, F), there is a
path p,. € vs which prefizes p.

o Some p € paths(ng, F) is prefived by
{goals).

o There is no node n, in F such that
i) there is paths py,p2 € paths(n,, F)
such that py is prefived by (syn) or
(sem) and py is prefived by (head-dtr)
or (non~head-dtr), and i1) for any p €
paths(ng, F) there is p, € paths(n,, ")
which prefizes p.

Roughly, dep climinates 1) the descendant
nodes of the node which appears both in syn/sem
domains and head-dtr/non-head-dtr domains
and 2) the nodes appearing only in syn/sem do-
mains, except for the node which appears in
sub(fs(RR)) or goals domains. In other words,
it removes the feature structures that have been
already raised to corc-structures or other DIFSs,
except for the structure sharings, and leaves those
which will be required by DCPs or sub(fs(R)).

pouni fy(Fy, Fy,78) is a partial unification rou-
tine wherc Fy and F, are feature structures, and
rs is a restriction schema used in generation of
LAs. Roughly, it performs unification of F| and
Iy ouly for comsnon part of Fy, F,, and it pro-
duces unified results only for the node n in I if

“ny 1s a descendant of ny in a feature structure '
ilf ny # ng, and there are paths p1 € paths(n, I7) and
p2 € paths(ny, 1), and pe prefixes p;.

phon “wrote”
o head major V |
syn subcat Pl1}, NP[2])
pred
tent reln wrote
sem conten agent 2
object

indices ()

Figure 5: A lexical entry for “wrote”

O A State
1 T:N
T2 :NP
T1:NP

A Transition Arc
(N denotes
L a non-head-dtr.)

Figure 6: The LA derived from “wrote”

n has a counter part in F,. More precisely, it pro-
duces the unification results for a node n in F
such that

o there is a path p € paths(n, Fy) such that the
node reached by p is also defined in /5, or

o there is a path p € paths(n, F)) prefixed by
some p, € 1$ or {goals).

Note that a node is unified if its structure-
shared part has a counter-part in F,. Intuitively,
the routine produces unified results for the part of
Fy instantiated by Fy. The other part, that is not
produced by p.unify, is not required at Phase 2
because it is already computed in a state or DFSs
in LAs when the LAs are generated. Then, a sign
can be obtained by unifying a sub-structure and
the corresponding core-structure.

5 Example

This section describes the parsing process of the
sentence “My colleague wrote a good paper.” The
LA generated from the lexical entry for “wrote”
in Figure 5 is given in Figure 6. The transition arc
T1 between the states L and S1 is generated by
the rule schema in Figure 1. Note that the query
to DCP, freeze([1], append([1], [2],[3])), is used to
obtain union of indices values of daughters and the
result is written to the indices values of the mother
sign. During the generation of the transition arc,
since the first argument of the query is [L |, it is
frozen. The core-structures and the dependency-
analyzed DFSs that augment the LA are shown
in Figure 7. We assume that we do not usc any
restriction, i.e., for any lexical entry ! and rule
schemata R, sub(l) = [1] and sub(fs(R)) = [L1].

Note that, in the DFSs, the already raised fea-
ture structures are climinated and, that the DFS
of the transition arc T' contains the frozen query
as the goals.

Assume that the noun phrases “My colleague”
and “a good paper” are already recognized by a
parser. At phase 1, they are checked if they are
unifiable to the condition of transition arcs T'1 and
T2, i.e., the NPs which are non-head daughters

954

V]]

V]]

wrote

(2]

L

52
I svn head [major
sy subcat
i pred
reln
sem content arent
object
L | indices L
51
r r
svn head E\Ima_]or
Y subcat (P[Z])
¥ : pl](-‘d
reln
sem content agent
L object
. indices A

The dependency-analyzed DF'S of T2

rsyn [head [8]]
pred
sem content [6][Lgf‘lit (7]] }
indices [3]
[sign
syn head [88 }
head-dtr [3] subcat ([5]N 1°[7])

sem [
syn [

content G
indices 2

head % major N]
non-head-dtr [5] subcat

sem |: content [7]]
L indices 1
append
freeze 1
goals argl 1
arg? 2
arg2 3

Thc dependency-analyzed DFS of T1

i svn head 8]
y subcat ([10]L[9])
pred
) content [6] | agent 9
sem object 4
indices [3]
[sign
head 8
syn subcat S5IN P[4
head-dtr [3] (IU]L J]
setn content
! indices
syn head E major
non-head-dtr [5] subcat
sem content 4
L ! indices 1
append
frecze 1
goals argl 1
arg?2 2 ()
L arg?2 3

Figure 7: States and DF'Sg in the LA in Figure 6

The sub-structure for 52

pred
agent [1 my_colleague
2

sem content
‘ object good_paper
indices {[1]my-colleague, [2]good_paper)

The sub-structurc for 51
) content [pred]
sem aobject [l]good_paper
indices ([1]good_paper
The goals,head-dtr,non-head- dtr values are omitted.

Figure 8 The sub-structures obtained in the pars-
ing

| Type of scutences |

naive application of rule schemata | (5)

1

Parsing Algorithm | (# of sentences) | Avg Length (word) | Avg Time (sec
Phase 1 only all (70] } 1921]..2571.1?%
Phase 1 & Phasc2 [all(70) | 192 3.00 (1.65)
Phase 1 & Phase 2 only successful (43) | 18.8 3.37 (1.84)
Phase 1 Si ¢ ol scl t ?élg successtul 713 0 (0.27 i
naive application of rule schemata Ti 17.1¢ 55.09 (9.
Phase lp& ouly successful | T] - S (9.27)

314 | 1093.22 (82.12) |

A bracketed time indicates non-GO execution time. The experiments was performaed on SparcStation 20 with 128 Mb RAM.

Figure 9: Experiments on a Japanese newspaper(Asahi Shinbun)

of 81 and S2. Since all the uunifiability chock-
ings are successful, Phase 1 parsing produces the
parse tree whose form is presented in igure 3.
The Phase 2 parsing produces the sub-structures
in Figure 8. Note that the frozen goals are cval-
uated and the indices values have appropriate
values. A parsing result is obtained by unifying
the sub-structure for S2 with the corresponding
core-structure.

The amount of the feature structure nodes gen-
erated during parsing arc reduced compared to
the case of the natve application of rule schemata
presented in Section 2. The important point is
that they contain only cither the part in the
DF'Ss that was instantiated by head daunghters’
sub-structures, and non-hcad daughters’ core-
structures and sub-structures, or the part that
coutributes to the DCI’s evaluation. The feature
structure that does not appear in a sub-structure
appears in the corresponding core-structure. Sce
Figure 7. Because of these propertics, the correct-
ness of our parsing method is guaranteed. (Tori-
sawa and Tsujii, 1996).

6 Experiments

We have implemented our parsing method in
Jommon Lisp Object System. Tmprovement by
our method has been mcasured on 70 randonily
selected Japanesce sentences from a newspaper
(Asahi Shinbun). The used grammar consists of
just 5 rule schemata, which are generated from
principles and rewriting rules, and 55 default lex-
ical entrics given for cach part of speech, with 44
manually tailored lexical entries. The total num-
ber of states in the LAs compiled from them was
1490. The grammar docs not have a semantic
part. The results are presented in Figure 9. Our
grammar produced possible parse trees for 43 sen-
tences (61.4%). We compared the execution time
of our parsing method and a more naive algorithm,
which performs Phase 1 parsing with LAs and ap-
plys rule schemata to completed parse trees in the
naive way described in Section 2. As the naive al-
gorithm caused thrashing for storage in GC, it is
pointless to compare those figures simply. How-
cver, it 18 obvious that our method is much faster
than the natve one. We could not measure the ex-
ecution time for a totally naive algorithm which
builds parse trecs without LAs because of thrash-
ing

955

7 Conclusion

We have presented a two-phased parsing method
for HPSG. In the first phase, ouwr parser pro-
duces parse trees using Lexical Entry Automata
compiled from lexical cntrics. In the second
phase, only the feature structures which must he
computed dynamically are computed. As a re-
sult, amount of the feature structures unified at
parsing-time is reduced. We also showed the ef-
fect of our optimization technigues by a series of
experiments on a rcal world text.

It can be noticed that cach transition arc of the
compiled TLAs can be seen as a rewriting rule in
CI'G (or a dotted notation in a chart parser.) We
believe this can open the way to integrate several
methods developed for CHG, including the ingide-
outside algorithm for grammar learning or disamn-
biguation, into an HPSG framework. We also be-
lieve that, by pursuing this direction for optimiz-
ing HPSG parsers, we can reach the point where
grammar learning from corpora can be done with
concise and linguistically well-defined core gram-
mar.

References

Bob Carpenter. 1992, The Logic of Typed Feature
Structures. Cambridge University Press.

Keiko Horiguchi, Kentaro Torisawa, and Jun’ichi
Tsujit. 1995. Automatic acquisition of content
words using an HPSG-based parser. In NL-
PRS95.

Robert Kasper, Bernd Kiefer, Klaus Netter, and
K. Vijay-Shanker. 1995. Compilation of [IPSG
to TAG. In ACL 95.

Carl Pollard and Ivan A. Sag. 1987. Information-
Based Syntar and Semantics Vol 1. CSLI lec-
ture notes no.13.

Carl Pollard aud Ivan A. Sag. 1993, Head-
Driven Phrase Structure Grammar. University
of Chicago Press and CSLI Publications.

Stuart C. Shicber. 1985. Using restriction to
extend parsing algorithmns for complex feature
based formalisins. In ACLSS.

Kentaro Torisawa and Jun’ichi T'sujii. 1996. Ofl-
Hne raising, dependency analysis and partial
wnification. In Third International Conference
on HPSG. Tu the proceedings of TALN "96.

