
Generation of Paraphrases from Ambiguous Logical Forms

Hadar Shemtov
S t a n f o r d U n i v e r s i t y and X e r o x P A R C

3333 C o y o t e Hi l l R o a d

Pa lo Al to , C A 9 4 3 0 4

s h e m t o v @ c s l i . s t a n f o r d . e d u

Abstract

This paper presents a method for generating
multiple paraphrases from ambiguous logical
forms. The method is based on a chart structure
with edges indexed on semantic information
and annotations that relate edges to the seman-
tic facts they express. These annotations consist
of logical expressions that identify particular
realizations encoded in the chart. The method
allows simultaneous generation from multiple
interpretations, without hindering the genera-
tion process or causing any work to be superflu-
ously duplicated.

1 Introduction

This paper describes a new generation method that
produces multiple paraphrases from a semantic input
which may contain ambiguities. The method is an
extension of the chart based generation algorithm
described in Kay (1996). The focus in this presentation
is on generating multiple paraphrases and the ability to
operate on logical forms that contain more than one
semantic analysis. The lnotivation for this is to enable
a situation (particularly in machine translation) where
the resolution of ambiguity is postponed to after the
generation process. This may open the possibility for
considering target language statistics (Knight and
Hatzivassiloglou, 1995; Dagan et al., 1991) or more
generally for applying other criteria to select the "best"
translation, which take into account properties of both
languages - for example, prefering ambiguity preserv-
ing translations. It may also enable different kinds of
interactions between the translation system and the
human expert who operates i t - tbr instance, disambig-
uation by a monolingual in the target language.

The first demonstration of using charts for genera-
tion appeared in Shieber (1988). In that paper the
emphasis was to show that a uniform architecture can
be used for both parsing and generation, however the
conception of the chart was limited and the generation
algorithm did not appear to be sufficiently attractive.

Kay (1996) provides a mole general view of the chart
structure which is designed to provide for generation
advantages comparable to those it provides for pars-
ing. Neumann (1994) proposes another version of a
uniform chart architecture where the same data struc-
tures are used for both generation and parsing.

In this discussion of chart generation we will tbcus
on one key advantage of the chart structure: the fact
that equivalent phrases cml fit into larger structures
once, regardless of the number of alternatives that they
represent. This is achieved by collapsing different der-
iwttions that cover the same subset of input (and have
the same syntactic potential) under a single edge that
represents an equivalence class. This propeity is the
basis for the efficiency gained by using charts as it
allows a compact representation in which a polyno-
mial number of edges can potentially encode exponen-
tially many derivations. Thus, the ability to recognize
equivalence is an important aspect of chart processing
and it is essential that it will be available to the gener-
ation process.

We will uot describe the underlying generation
algorithm in detail but we assume that familiarity with
chart parsing is sufficient for understanding the pro-
posed method - the generator can be thought of as a
parser that takes logical forms as input and produces
strings as analyses. Like a packed parsing forest which
represents nmltiple parsing results, the chart generator
produces a "packed generation forest" to represent the
various string realizations of the semantics. In the
method we propose here, these forests are annotated
with information that enables keeping track of the rela~
tion between pieces of the semantics and the various
phrases that express them. We will concentrate on a
detailed description of these annotations as they are a
crucial component of our method and they are the
major difference between the current proposal and the
one described in Kay (1996). Belbre we do that we
will sketch a version of Kay's algorithm, emphasizing
data representations rather than algorithmic details.
We will also follow Kay in adopting a "flat" represen-
tation of event semantics to represent the logical forms
(Davidson, 1980; Parsons, 1990). This style of seman-

919

tics fits the operation of the generation algorithm very
well and it is attractive to translation since it allows for
flexibility and simplicity with regard to syntactic real-
ization and treatment of structural mismatches
between syntax and semantics. The flat structure is
also convenient for encoding unresolved ambiguities
(Copestake et al., 1996).

2 Kay's Chart Generation Algorithm

In his algorithm, Kay proposes to use two devices to
establish which phrases interact and when phrases can
be folded together under a disjunctive edge. One
device involves indexing edges on semantic variables
and another keeps track of which part of the semantics
each derivation expresses. In the semantic representa-
tion used in the algorithm, each fact is a predicate
specifying a relation between events and entities. The
events and entities are represented as variables that
appear in the predicates and connect the various facts
together. For example, the logical form

[chase(e,d,c), dogs(d), young(d), cats(c), young(c)]

denotes a chasing event (e) in which young dogs (d)
chase young cats (c). Given this semantics as its input,
the generator creates nominal edges with indices d and
c as a realization of [dogs(d),young(d)] and
[cats(c), young(c)], respectively, and verbal edges
with index e as a realization of [chase(e,d,c)]. The
packed generation forest encoding the four different
realizations of the semantics (obtained by freely
choosing between two ways of expressing each of the
arguments: "young dogs"/"puppies" and "young
cats"/"kittens") is given in figure 1.1

Concentrating on the first argument, the constitu-
ents which render facts about the "dog" (nodes 1 to 6)
are indexed on variable d; nodes 3 and 5 are folded
together under node 6 as they are syntactically and
semantically equivalent. The semantic equivalence is
established on the basis of the indexing variable and
the coverage of facts from the logical form.

In parsing, identifying the coverage of the input is
straightforward since phrases consist of consecutive
items and combine at common end-points; the cover-
age of each edge is uniquely defined by its string posi-

lNote that the traditional representation of charts (as transi-
tion diagrams) is not suitable for generation charts, essen-
tially because of the absence of fixed positions. In order to
simplify the exposition, we choose to represent the packed
generation forest as an AND-0R tree (in which OR-nodes rep-
resent equivalent alternations and AND-nodes represent
combination of daughters into larger constituents; OR-nodes
are distinguished by the little arcs between their branches).
Note that a forest representing multiple paraphrases can be
reentrant, as later examples will demonstrate.

<S,e> 15
[l l l l l l

<NP, d> 6
[01 lO0]

/ / / z ~ < < N P , d> 5
<NP, d> 3 [01100]
[o 11 oo1 I

< A d j , d > ~ 1 <N,d> 4 [011001
[OOloo] \ puppies
young <N,d> 2

[010001
dogs

<VP, e> 14
[10011]

[1oooo] \
chase \

<NP, c> 13
[00011]

~ ~ P,C> 12
<NP, c> 10 [00011]
[00011] <N, Ic> 11

< A d i . c > ~ [.OO011]
[00~)~1~ 8 ~ kittens

young <N,c> 9
[00010]
cats

Figure 1

tions. In generation this is not available since the
semantics is unordered and the formation of subsets is
relatively f r e e - different lexical entries may cover dif-
ferent parts of the input and different syntactic realiza-
tions may choose to pack different facts together.
Another source of complication comes from the fact
that the generation chart encodes multiple paraphrases
and we need to guarantee that a piece of semantics will
not be expressed more than once.

The mechanism used for keeping track of the
semantic coverage of each edge consists of a bit array
that represents the set of semantic facts. Each slot in
the array corresponds to one fact and indicates whether
the fact is expressed by that edge. When edges com-
bine to form a larger constituent, their arrays anion
together and checked to verify that no fact is dupli-
cated.

The new generation method we propose in this
paper is different from Kay's mainly in the criteria for
indexing phrases and the mechanism used for deter-
mining the semantic coverage. The next sections
describe these differences and demonstrate how they
can be deployed to enable generation from undisam-
biguated semantics.

3 Generation with Annotated Charts

We propose a coarser notion of equivalence in order to
let more phrases to be folded together. We still use the
semantic variables as indices but we do not let the bit
arrays be part of the identification of edges. We com-
pensate for this by using a more powerful (and admit-
tedly more complicated) mechanism to relate each
constituent to the subset of the semantics it realizes.

920

The mechanism consists of an array of boolean condi-
tions, each corresponding to one semantics fact. A
condition identifies a certain partial path in the packed
generation forest; when this path is selected, the corre-
sponding semantic fact is expressed.

In the simple cases, when a constituent expresses
the same semantic facts in all of its realizations, the
condition can indeed be thought of as binary: if a slot
contains 1 the corresponding fact is expressed by the
edge and conversely if it is 0. In more complicated
cases, when an edge has different realizations that
cover different parts of the semantics, the indications
in the arrays are given as boolean expressions com-
posed of propositional variables. Each disjunctive
edge in the chart is annotated with a set of such vari-
ables, each of which mutually exclusively defines a
particular alternative derivation of that edge. These
propositional variables compose into larger boolean
expressions that define derivations of larger structures.
For a general explanation of the method for using
boolean expressions to handle disjunctions, see Max-
well and Kaplan (1989).

The next example shows a chart with semantic
arrays and exemplifies how the conditions appearing
in their slots control realizations of the input. Consider
the following logical form:

[dog(d), plural(d), big(d), bark(e,d), loud(e)[

and the chart (forest) that would be constructed from it
by the generation algorithm:

<S,e> 11

[1 lpl lq2]

<S,e> 9 <S,e> lo
[l lp l l0] [l l p l l l l

<NP'd> 4 ~ ~ < V P , e> 8
[1 lpl00[\ [00011]

<NP, d> 3 / <VP, e> 6 <Adv,e> 7
[111001 / [00010[[O00011

I loudly
<Adj,d> 1 <N,d> 2 <V,e> 5
[00100] [ll000] [00010]
big dogs bark

Figure 2

In this drawing, the branches of the OR-nodes are
labeled with propositional variables and below each
edge is the array that indicates its coverage. For
instance, node 2, which expresses "dogs," covers the
first 2 facts, hence its array is [11000]; node 5 which
expresses "bark" contributes the 4th fact [bark(e,d)]

and accordingly, its array is [00010]. Nodes 4 and 11
are disjunctive with choices represented by the propo-
sition variables Pl,2 and ql,2 respectively. The NP of

edge 4 can be realized as "dogs" if P2 is chosen or as

"big dogs," if Pl is chosen. This is reflected in the third

slot of the array. It indicates that the third semantic fact
is expressible in condition Pl. Likewise, the top-most

S (node 11) is disjunctive since there are two ways to
form a sentence: either using the VP of node 6 or the
one of node 8, which also expresses the fifth fact about
the barking event being loud. This explains the reason
that expression of the fact [loud(e)[is conditioned on
the choice q2 (the 5th slot of the array in node 11). The

two conditions taken together mean that a complete
expression of the semantic input is conditioned on
both Pl and q2 being the choices in the relevant dis-

junctions.
This example begins to show how the various com-

ponents of the representation control the generation
process. Before we continue with examples of more
complex boolean conditions, we explain how the bool-
ean arrays are constructed and what exactly is their
logical interpretation.

3.1 Construction of the Boolean Arrays

In addition to the syntactic composition, the boolean
arrays of the daughter constituents union to form the
semantic array of the resulting mother constituent.
Usually one daughter will have an array like [...~0...],

the other [...013j...] and their combination will yield

[...oql~ j...]. However, if both daughters express a partic-

ular semantic item the boolean expressions of the cor-
responding slots need to be disjoined (from the point
of view of the mother they are alternative renditions).
However, to avoid expressing the same facts more
than once, a further constraint is required to guarantee
that only one of the disjuncts eventually get chosen.
This constraint is the negation of the conjunction of the
two conditions. So, if we combine [...¢q0...] with

[...[3j~...] the result is [...(cql~j)~j...] and the negative

condition ~(~i&l]j) is added as a filter to the mother

node. Whenever this node is traversed, the constraint
needs to be honored. Note that the negative constraints
are not composed into the boolean expressions. For a
more elaborate explanation of this device, see Shem-
tov (1996).

The meaning of combined conditions is the follow-
ing. A disjunction indicates that there are multiple but
mutually exclusive ways of expressing a certain
semantic fact. In the array [...(oqll3j)...] the fact corre-

sponding to the given slot can be rendered either by
choosing the ith branch of the oc disjunction or thejth
branch of the I~ disjunction. A conjunction defines a

921

part of a certain path in the forest. It means that at two
(or more) different nodes, only certain combinations
of branches can be selected. In the array [...(~&l~j)...]

we get a situation where in one oR-node (the ct dis-
junction) we need to select the ith branch and in
another (the]3 disjunction) we need to choose the jth
branch.

Another issue that is solved through the logical
interpretation of the conditions is determining that the
whole input is consumed. In parsing this is straightfor-
ward: there has to be a top-node from string position 0
to string position n. In the generation scheme devel-
oped here, this is much more complicated. Facts can be
expressed only under certain conditions and it needs to
be verified that the conditions are honored in a mutu-
ally consistent way. To determine whether all the
semantic facts are expressed, the boolean conditions
from all the slots in the array of the top node are con-
joined and the result is checked for satisfiability. If the
result is not satisfiable (no consistent assignment of
truth values) or if it is not consistent with the negative
constraints, then there is no path in the derivation
graph that corresponds to an expression of all the facts.
Admittedly, computing a satisfiable assignment to the
various propositional variables can be hard (exponen-
tial complexity in the general case), however certain
computational properties which are likely to exist
(independence between sets of variables) will tend to
make the computation much more efficient.

3.2 Paraphrases

Just as a parsing chart excels in compact representa-
tion of multiple interpretation of a single string, the
generation chart is designed to represent multiple
(string) realizations of the semantic interpretation and
compute them at a minimal cost. As the following
example demonstrates, the explicit encoding of condi-
tions in which each fact is expressed provides a pow-
erful way of controlling the realizations of the various
paraphrases. It also provides a way for verifying that
they do not overlap and express certain facts superflu-
ously. Let us assume that the verbs "enter" and "rush"
both decompose as movement verbs. The former
would be represented as [move(e,agent), into(e,loc)]
and the latter as [move(e,agent), quick(e)]. Also let us
assume that the meaning of a PP headed by "into" is
[into(e,loc)] and that [quick(e)] is also the semantics of
the adverb "quickly." With that, consider the follow-
ing logical form

[John(j), move(e,j), into(e,r), room(r), quick(e)]

and the packed generation forest representing its vari-
ous derivations (figure 3). The interesting action is in
the fifth slot. [quick(e)] can be expressed by satisfying
the condition qt&Pl&r2 which means choosing the left

<S,e> 16

[111 l((ql&pl&r2)lq2)]

<S,e> 15 <S,e> 14
[111 l(pl&r2)] [11111] [111 l(pl&r2)] [11111]

VP',e> l 3

01111]
re)

/ ~ <VP, e> I I <Adv,e>n
/ / [011 l(pl&r2)] [00001 l

y ~ u i c k l y

<NP, j> 4
[10000] <VEe> 9 <VEe> 10
John [011 lr2] [01110]

< V p p ~
[0100r2] <VU',e> 5 [00110] I

r l ~ r 2 [011001 ~ I
/ \ entered / " "q

<Vpp,e> 1 <Vpp,e> 2 <P,r> 6 <NP, r> 7
[01000] [01001] [00100] [00010]
moved rushed into the room

Figure 3

branches in nodes 16 and 11 and the right branch at
node 3. This path corresponds to the sentence "John
rushed into the room." Another expression can be
obtained by choosing q2 at node 16; this leads to node

13 on whose right branch the adverb "quickly"
expresses [quick(e)]. Now, this situation is interesting
because this fact is already contained in one of the
branches of node I l, as we have already seen. To
avoid expressing it twice, a further negative constraint
is placed on node 13 which requires pl&r2 to be false.

The constraint excludes the path that leads to a selec-
tion of the verb "rush" but it allows a choice of P2,

which means that "enter" can be used to yield "John
entered the room quickly." It also allows a choice of
the verb "move" since pl&rl represents a valid path.

This way the sentence "John moved into the room
quickly" is realized.

This example demonstrates how multiple para-
phrases are constructed out of a variety of lexical
entries and syntactic constructions and how a record is
kept relating the different phrases to the subsets of the
semantic facts that they express, it shows that the gen-
eration method is sensitive to the particular lexicaliza-
tion patterns that languages use to encode divergent
parts of the semantics.

9 2 2

4 Generation from Ambiguous Semantics

The logical encoding of the boolean conditions may
seem complex and indeed simpler solutions have been
proposed to encode the semantic coverage (in Kay's
algorithm for instance). However, the aim of the gen-
eration method we advocate here goes beyond rendi-
tion of fully specified semantics.

One translation situatiou that the annotated chart
approach can address very simply has to do with
optional and defeasible specifications. In many situa-
tions there may be certain specifications in the input
(discourse consideration, indication of preferences,
etc.) that may not be crucial to the adequacy of the
resulting expressions. For instance, in translation one
might prefer to maintain the source language subject
as the target language subject but be willing to accept
a translation which violates this if generation would
otherwise fail. This can happen when the source
expression is passive but the corresponding target lan-
guage verb does not passivize. Similarly, certain psy-
chological verbs come in pairs ("fear/frighten", "like/
please" etc.) but not in all languages, therefore a spec-
ification to express a pro:titular argument as the dis-
course topic might lead to a failure. For example,
translating "John likes it" into Spanish most naturally
comes out as "it pleases John." The idea is that in such
cases the generator will attempt to find an expression
that conveys (or honors) all the specifications, but if
such an expression is not admitted by the grammm" it
would still produce a grammatical result covering the
crucial parts of the input.

A more interesting problem that a chart with boor
can conditions can address is how to use ambiguous
semantics as an input to the generation process. Given
that exhaustive disambiguation is not always possible,
the idea is that the choice among the source language
analyses will be delayed and the whole set of semantic
interpretations will comprise the input to the genera-
tion process. The motivation is to gain more informa-
tion from the target language in order to improve the
quality of the choice. The crucial advantage that the
proposed generation method provides is that it enables
considering all of the semantic interpretations "at
once," avoiding the massive duplicated effort that
would result from enumerating the logical forms and
considering each one of them individually.

The next two simplified examples demonstrate
how logical forms which contain disjunctions can be
processed by the generator and how the rich logical
annotations relate the various paraphrases to the alter-
nations in the semantics. The first example demon-
strates a disjunction resulting from a structural
ambiguity. The expression "hydraulic oil filter" lends
itself to two different bracketings, corresponding to

"filter for hydraulic oil" and "hydraulic filter for oil."
These two interpretations are given in the following
disjunctive logical form:

[filter(f), oil(o), {hydraulic(o) I hydraulic(f)}]

Figure 4 shows the packed generation forest that
encodes the two (incidentally identical) strings that
express this piece of semantics.

<NP, f> 10
[1 lplql]

<NRf> 8 <NP, f> 9
[1 Ipl l] [lip10]

<Adj,f> 7 <N',f> 6
[0001] [1 lpl0]
hydraulic

<N',o> 4 <N,f> 5
[01p~0] [10001

< N , , o > P 3 ~ P2 filter

<Adj,o> I <N,o> 2
[0010] [01001
hydraulic oil

Figure 4

The generation from a disjunctive input proceeds
just as before, as if the disjunction is ignored and all
the semantic facts are given equal status. Then, when
the results of the generation are to be enmnerated, the
logical structure of the input reappears and affects the
interpretation of tile boolean array. In this example, we
know that either tile third fact or the fourth l~lct (but not
both) can be expressed. Accordingly, we allow either
the third or the fourth boolean condition to be satisfied.
If we choose to satisfy the former, we let Pl be true and

ql be false. This forces a traversal of nodes 9 and 3

which amounts to generating from [filter(f), oil(o),
hydraulic(o)]. If oil the other we choose to express the
other interpretation, we reverse the conditions. This
requires a selection of the left branch in node 10 (ql)

which means that [hydraulic(f)] gets expressed in node
7. At node 4 we refrain from expressing [hydranlic(o)]
since we set Pl (the condition in the third slot) to false.

This way we reconstruct the logical structure of the
disjunctive logical form and select one interpretation
at a time from the set of possible paraphrases.

The next example shows how an NP is generated
from a specification that results from a lexical ambigu-
ity. Let us consider the following logical form that
could be produced from analyzing "little dog" in a lm~-

9 2 3

guage that interprets "little" as an ambiguous adjective
denoting either smallness in size or youngness in age.

[dog(d), {small(d) I young(d) }

We assume that this semantics licenses "small dog,"
"young dog" and "puppy" (but not "young puppy" or
"small puppy"). Figure 5 shows the generation forest
that encodes these renditions of the input.

<NEd> 8

[1 (rl&p!)((rl&P2)lq2)]

<He, d> 7 X
[lpl(p21q2)], o , ~

<Adj,d> 3 <N,d> 6
[0plp2] [10q2]

<Adj,d> ! <Adj,d> 2 <N,d> 4 <N,d> 5
[010] [0011 [100] [101]
small young dog puppy

Figure 5

Node 3 merges two different adjectives which are
indexed on the same variable but express two different
facts; Node 6 merges two nominal phrases with com-
patible but not completely overlapping meanings.
Now, if our goal is to enumerate the paraphrases cor-
responding to the first interpretation, we satisfy the
condition in the second slot [small(d)] and dissatisfy
the condition in the third slot [young(d)]. As a result,
we select the left branches of nodes 8 and 3 so as to sat-
isfy h&pl. Note that at node 6 we can only choose the

left branch because otherwise the condition of the third
slot would also be satisfied, contrary to the mutually
exclusive nature of the semantic alternation. When the
goal is to generate the second interpretation, we
reverse the conditions and try to satisfy (rl&Pa)lq2. If

rl and p2 are set to true we get "young dog" If q2 is

selected we choose the right branches of nodes 8 and 6
and get "puppy."

These two examples demonstrate how we manipu-
late the boolean conditions of the semantic coverage
arrays to allow generation from a disjunctive input and
still gain the benefits of the chart generation algorithm.

5 Future Work

The method we propose in this paper can be deployed
as an infrastructure for solving certain other problems
in generation and translation. In future work (Shem-
toy, 1996) we intend to use the ideas developed here to
tackle the problem of ambiguity preserving transla-

tion. Our approach is to take a parsing chart as an
input, read from it an ambiguous logical form encod-
ing multiple source language interpretations and then
use it to create a generation chart encoding multiple
target language strings. A separate process will then
search for strings that express more than one interpre-
tation; If such strings are found, we say that the ambi-
guity of the source language is preserved by the target
language. We hope that by using this approach it will
be possible to avoid certain types of disambiguations
altogether.

Acknowledgments

I wish to thank Martin Kay, John Maxwell and Ronald
Kaplan for their interest, comments and encourage-
ment. I am also indebted to the anonymous reviewers
of this paper.

References

Copestake, Ann; Flickinger, Dan; Malouf, Robert;
Riehemann, Susanne and Sag, Ivan (1996). "Trans-
lation Using Minimal Recursion Semantics." In
Proceedings, 6th International Conference on The-
oretical and Methodological Issues in Machine
Translation.

Dagan, Ido; Itai, Alon and Schwall, Ulrike (1991).
"Two languages are more informative than one." In
Proceedings, 29th annual meeting of the ACL.
130-137.

Davidson, David (1980) Essays on Actions and
Events. Oxford: The Clarendon Press.

Kay, Martin (1996). "Chart Generation." In Proceed-
ings, 34th annual meeting of the ACL.

Knight, Kevin and Hatzivassiloglou, Vasileios (1995).
"Two-Level, Many-Paths Generation." In Pro-
ceedings, 33rd annual meeting of the ACL. 252-260

Maxwell, John T. III and Kaplan, Ronald M. (1989).
"A Method for Disjunctive Constraint Satisfac-
tion". In Current Issues in Parsing Technology,
edited by Masaru Tomita, 173-190. Kluwer.

Neumann, Giinter (1994). A Uniform Computational
Model for Natural Language Parsing and Genera-
tion. Ph.D. Thesis, University of the Saarland.

Parsons, Terence (1990). Events in the Semantics of
English. Cambridge, Mass.: MIT Press.

Shemtov, Hadar (1996). Ambiguity Preserving Trans-
lation. Ph.D. Thesis (in preparation), Stanford Uni-
versity.

Shieber, Stuart (1988). "A Uniform Architecture for
Parsing and Generation." In Proceedings,
COLING-88. 614-619.

924

