Learning Linear Precedence Rules

Vladimir Pericliev
Mathematical Linguistics Department
Institute of Mathematics and Computer Science, bl.§8
Bulgarian Academy of Sciences, 1113 Sofia—-Bulgaria
peri@bgearn.acad.bg

Abstract

A system is described which learns from
examples the Linear Precedence rules in
an Immediate Dominance/Lincar Prece-
dence grammar. Given a particular Iin-
mediate Dominance grammar and hicr-
archies of feature values potentially rel-
evant for linearization (=the system’s
bias), the learner generates appropriate
natural language expressions to be eval-
uated as positive or negative by a teach-
er, and produces as output Linear Prece-
dence rules which can be directly used hy
the grainmar.

1 Introduction

The manual compilation of a sizable granumar is
a difficult and time-consuming task. An impor-
tant subtask 1s the construction of word ordering
rules in the grammar. Though some languages
are proclaimed as having simple ordering rules,
e.g. either comnplete scrambling or strictly “fixed”
order, most languages exhibit quite complex reg-
ularities (Steele, 1981), and even the rigid word
order languages (like English) and those with to-
tal scrambling (like Warlpiri; cf. (Hale, 1983) may
show intricate rules (Kashket, 1981); hence the
need for their automatic acquisition. 'This task
however, to the best of our knowledge, has not
been previously addressed.

This paper describes a program which, given
a grammar with no ordering relations, produces
as oulput a set of linearization, or Linear Prece-
dence, rules which can be directly employed by
that grammar. The learning step uses the ver-
sion space algorithm, a familiar technique from
machine learning for learning from examples. In
contrast to most previous uses of the algorithm for
various learning tasks, which rely on priorly giv-
en classified examples, our learner genecrates itsclf
the training instances one at a thme, and they are
then classed as positive or negative by a teach-
er. A sclective generation of training instances is
employed which facilitates the learning by mini-

883

mizing the number of evaluations that the teacher
needs to make.

The next section describes the Immediate Doin-
mance/Linear Precedence grammar format. In
section 3, the task of learning Lincar Precedence
rules is interpreted as a task of learning from ex-
amples, and section 4 introduces the version space
methad. Section 5 1s a system overview, and scc-
tion 6 focuses on implementation. Tinally, some
Imitations of the system arc discussed as well as
some directions for future research.

2 Immediate Dominance/Linear
Precedence Grammars

A standard way of expressing the ordering of
nodes - a grammar is by means ol Linear
Precedence rules in Immediate Dominauce/Linear
Precedence (ID/LP) grammars. The ID/LP for-
mat was first introduced by (Gazdar and Pullum,
1981) and (Gazdar et. al., 1985) and is usually
assoclated with GPSG, but is also used by HPSG
(Pollard and Sag, 1987) and, under different guis-
cs, by other forinalisins as well.

In an ID/LP grammar, the two types of in-
formation, constituency (or, immediate domi-
nance) and lincar order, are separated. Thus,
for instance, an immediate dominance rule, say,
A— DB C D, with no Linear Precedence rules de-
clared, stands for the mother node A expanded
into 1ts siblings occurring in any order (six Con-
text Free Gramimar rules as result of the permuta-
tions). If the LP rule D < C'is added, the ID rule
can be expanded in the following three CFG rules:
A= BDC, A= DB C, A—DCB. 1D/LP
grammars capture an important ordering general-
1zation, missed by usual CFGs, by means of the so
called “IXxhaustive Partial Ordering Constraint”
stating that the partial ordering of any two sister
nodes 1s constant throughout the whole grammar.
That is, just one of the following three situations
1s valid for the ordering of any two nodes A and B:
cither A < B (A precedes B) or A > B (A follows
By or A <> B (A occurs in either position with
respect to 1), (The last <> situation is normal-
ly stated in ID/LP grammars by not stating an



LP rule, but we shall use it here, as we need an
explicit Feference to it.)

3 The Task of LP Rules
Acquisition Viewed As Learning
from Examples

A program which learns from examples usual-
ly reasons from very specific, low-level, instances
(positive or both positive and negative) to more
general, high-level, rules that adequately describe
those instances. Upon a common understanding
(Lea and Simon, 1974), learning from examples is
a cooperative search in two spaces, the instance
space, i.e. the space of all possible training in-
stances, and the rule (=hypotheses) space, i.e. the
space of all possible general rules. Besides these
two spaces, two additional processes are needed,
intermediating them: inferpretation and instance
selection. The interpretation process is needed, in
moving from the instance space to the rule space,
to Interpret the raw instances, which may be far
removed in form from the form of the rules, so that
instances can guide the search in the rule space.
Analogously, the instance selection rules serve to
transform the high-level hypotheses (rules) to a
representation useful for guiding the search in the
instance space.

A general description of our task is as follows:
Given a specific 1D grammar with no LP rules,
find those LP rules. ! In this task we also need
to reason from very specific instances of LP rules
(language phrases like small children, *children s-
mall) to more general LP rules (adjective < noun),
therefore it can be interpreted in terms of the two-
space model, described above.

QOur instance space will consist of all strings gen-
erable by the given ID grammar (the size of this
instance space for any non-toy grammar will be
very large). The LP rules space will be an un-
ordered set, whose elements are pairs of nodes,
connected by one of the relations <, > or <>,
eg LPset =[[A<B],[B<E],[E>C],.. ]|
(The size of the LI rules space will depend upon
the size of the specific ID grammar whose LP rules
are to be Jearned.)

We also need to define the interpretation and
instance-selection processes. In the learning sys-
tem to be described, for both purposes serves
(basically) a meta-interpreter for ID/LP gram-
mars, which can parse the concrete grammar, giv-
en at the outset, for both analysis and generation.
In an interpretation phase, the meta-interpreter
will parse a natural language expression out-
putting an LP-rules-space approriate representa-
tion, whereas in the instance-selection phase the

1Though indeed this is the usual way of looking at
the task, sometimes we may need to start with some
LP rules already known; the program we shall describe
supports both regimes.

884

meta-interpreter, given an LP space representa-
tion as input, will generate a language expression
to be classified as positive (i.e. not violating word
order rules) or negative (i.e. violating those rules)
by a teacher.

4 The Version Space Method

There are a variety of methods in the Al litera-
ture for learning from examples. For handling our
task, we have chosen the so called “version space”
method (also known as the “candidate elimination
algorithm”), cf. (Mitchell, 1982). So we nced to
have a look at this method.

The basic idea is, that in all representation lan-
guages for the rule space, there is a partial order-
ing of cxpressions according to their generalily.
This fact allows a compact representation of the
set of plausible rules (=hypotheses) in the rule s-
pace, since the set of points in a partially ordered
set can be represented by its most general and its
most specific elements. The set of most general
rules is called the G-set, and the set of most spe-
cific rules the S-sel.

Figure 1 illustrates the LP rules space of a de-
terminer of some grammatical number (singular
or plural) and an adjective, expressed i predicate
logic.

Viewed top-down, the hierarchy is in descending
order of generality (arrows point from specific to
general). The topmost LP rule is most general and
covers all the other rules, since det(Num), where
Num is a variable, covers both det(sg) and det(pl),
and <> covers both < and >. Fach of the rules at
level 2 are neither more general nor more specific
than each other, but are more general than the
most specific rules at the bottom.

The learning melhod assumes a set of positive
and negative examples, and its aim is to induce
a rule which covers all the positive examples and
none of the counterexamples. The basic algorithm
is as follows:

(1) The G-setis instantiated to the most gener-
al rule, and the S-set to the first positive example
(i.c. a positive is needed to start the learning pro-
cess).

(2) The next training instance is accepted. If it
is positive, from the G-sel are removed the rules
which do not cover the example, and the elements
of S-set are generalized as little as possible, so that
they cover the new instance. If the next instance is
negalive, then from the S-sel are removed the rules
that cover the counterexample, and the elements
of the G-sel are specialized as little as possible so
that the counterexample is no longer covered by
any of the elements of the G-set.

(3) The learning process terminates when the
G-set and the S-set are both singleton sets which
are identical. If they are different singleton sets,
the training instances were inconsistent. Other-
wise a new training instance is accepted.



det(Num) <> adj

7 X

det(sg) <> adj det(Num) < adj

\

det(Nuin) > adj det(pl) <> adj

VAN

det(sg) < adj det(pl) < adj

det(sg) > adj det(pl) > adj

[Figure 1: A Generalization hicrarchy

Now, let us sec how this works with the LI rules
version space in Figure 1, assuming further the
following classified examples ((+) ncans positive,
and (—) negative instance):

(+) det{sg) < adj
(~) det(sg) > adj
(+) det(pl) < adj

The algorithm will instantiate the (-set to the
most general rule in the version space, and the
S-sel Lo the first positive, obtaining:

G-set: [[det(Num) <> adj]]
S-set: [[det(sg) < adj]]

Then the next example will be accepted, which
is negative. The current S-sel docs not cover it,
s0 1t remains the saine; the G-setl is specialized as
little as possible to exclude the negative, which
yields:

G-set: [[det(Num) < adj]]
S-seb: [[det(sg) < adj]]

The last example is positive. The G-set remain-
s the same since it covers the positive. The S-sel
however does not, so it has to be minimally gen-
eralized to cover it, abtaining:

G-set: [[det(Num) < adj]]
S-set: [[det(Num) < adj]]

Thesc are singleton sets which are identical, and
the resultant (consistent) generalization is there-
fore: [det(Num) < adj]. 'That is, a deterniner of
any gramatical number must precede an adjec-
tive.

5 Overview of the Learner

Our learning program has two basic mwodules: the
version space learner which perflorms the clemen-
tary learning step (as described in the previous
section), and a meta-interpreter for [D/LP gran-
mars which serves the processes of interpretation
and instance selection (as described in section 3).

885

The learning proceeds in a dialog form with the
teacher: for the learning of each individual LP
rule, the system produces natural language phras-
es to be classified by the teacher until it can con-
verge to a single concept (rule). The whole process
ends when all LP rules are learned.

At the outset, the program is supplied with the
specific 1D grammar whose LP rules are to be ac-
quired, and the user-provided bias of the system.
‘The latter implies an explicit statement on the
part of the user of what features and values are
relevant to the task, by mputting the correspoud-
ing generalization hierarchies (the precedence gen-
eralization hierarchy is taken for granted).

In the particular implementation, the accept-
able ID grammar format is essentially that of a
logic grammar (Pcreira and Warren, 1980), (Dahl
and Abramson, 1990). We only use a double arrow
(to avoid mixing up with the often built-in Defi-
nite Clause Grammar notation), and besides emp-
ty productions and sisters having the very same
name are not allowed, since they interfere with
LP vules statements, cf. c.g. (Sag, 1987), (Saint-
Dizicr, 1988).

6 The Implementation

Below we discuss the basic aspects of the imple-
mentation, illustrating it with the 1D grammar
with no LP restrictions, given on Vigure 2.

The grammar will generate simple declarative
and interrogative sentences like The Jonses read
thes thick book, The Jonses read these thick books,
Do the Jonscs smile, ete. as well as all their (un-
gramiatical) perinutations Read this thick book
the Jounses, The Jonses read thick this book do,
cte.

The program knows at the outset that the val-
ues “sg” and “pl” are both more specific than the
variable “Num”, matching any number (this is the
bias of the system).

Step 1. The program determines the siblings



w

s

vp

vp

np
name
(sg)
n(pl)
det(sg)
det(pl)
det(.)
ad]

vir
vintr
aux

— et e b e e o s
St WA= O WO ~J Oy UL Q)N —

LUBLuedburydy

[

name, vp.
aunx, name, vp.

vir, up.

vintr.
det(Num),adj,n(Num).
[the-jonses].

[book].

books].

this].

these].

the].

thick].

read].

smile].

[do].

Figure 2: A simple ID grammar with no LP constraints

(=the right-hand sides of TD rules) that will later
have to be linearized, by collecting them in a par-
tially ordered list. Singleton right-hand sides (rule
(4) above and all dictionary rules) are thercfore
left out, and so are cuts, and “escapes to Pro-
log” in curly brackets, since they are not used to
represent tree nodes, but are rather constraints
on such nodes. Also, if some right-hand side is a
set which (properly) includes another right-hand
side (as in rule (2) and rule (1) above), the latter
is not added to the sibling list, since we do not
want to learn twice the lincarization of some two
nodes (“name” and “vp” in our case). The sib-
ling list then, after the hierarchical sorting from
lower-level to higher-level nodes, becomes:

[[aux,name,vp],[virup],[det{Num),adj,n(Num)]]

Now, despite the fact that the set of LP rules we
need to learn is itself unordered, the order in which
the program learns each individual LI rule may
be very essential to the acquisition process. Thus,
starting from the first eloment of the above sib-
ling list, viz. [aux, name, vp], we will be in trouble
when attempting to locate the misorderings in any
negatlive example. Considering just a single nega-
tive instance, say The Jonses read thick this book
do : What is(are) the misplacement(s) and where
do they occur? In the higher-level tree nodes [aux,
name, vp] or in the lower-level nodes [vtr, np| or
in the still lower [det(Num),adj,n(Num)] ?

Our program solves this problem by exploiting
the fact, peculiar to our application, that the n-
odes In a grammar are hiererchically structured,
therefore we may try to linearize a set of nodes
A and B higher up in a tree only after all lower-
level nodes dominated by both A and B have al-
ready been ordered. Knowing these lower-level LP
rules, our meta-interpreter would never generate
instances like The Jonscs read thick this book do,
but only some repositionings of the nodes [aux,
name, vp|, thetr internal ordering being guaran-

886

teed to be correct. The sibling list then, after hi-
erarchical sorting from lower-level to higher-level
nodes, becomes:

[[det(Num),adj,n(Num)],[vtr,np],[aux,name,vp]]

and the first element of this list 1s first passed to
the learning engine.

Step 2. The program now needs to produce a
first positive example, as required by the version
space method. Taking as input the first elemen-
t of the sibling list, the ID/LP mecta-interpreter
generates a phrase conforming to this description
and asks the teacher to re-order it correctly (if
needed). In our case, the first positive example
would be this thick book. The phrase will be re-
parsed in order to determine the hncarization of
constituents.

A word about the ID/LP parser/generator. Its
analysis role i1s needed in processing the first pos-
itive example, and the gencration role in the pro-
duction of language cxamples for all intermediate
stages of the learning process which are then e-
valuated by the teacher. The predicate obgerves
two types of LI constraints: the globally valid LI
rules that have been acquired by the system so far,
2 and the “transitory” LP constraints, serving to
produce an ordering, as required by an intermedi-
ate stage of the learning process.

Disposing of the ordering of constituents in the
positive example, the transilive closure of these
partial orderings is computed (in our case, from
([det(Nurm) < adj],[adj < n(Num)]] we get [[de-
t(Num) < adj], [ad] < n(Num]), [det(Num) <
n(Num)j]). This result is then cast into a rep-
resentation that supports our learning process. 3
20r are priorly known, in the case when the system
starts with some LP rules declared by the user.

3The concept we learn is actually a conjunction of
individual LP rules, when the right-hand side of a rule
consists of three or more constituents.



Dialog with user

LP rules space (inlernel representalion)

Actual TP rules

this thick book

Bx.: [det,sg, < adj,#,ad},<,n,o,# det,.,< n,.
(+) G: [[det,N,<> adj,#,adj,<>,n,.,#,det, <> n,_]j
S: [[(let)5g1<’adj)#7ad‘j:<any—r#y(let’)—7<7115—]]

| det(sg) < adj
adj < n(sg)
det(sg) < n(sg)

(7 Ix.:

[det,sg,<,adj, #,ad), <,un,_,#,dct,,>n, ]
(-) G: [[det,N, <> adj,#,adj,<>,n,.,#,det,,<,n,]]
S: [[det,sg,<,adj,#,adj,<,n,_,#,det, , <,n,]]

dei(sg) < ad)
adj < n(sg)
det(sg) > n(sg)

this book thick L‘EX

s [det sg, < adj, #,adj,> n,.,#,det,,<,u,]
(—-) G [[det,N,<>,ad], #,ad],<,n,_,#,dct,_,<,n,]]
S: {[det,sg,<,adj,#,adj,<,n,_,#,det,_,<,n,]]

det(sg) < adj
adj > n(sg)
det(sg) < n(sg)

' thick this book

X [detsg,> ad), #,ad),<n,_#,det,_ < ,n, ]
(=) G: {[det,N,<,ad},#,adj,<,n ., #,det,_, < n, ]]
S: [[det,sg, < ad),#,adj, <., #,det, < ;n,. v

det(sg) > adj
adj < n(sg)
| det(sg) < n(sg)

these thick books |

| Ex.: [det,pl,<,adj, #,adj,<.n,#,det, < n
(+) G: [[(l(zL,N,<,A‘d_],#,<1(I'|,<,n,_,#,dei,_,<,u,_]]
S: [[det,sg,<,adj,#,adj,<n,.#,det, < n,]]

det(pl) < adj
adj < n(pl)
det(pl) < n(pl)

Consistent generalization:
[(let’N)< )a(lj )# 1:'1‘(1.]. ’< YI] 1-’# ,(let1“’ < ’l] ’_}

det(N) < adj
ad) < n(N)
det(N) < n(N)

I'igure 3:

Step 3. The version space method 1s applied
and the individual LP rules, resulting from find-
ing a consistent generalization, are asserted in the
ID/LP grammar database to be respected by any
further generation process. *

IMigure 3 gives a learning cycle starting [vom the
sibling list element [det(Num),adjn(Num)]. The
first colummn gives the dialog with the teacher, the
sccond the program’s internal representation of
the I.P rules space, and the third those rules are
expressed in thetr more familiar, and final, torm
that can be utilized directly by the ID grammar.

After processing the first positive (first row),
the system generalizes by varying a paramcter
(number or precedence), verbalizes the general-
ization, the generated phrase is classified by the
teacher, then another generalization is made, de-
pending on the classification, it is verbalized, eval-
uated and so on. The process results in the three
LP rules: det(Num) < adj; adj < n(Num); and
det(Num) < n(Num).

A remark on notation: # delimits individual LP
rules, allowing their recovery in terms of Prolog
structures. The underbars, _, arc merely place-
holders for bound variables {(in our case, those
bound to “N”). Clearly, mutually dependent fea-
ture values need to be considered (i.e. varied by
the program) only once, and so they occur just
once in the expressions,

Several additional points regarding the learning
process need to be made.

* Assertions are actually made after checking for
consistency with LLI>’s already present in the database.
Though no contradictious may arise with «equired
rules, they may come from LP’s declared by the user
in the case when the system is started with some such

LP’s.

887

A sample session

T'he first is that after converging to a single LD
rule, it 1s tested whether this rule covers ell most
specific instances. For doing this, the stated gen-
cralization hicrarchies are taken into account a-
longside with the fact that in an 1D/LP format a
rule of the type A > B logically implies the nega-
tion of its “inverse rule” A < B. Thus, the rule
det(Num) < adj covers all potential most specif-
ic instances since the rule itself and its inverse
rule det(Num) > adj cover them, which is clearly
sceti on the generalization hierarchy in Figure 1.
Il some most specific nstances remain uncovered,
then they are fed again to the version space algo-
rithm for a second pass.

The sccond point is that when it 1s impossible
for somie structure to be verbalized due to contra-
dictory LI statements (as in the second row), the
system itsell evalnales this example as negative
and proceeds further.

We also need to emphasize that the program
selectively, rather than randomly, varics the po-
tentially relevant parameters (number and prece-
dence, in this particular case), atlemnpting to
converge the generalization process most quick-
ly. T'his is done in order to minimize the number
of training instances that neced to be gencrated,
and hence to minimize the number of evaluations
that the teacher needs to make. In other words,
being generalization-driven, the generator never
produces training instances which are superfluous
to the generalization process. This, In particu-
lar, allows the program to avoid outputting all
strings generable by the grammar whose LP rules
are heing acquired (notice, for instance, in the
first column of Figure 3 that no language expres-
sion involving the dictionary rule (11) det ()
= [thel from Figure 2 is displayed to the user).



In this respect our approach is in sharp contrast
to a learning process whose training examples are
given en bloc, and hence the teacher would, of
necessity, make a great lot of assessions that the
learner would never use.

Step 4. The learning terminates successfully
when all LP rules are found (i.e. all elements of
the sibling list are processed) and fails when no
consistent generalization may be found for some
data. The latter fact needs to be interpreted in the
sense that these data are not correctly describable
within the ID/LP format.

7 Conclusion and Future Work

We have described a program that learns the LP
rules of an ID/LP logic grammar in a form that
can be directly utilized by that grammar. This
task has not been addressed in previous work.

We conclude by mentioning some limitations of
the system suggesting future directions for inves-
tigation.

It is known that the version space method mis-
behaves on encountering noisy data: an instance
mistakenly classed as negative e.g. may lead to
premature pruning of a search branch where the
solution may actually lie. This may be a prob-
lem in our task (and perhaps in many other lin-
guistic tasks) since our assessments of grammati-
cal/ungrammatical word order are in some cases
far from definite yes/no’s. So handling uncertain
input is one way our research may evolve.

Another direction for future research is address-
ing the learning of word order expressed in more
complex formalisms than ID/LP grammars. It has
been proposed in the (computational) linguistics
literature (e.g. (Zwicky, 1986), Ojeda, 1988, Per-
icliev and Grigorov, 1994) that LP rules of the
standard format may be insufficient in some cas-
es, and need to be augmented with other ordering
relations like “immediate precedence” <<, “fist”,
“last”, etc., and more generally, that linearization
needs to be stated in complex logic expressions
connected by conjunction, disjunction and nega-
tion. We can trivially add the relation << to the
present learner, but the other parts of such pro-
posals seem beyond its immediate capacity, as it
stands. From our previous work on word order
we despose of a parser/generator that can han-
dle complex expressions, however we shall necd
to modify (or perhaps, even replace) our learning
method with one which is better suited to handle
logic constructions like disjunction and negation.

Acknowledgements. The research reported in
this paper was partly supported by contract I-

526/95.

888

References

V. Dahl and H. Abramson. 1990. Logic Gram-
mars, Springer.

G. Gazdar and G. Pullum. 1981, Subcatego-
rization, constituent order and the notion of
“head”. In M. Moortgat et. al. (eds). The S-
cope of Lexical Rules, Dordrecht, Holland, pages
107-123.

G. Gazdar, E. Klein, G. Pullum and I. Sag. 1985.
Generalized Phrase Structure Grammar. Har-
vard, Cambr. Mass.

K. Hale. 1983. Warlpiri and the grammar of non-
configurational languages. Natural Language
and Linguistic Theory, v.1, pages 5-49.

M. Kashket. 1987. A GB-based parser for
Warlpiri, a free-word order language. MIT Al
Laboratory.

G. Lea and H. Simon. 1974. Problem solving and
rule induction: A unified view. In .. Gregg
(ed). Knowledge and Cognition, Lawrence Frl-
baum Associates.

T. Mitchell. 1982. Generalization as search. Ar-
tificral Intelligence, 18, pages 203-226.

A. Qjeda. 1988. A linear precedence account of
cross-serial dependencies. Lingutstics aand Phi-
losophy, 11, pages 457-492.

F.C.N. Pereira and D.H.D Warren. 1980. Definite
Clause Grammars for Natural Language Anal-
ysis. Artificial Intelligence, 13, pages 231-278.

V. Pericliev and A. Grigorov. 1994, Parsing a
flexible word order language. COLING’94, Ky-
oto, pages 391-395.

C. Pollard and I. Sag. 1987. Information-Based

Syntaz and Semantics,vol.l: Fundamentals. C-
SLI Lecture Notes No. 13, Stanford, CA.

P. Saint-Dizier. 1988. Contextual discontinuous
grammats. In Naturel Language Understand-
wng and Logic Programmaing, 11, North-Holland,
pages 29-43.

[. Sag. 1987. Grammatical hierarchy and lin-
car precedence. In Synlar and Semantics, v. 12.
Discontinuous Constituency, Academic Press,
pages 303-340.

Richard Steele. 1981. Word order variation. In
J. Greenberg (ed). In Universals of Language,
v.4, Stanford.

A. Zwicky. 1986. Immediate precedence in GPSG.
0OSU WPL, pages 133-138.



