Reversible delayed lexical choice in a bidirectional framework

Graham Wilcock”

Centre for Computational Linguistics
University of Manchester Institute
of Science and Technology
PO Box 88, Manchester M60 1QD
United Kingdom
graham@ccl.umist.ac.uk

Abstract

We describe a bidirectional framework
for natural language parsing and genera-
tion, using a typed feature formalism and
an HPSG-based grammar with a parser
and generator derived from parallel pro-
cessing algorithms. We present an ap-
proach to delayed lexical choice in gener-
ation, based on subsumption within the
sort, hicrarchy, using a lexicon of under-
instantiated signs which are derived from
the normal lexicon by lexical rules. We
then show how delayed lexical choice can
be used in parsing, so that some types of
ill-formed inputs can be parsed, but well-
formed outputs are generated, using the
same shared linguistic information.

1 A bidirectional framework

In our bidirectional framework for a natural lan-
guage engine, the linguistic descriptions in the
grammar and lexicon are shared resources which
are used, in appropriately compiled forms, for
both parsing and generation. Like the Core Lan-
guage Engine (CLE) (Alshawi, 1992), we use
a unification-based phrasc structurce grammar, a
logical form representation, a bottom-up chart
parser and a semantic head-driven generation al-
gorithm. However, we differ from CLE by exploit-
ing recent developments in processing algorithms
and in linguistic representation formalisms. We
will clarify the similarities and differences at the
relevant points.

1.1 Processing algorithms

The SAX parser is a concurrent SICStus Prolog
implementation of the PAX parallel parsing algo-
rithin (Matsumoto and Sugimura, 1987; Matsu-
moto et al., 1994). Like the earlier BUP parser
to which the CLE parscr was closely related, SAX
uses partial execution to compile the grammar for
efficient bottom-up parsing. However, instead of

*Visiting researcher of Information Systems Prod-
uct Development Laboratories, Sharp Corporation.

758

Yuji Matsumoto
Graduate School of Information Science

Nara Institute of Science and Technology

8916-5 Takayama, Tkoma, Nara 630-01
Japan
matsu@is.aist-nara.ac. jp

building the chart by asserting edges into the Pro-
log database, SAX implements the chart by cre-
ating concurrent processes. For compiled rather
than interpreted Prolog systems, this is a highly
cfficient form of chart parsing, even on sequen-
tial machines. The terminal and non-terminal
symbols of the grammar arc realized as processes
which communicate via streams to build larger
structures. A meta-process monitors the streams
and controls the whole parsing process.

The SGX generator is a concurrent SICStus
Prolog implementation of the BCG parallel bidi-
rectional chart generation algorithm (Haruno ct
al., 1993; Den, 1994). SGX usecs partial exccu-
tion to compile the grammar for efficient gener-
ation. Like the CLE generator, SGX follows the
semantic head-driven (SHD) gencration algorithm
(Shieber et al., 1990) to ensure cfficient ordering of
the generation process. However, SGX also imple-
ments the suggestion of Shieber et.al. that back-
tracking and recomputation of results should be
avoided by using a chart, as in chart parsing. Like
SAX, SGX implements the chart by concurrent
processes and communication streams mounitored
by a meta-process.

SAX and SGX accept definite clause grammars,
with specific requirements to climinate nondetoer-
minism. Prolog code can be added to DCG rules
as extra conditions, but the extra conditions must
be deterministic. Empty categories are not sup-
ported in normal processing,! and SGX does not
allow non-chain rules with uninstantiated logical
forms.

1.2 Grammar formalism

Large DCG-based grammars typically have many
rules, many categorics, and many arguments por
category. Such grammars could be cfficiently pro-
cessed by SAX and SGX, but are difficult to de-

'If empty categorics are really necessary, they can
be handled in the concurrent processing system via a
meta-process. This approach is described in (Imaichi
and Matsumoto, 1995) for ill-formed inputs. However,
we eliminate traces by lexical rule, and welcome the
proposals of (Sag, 1995) for eliminating all empty cat-
egories from HIPSG.

velop and debug. CLIS addressed this problem by
adopting GPSG grammatical theory and express-
ing linguistic descriptions as feature structures,
but the CLE grammayr still had many arguments
per category and many rules. We adopt HPPSG
grammatical theory (Pollard and Sag, 1994) and
express linguistic descriptions in a typed feature
formalism, but we still implement the grammar in
DCG form.

Since HPSG collects all features into a struc-
tured sign, the many DCG arguments arc replaced
by a single HPSG sign. As HI’SG gencralizes
from category-based rules (for S, NP, cte.) to
schemas for phrasal signs, the many DCG rules
are replaced by a few generalized rules. We spec-
iy a scparate logical form (LIY) for generation,
as in (Shieber et al., 1990). Owr DCG categories
therefore have the format word(Sign) /LY and
phrasc(Sign) /LF.?

phrase(synsem!loc!(
cat! (head!HF &
subcat!@list1(SubjSynsem)) &
cont!Cont))/1f (Cont)
—=>
word (synsem!loc! (
cat! (head!HF &
subcat!@listi(SubjSynsem)) &
cont!Cont))/1f(Cont).

IFigure 1: The source form of a grammar rule

Figure 1 shows the source form of a simplified
version of HPPSG Schema 2 with zero complement
daughters. @listl is a template which expands to
a list with one member. The # symbol is required
by SGX to identify the semantic hiead of a chain
rule for SHD generation.

1.3 Grammar compilation

The ProlTT system (lirbach, 1995) is an exten-
sion of Prolog which supports a typed feature for-
malisin with multiple inheritance. CLI used a
sort hierarchy only for semantic selectional restric-
tions. HPSG uses a sort hicrarchy also for syntac-
tic restrictions, and exploits multiple inheritance
for lexicon organization.

In this paper we follow (Shicber et al., 1990) and
(Pollard and Sag, 1994) in cquating logical form with
semantic content. A separate logical forn is therefore
redundant, as the content feature could be used to
control SHD generation. However, logical form may
need to include other information, such as unscoped
quantifiers (HPSG gstore), presuppositions (IIPSG
context), pragmatic and discourse factors (in fact
Shieber et al. include mood operators). An impor-
tant consequence of this is that a semantic head in the
sense of the HPSG Content Principle is not necessar-
ily a semantic head in the sense of the SHD generation
algorithin.

759

ProFIT compiles the typed feature formalism
into Prolog terms, which can be used with any
appropriate parser or generator. We therefore use
ProlIT in order to combine ITPSG gramnar with
the SAX parser and the SGX generator, by com-
piling the grammar in two separate stages.

In the first stage, the typed feature structures
in the DCG rules are compiled by ProFIT into of-
ficient, Prolog terms. Like CLE, Prol'TT compiles
feature structwres into terms, so that relatively
slow unification of feature structures is replaced by
relatively fast unification of terms. Also like CLL,
ProFIT uses the technique of (Mellish, 1988) for
compiling finite domaing such as index agreement
into boolean vectors for fast unification,

In the second stage, the resulting DCG contain-
ing ouly Prolog terms is compiled separately by
the SAX translator for parsing and by the SGX
translator for generation. Grammar nles can be
labelled to be compiled only by SAX or only by
SGX, so that parsing could for example use some
rules with wider coverage than others used in gen-
cration, while sharing most of the grammar.

Like the carlier BUP parser; the SAX transla-
tor uses partial execution to produce efficient. code
for bottom-up chart, parsing. The SGX translator
compiles tables of chain rules and also uses partial
exccution to produce eflicient code for SHD chart
generation.

1.4 Lexicon compilation

We do not compile the lexicon ofl-line into a static
list of signs. Instead, the existence of a lexical sign
is proved on-line by lexical inference rules. We
specily a morphological lexicon intarface

morph_ lex(Form, Cat, [LF, Sign])
where Form is a specific morphological form, and
Sign is a typed feature structure. A lexical infer-
ence rule is shown in simplified form in Figure 2.
In ProFIT, sorts are written as <sort, and fea-
tures as feature!value.

morph_lex(Vbse, word, [1f(Cont),
synsen!loc! (
cat! (head! (vform!<bse &
aux!<n & inv'<n) &
subcat!@list1(loc!(
cat!(head!<noun &
subcat!<elist) &
cont! (Subj &
index'!<ref)))) &
cont! (Cont & <psoa &
quants!<elist &
nucleus! (reln'Reln &
Role!Subj)))1)

verb(Vbse, Reln, [np/Role]).

Figure 2: A morphlex rule for a verb base form

We use lexical inference rules to derive full
HPSG lexical signs from a database of simple Pro-
log clauses. Such rules can partially re-use avail-
able non-HPSG lexical information. The example
assumces a lexical entry such as

verb(walk, walkl, [np/agent])
specifying a verb with base form walk and sense
walkl, which subcategorizes for a noun phrase
subject assigned to a thematic role agent.

We also use rules like normal HPSG lexical
rules, to derive new signs from other lexical signs
for morphological derivations, complement extrac-
tion and so on. We have no automatic defaults,
80 these rules must be written carcfully. The sim-
plified example in Figure 3 instantiates nomina-
tive and 3rd singular in the first subcat item, and
copies the rest of subcat by unification.

morph_lex(V3sg, word, [1f(Cont),
synsem!loc! (
cat! (head! (vform!<fin &
aux!<n & invi<n) &
subcat! (first!loc!/(
cat! (head!case!<nom &
subcat !<elist) &
cont! (Subject &
index!agr! (3&sg))) &
rest!Rest)) &
cont! (Cont & nucleus!reln!Reln))])
morph_lex(Vbse, word, [1f(Cont),
synsem!loc! (
cat! (head! (vform!<bse &
aux!<n & inv!<n) &
subcat! (first!loc!(
cat! (head!<noun &
subcat!<elist) &
cont!Subject) &
rest!'Rest)) &
cont!Cont)]),
morph_infl(verb_3sg, Vbse, Reln, V3sg).

Figure 3: Lexical rule for 3rd singular verb form

The typed feature structures in the lexical rules
are compiled by ProFIT into Prolog terms. The
resulting rules arc then compiled by SICStus Pro-
log, together with the database of simple lexical
entries.

2 Delayed lexical choice

Delayed lexical choice is an established technique
in natural language generation. When a back-
tracking algorithm is combined with a lexicon of
morphological forms, there is considerable non-
determinism during syntactic generation, because
features required for a deterministic choice of mor-
phological form are not, yet instantiated. With de-
layed lexical choice, a lexicon of stems is used dur-

760

ing syntactic generation, and the choice of mor-
phological form is delayed to a postprocess. In-
stead of producing a string of word forms, syntac-
tic gencration produces a string of lexical itemns.
The morphological postprocess converts the lexi-
cal items to final lexical forms, when all required
syntactic features have become instantiated.

2.1 Monotonicity

Describing the implementation of delayed lexical
choice in the MiMo2 system, Shieber et al. (1990)
pointed out that only monoetonic rules (which fur-
ther instantiate the featurce structure of a lexi-
cal item but do not change it) can be delayed.
For example, the choice of singular or plural verb
form can be delayed until after the subject has
been generated, by performing syntactic gencra-
tion with a lexical item based on the verb stem,
which does not specify singular or plural. By con-
trast, a lexical rule for passivization which changes
the order of items on the subcat list is nonmono-
tonic. Both the active and the passive variants
must be made available as distinct lexical items
during syntactic generation.?

In an inheritance-based typed feature formal-
ism, monotonicity is built into the subsumption
relation in the sort hierarchy. A sort subsumes
its subsorts, which may further instantiate its fea-
tures, but cannot change them. We exploit the
monotonicity of subsumption in the sort hierarchy
in our implementation of delayed lexical choice.

2.2 Syntactic-semantic lexicon

In place of the MiMo2 lexicon of stems, we specify
a syntactic-semantic lexicon interface

synsem lex(Lex, Cat, [LF, Sign])
where Lex has no significance for generation. En-
tries in the syntactic-semantic lexicon are derived
by a small number of lexical rules from entries
in the morphological lexicon. Like the morph_lex
rules, the synsem.lex rules are compiled first by
ProFIT and then by SICStus Prolog.

To implement delayed lexical choice, we use the
synsem_lex interface during syntactic generation,
and then use the morph_lex interface in the mor-
phological postprocess. We must therefore ensure
that the delayed morph_lex rules will be mono-
tonic. We do that by ensuring that the synsem_lex
entries subsume the morph._lex entries from which
they are derived.

Figure 4 shows a simplified form of a synsem_lex
rule for verbs. The rule derives the synsem_lex en-
try from the morph_lex base form entry, in which
vform has a value of sort <bse. The subcat of the
synsem_lex entry is unificd with the subcat of the

*We currently make such variants available via al-
ternative forms of the lexicon access rule (Section 2.3).
This could be improved by using constraints to enable
subcat-changing rules to be delayed (van Noord and
Bouma, 1994; Meurers and Minnen, 1995).

morpl_lex entry, so that the synsem_lex cutry sub-
categorizes for the appropriate syntactic comple-
ments. The morph_lex base form entry is used so
that the agrecment features of the subject will not;
be restricted. The content values are also unified,
so that the synsem_lex entry includes the appro-
priate semantic roles. However, the head features
are not unificd. The synsem . lex vform has a value
of sort <vform, which is the immediate supersort
of the morph_lex vform sort <bse. Instead of full
unification, the synsem lex head features subsume
those of the morph_lex entry.

synsem_lex(Lex, word, [1f(Cont & <psoa),
synsem!loc!(
cat! (head! (vform!<viform &
aux!<n & inv'!<n) &
subcat!Subcat) &
cont!Cont)])
morph_lex(Lex, word, [1lf(Cont),
synsem!loc! (
cat! (head! (vform!<bse &
aux!<n & inv'!<n) &
subcat!Subcat) &
cont!Cont)]).

Figure 4: A synsem_lex rule for verbs

2.3 Grammar-lexicon interface

In DCG-based systems, the interface between the
grammar and the lexicon can often be specified by
a DCG rule which accesses the lexicon by means
of an extra condition. In owr framework, such a
rule might be:

word(Sign)/LF -->
[Wordl,
{morph_lex(Word, word, [LF, Signl)}.

However, since our coucurrent processing algo-
rithms require extra conditions to be determinis-
tic, such a rule would find only onc lexical entry
(the {irst unifiable one), which would depend on
the order of lexical rules and lexical entries.

For parsing this is not a problem because, like
CLE, we use a morphological preprocess which
performs lexicon access, building a morpheme lat-
tice to be passed to the syntactic parsing pro-
cess. Lexicon access is therefore separated from
the parsing algorithm, and is not required to be
deterministic.

For gencration with delayed lexical choice, we
use a modified form of the rule:

sgx word(Sign)/LF -->
[Sign],
{synsem_lex(Word, word, [LF, Sign])}.

The label ’sgx’ shows that the rule is to be com-
piled only by SGX, not by SAX. It differs from the

761

previous rule not only by accessing the syntactic-
semantic lexicon instead of the morphological lex-
icon, but also by specifying that the lexical item
is [Sign] instead of [Word]. That is, the output of
syntactic gencration is a string of HPSG signs.

2.4 Semantic head-driven generation

When syntactic generation begins, the SHD algo-
rithm uses chain rules (like the rule in Figure 1) to
identify the pivot, the scmantic head of the sen-
tence. The synsemn_lex entry for the pivot 1s then
accessed by the extra condition in the DCG rule
above.

Since the synsem_ lex entry for verbs (Figure 4)
does not specify subject. agrecinent or viorm sub-
type, but does specify subcategorization and se-
mantic roles, it can be used equally well as the sc-
mantic head to drive syntactic generation of, say,
a 3rd-singular finite clause or an infinitival com-
plement. Since a single entry can be used in this
way, the extra condition can be deterministic, as
required.

If the verb is the head of an infinitival com-
plement,; its vform becomes instautiated to <bse
from subcategorization by the auxiliary to. If the
verb is the head of the main clause, its viorin be-
comes instantiated to <fin (finite) by a rule for
grammatical units in our grammar.

After syntactic gencration, the string of HPSG
signs is converted to a string of word forms by a
morphological postprocess, which unifies the signs
with entries in the morphological lexicon. As the
signs are fully instantiated during syntactic gen-
cration, this postprocess 1s also deterministic.

3 Reversible delayed lexical choice

Most, forms of robust parsing are based on con-
straint relaxation. Qur approach to delayed lexi-
cal choice is based on using less instantiated signs
from the syntactic-scmantic lexicon, rather than
the more instantiated signs from the morpholog-
ical lexicon. This can be viewed as equivalent to
constraint relaxation. It therefore seems reason-
able to consider reversing the approach, using de-
layed lexical choice for parsing.

Constraint relaxation in parsing typically has
a two-pass approach. Strict parsing is attermpted
with normal grammar rules and the normal pars-
ing algorithm. If strict parsing fails to produce a
parse, relaxed parsing is attempted, using a mod-
ified algorithm or modified grammar rules. With
a lexicalist grammar like HPSG it seems more ap-
propriate to use modified lexical rules, as in our
syntactic-semantic lexicon.

In addition to the HPSG categories word and
phrase, we have a category gram_unit for grammati-
cal units which can be uttered independently. These
include finite scntences, accusative NPs, and others.
The rule for gramunit thus instantiates certain fea-
tures which arc required for well-formed generation.

However, in our approach to delayed lexical
choice we do not start with strict constraints and
then relax them. On the contrary, we start with
rclaxed constraints from less instantiated signs
and then further instantiate the signs as other con-
straints become available. Our approach is there-
fore incremental description refinement (Mellish,
1988) rather than constraint relaxation.

3.1 Parsing and generation with delay

When the syntactic-semantic lexicon is used for
generation, the logical form is the retrieval key,
and the name of the lexeme is irrelevant. In the
interface synsem _lex(Lex, word, [LF, Sign}),
the variable Lex does not need to be unified with
the name of the morpheme in the morph_lex entry,
and could be given another value, such as “verb”.
However, if we use the syntactic-semantic lexicon
for parsing, the value of this variable will be the
retrieval key. If the value is taken directly from
the words of the input string, it will not necessar-
ily unify with the name of the morpheme in the
morph_lex entry.

In the case of verbs (Figure 4), where the input
word may be an inflected form but the synsem. lex
entry uses the morph_ex entry for the base form,
we must first use the morphological preprocess to
obtain the “root” form of the word, which is the
same as the base form. We then use the root form
instead of the input form as the retrieval key. In
the case of pronouns, which take different forms
according to case and reflexivity but have no nat-
ural root form, the input form is used directly as
the retrieval key (Section 3.2).

Since the synsem_lex entry for verbs in Fig-
ure 4 does not restrict subject agreement, an ill-
formed input with incorrect subject-verb agree-
ment is parsed in exactly the same way as a well-
formed input. The'subject agreement in the verb’s
sign remains uninstantiated until the subject and
the verb phrase are combined by Schema, 1, when
the agreement features are instantiated to thosc
of the subject. So “she swim” is accepted, but
only “she swims” is generated in a finite clause.
The synsem.lex entry in Figure 4 also does not
restrict vform, which remaing uninstantiated until
the verb phrase is combined into a larger phrase.
So “she can swimming” is accepted, but only “she
can swim” is gencrated, since “can” subcatego-
rizes for a VP with vform of sort <bse.

3.2 Experimenting with delay

Of course, different specifications in the rules for
the syntactic-scmantic lexicon produce different
effects. In the synsem.lex entry for pronouns in
Figure 5, instead of unifying the head feature case
with the morph.ex entry, the head is specified
only as sort <noun, leaving the case unspecified.
There are distinct morph_lex entries for nomina-
tive and accusative forms of personal pronouns,

762

but it is irrelevant which one happens to be found
when the rule is executed, because the rule does
not, unify the head features which include case.
So the synsemex entry can be used deterministi-
cally for syntactic gencration, leaving the casc to
be instantiated from subcategorization by a verb
or preposition.

In parsing, the effect of this form of the rule
is that the casc of an input pronoun is ignored.
Whether this is good or bad depends on both the
langnage and the level of relaxation desired. This
form of the rule would clearly be unsuitable for
free word order languages, but seems useful for
English, accepting “for you and I” but generating
“for you and me”.

synsem_lex(Lex, word, [1f(SynsemCont),
synsem!loc! (
cat! (head!<noun &
subcat!<elist) &
cont! (SynsemCont & <pron &
index!Index &
restri<elist))])
morph_lex(Lex, word, [1f(MorphCont),
synsem!loc! (
cat! (head!<noun &
subcat!<elist) &
cont! (MorphCont & <pron &
index!Index &
restr!<elist))]).

Figure 5: A synsem.lex rule for pronouns

In Figure 5, the synsem _lex content value is not
unified with the morphlex content value. Only
the index values arc unified, including the gender,
number and person features essential for pronouns
(the restr values arc cinpty lists). The contant
values are constrained only to be of sort <pron
(pronominal). In the sort hierarchy, <pron has
subsorts <ana (anaphoric) and <ppro (personal-
pronominal), and <ana has its own subsorts <refl
(reflexive) and <recp (reciprocal). HPSG binding
theory is based on these sortal distinctions, which
are part of the content value.

Again, there are distinct morphlex entries for
reflexive and personal-pronominal forms, but it is
irrelevant which one happens to be found when the
rule is executed, because the rule does not unify
the content values. Therefore the synsem_lex en-
try can be used deterministically for syntactic gen-
eration before the sort becomes instantiated to
<ana or <ppro by the binding principles.

The effect of this form of the rule is to relax the
binding constraiuts in parsing, accepting “I saw
me” but generating “I saw myself”. Of course the
distinction between “They saw themselves” (co-
indexed) and “They saw them” (contra-indexed)
is also lost in parsing with this version. The bind-

ing constraints can be re-instated simply by unify-
ing the content valucs in the rule, but the above
version is not necessarily bad, for example in pars-
ing non-native English. The rule could be im-
proved by having alternative forms which distin-
guish 3rd and non-3rd person.

4 Conclusion

Our framework secks to combine the elegance of
a typed feature formalism and IPSG syntactic
theory with efficient processing. The ProFFTT sys-
tem gives an cflicient encoding of typed feature
structures. The SAX and SGX systemns use an ef-
ficient chart implementation, and their concurrent
processing algorithms give further motivation for
eliminating empty categories and reducing non-
determinism.

We have addressed the issuc of bidirectional use
of shared linguistic descriptions, rather than ro-
bust, parsing. However, the idea of using delayed
lexical choice in reverse makes it possible, without
modifying the parsing and generation algorithms,
to parse certain types of ill-formed inputs and to
gencrate corresponding well-formed outputs, us-
ing the same shared linguistic deseriptions.

Acknowledgements

The first author would like to thank My IHitoshi
Suzuki (Sharp Corporation) and Prof Jun-ichi
Tsujii (UMIST) for making this work possible. We
also thank Dr Kristiina Jokinen (NAIST) and the

anonymous reviewers for valuable comments.

References

Hiyan Alshawi, editor. 1992. The Core Languaege
I'ngine. The MIT Press.

Yasuharu Den. 1994, Gencralized chart algo-
rithm: an efficient procedure for cost-based ab-
duction. In 32nd Annual Mecting of the Associ-
ation for Computational Linguistics, pages 218-
225. Association for Computational Linguistics.

Gregor Erbach. 1995. ProFTIT: Prolog with Fea-
tures, Inheritance, and Templates. In Seventh
Conference of the European Chapter of the As-
sactation for Computational Linguistics. Asso-
clation for Computational Linguistics.

Masahiko Haruno, Yasuharu Den, Yuji Matsu-
moto, and Makoto Nagao. 1993. Bidirectional
chart generation of natural language texts. In
Proceedings of the Ileventh National Confer-
ence on Artificial Intelligence, pages 350--356.
AAAI Press/The MIT Press.

Osamu Imaichi and Yuji Matsumoto. 1995. In-
tegration of syntactic, semantic and contex-
tual information in processing grammatically

763

ill-formed inputs. In Proceedings of the Four-
teenth International Joinl Conference on Arti-
ficial Intelligence, pages 1435 40.

Yuji Matsumoto and Ryoichi Sugimura. 1987.
A parsing system based on logic programming.
In Proceedings of the Tenth International Joint
Confercnce on Artificial Intelligence, volume 2,
pages 671 4.

Yuji Matsumoto, Yasuharu Den, and Takechito
Utsuro, 1994. Koubun kaiseki shisutemu SAX,
shiyou setsumeisho (Parsing system SAX Man-
wal) version 2.1. Nara Institute of Science and
Technology.

Christopher S. Mellish. 1988. Implementing sys-
temic classification by unification. Computa-
tional Linguistic, 14(1):40 51.

W. Detmar Meurers and Guido Minnen. 1995, A
computational treatment of HPSG lexical rules
as covariation in lexical entries. In Proceedings
of the Fifth International Workshop on Natural
Language Understanding and Logic Program-
ming, Lisbon, Portugal.

Carl Pollard and Ivan Sag. 1994. Ilead-driven
Phrase Structure Grammar. University Pross,
Chicago.

Ivan Sag. 1995, English relative clause construc-
tions. Unpublished manuscript.

Stuart. M. Shicher, Gertjan van Noord, Fer-
nando C.N. Perecira, and Robert, C. Moorc.
1990. Semantic head-driven generation. Com-
putational Linguistics, 16(1):30--42.

Gertjan van Noord and Gosse Bouma. 1994,
Adjuncts and the processing of lexical rules.
In 15th International Conference on Compu-
tational Linguistics. Association for Computa-
tional Linguistics.

