
R e v e r s i b l e d e l a y e d l ex i ca l c h o i c e in a b i d i r e c t i o n a l f r a m e w o r k

G r a h a m W i l c o c k *
C e n t r e for C o m p u t a t i o n a l L i n g u i s t i c s

U n i v e r s i t y of M a n c h e s t e r I n s t i t u t e

of Sc i ence a n d T e c h n o l o g y

P O B o x 88, M a n c h e s t e r M60 1 Q D

U n i t e d K i n g d o m

grahamOccl, umis t , ac . uk

Yuj i M a t s u m o t o
G r a d u a t e S ch o o l of I n % r m a t i o n Sc i ence

N a r a I n s t i t u t e of Sc i ence a n d % c h n o l o g y

8916-5 T a k a y a m a , I k o m a , N a r a 630-01

, Japan

m a t s u ~ i s , a i s t - n a r a , ac . jp

A b s t r a c t

We describe a bidirectional framework
for natural language parsing and genera-
tion, using a typed feature formalism and
an HPSG-based grammar with a parser
and generator derived from parallel pro-
cessing algorithms. We present an ap-
proach to delayed lexical choice in gener-
ation, based on subsumption within the
sort hierarchy, using a lexicon of nnder-
instantiated signs which at'(; derived fi'om
the normal lexicon by lexical rules. We
then show how delayed lexical choice can
be used in parsing, so that some types of
ill-formed inputs can be parsed, but well-
formed outputs are generated, using the
same shared linguistic information.

1 A b i d i r e c t i o n a l f r a m e w o r k

In our bidirectional framework for a natural lan-
guage engine, the linguistic descriptions in the
grammar and lexicon are shared resources which
are used, in appropriately compiled forms, for
both parsing and generation. Like the Core Lan-
guage Engine (CLE) (Alshawi, 1992), we use
a unification-based phrase structure grammar, a
logical form representation, a bottom-up chart
parser and a semantic head-driven generation al-
gorithm. However, we (lifter from CLE by exploit-
ing recent developments in processing algorithms
and in linguistic representation formalisms. We
will clarify the similarities and differences at; the
relevant points.

1.1 Processing algorithms
The SAX parser is a concurrent SICStus Prolog
implementation of the PAX parallel pro'sing algo-
rithm (Matsutnoto and Sugimura, 1987; Matsu-
moto et al., 1994). Like the earlier BUP parser
to which the CLE parser was closely related, SAX
uses partial execution to compile the gramlnar for
efficient bottom-up parsing. However, instead of

*Visiting researcher of Information Systems Prod-
uct Development Lalmratories, Sharp Corporation.

building the chart by asserting edges into the Pro-
log database, SAX implements the chart by cre-
ating concurrent processes. For compiled rather
than interpreted Prolog systems, this is a highly
etficient form of chart, parsing, even on sequen-
tim machines. The terminal and non-terminal
symbols of the grammar are realized as processes
which communicate via streams to build larger
structures. A meta-process monitors tile strealns
and controls l;he whole parsing process.

The SGX generator is a concurrent SICStus
Prolog implementation of the BCG parallel bidi-
rectional chart generation algorithm (Haruno et
al., :1993; Den, 1.994). SGX uses partial execu-
tion to compile the grammar lot' efficient gener-
ation. Like the CLE generator, SGX follows the
semantic head-driven (SHD) generation algoril;hm
(Shieber et al., 1990) to ensure efficient ordering of
the geImration process. However, SGX also imple-
ments tile suggestion of Shieber et.al, thal; back-
tracking and recomputation of results should be
avoided by using a chart, as in chart parsing. Like
SAX, SGX implements the chart by concurrent
processes and coininunication streants monitored
by a meta-process.

SAX and SGX accept definite clause grammars,
with specific requirements to eliminate nondeter-
minism. Prolog code can be added to DCG rules
as extra conditions, but tile extra conditions must
be deterministic. Empty categories are not sup-
ported in normal processing, 1 and SGX does not
allow non-chain rules with uninstantiated logica.1
forms.

1.2 Grammar formalism
Large DCG-t)ased grammars typically have many
rules, many categories, and many arguments per
category. Such grammars could be efficiently pro-
tossed by SAX and SGX, but are ditficult to de-

l If empty categories are really imcessary, they can
be handled in the concurrent processing system via a
recta-process. This approach is described in (hnaichi
and Matsumoto, 1995) tbr ill-tbrmcd inputs. However,
we eliminate traces by lexical rule, and welcome tlte
proposals of (Sag, 1.995) for eliminating all empty cat-
egories from ItPSG.

758

veh)p and debug. CLE addressed this t)roblem t)y
adopting GPSG grammatical theory mid ext)ress-
ing linguistic descriptions as flmture structures,
but the CI,E grmnmm' still had many arguments
per category and many rules. We adopt Itl)SG
grammatical theory (Pollard and Sag, 1994) and
express linguistic descriptions in a l;yI)e(1 feature
formalism, lint we still ilnt)le, ii~lent the g rammar in
1)CG forln.

Sin(:e HPSG colle('.ts all fe, atures into a strut>
tured sign , the many I)CG a.rguments are repla(:ed
by a single HPSG sign. As H1)SG generalizes
fl'om category-based rules (for S, NP, el;t:.) to
schenms for phrasal signs, the many 1)CG rules
are rel)lat;ed 1)y a few generalized rules. We sl)ec-
ify a sepa.rate logi(:al form (LF) f()r generation,
as in (Shieber et al.,]990). Our I)CG' categories
therefore have the fin'mat w o r d (S i g n) / L F and
phrase (S i g n) / L F . 2

p h r a s e (s y n s e m ! l o c ! (
ca t ! (head!HF g

s u b c a t ! @ l i s t l (S u b j S y n s e m)
cont!Cont))/if(Cont)

w o r d (s y n s e m ! l o c ! (
ca t ! (head!HF &

s u b c a t ! @ l i s t l (S u b j S y n s e m)) &
cont!Cont))/If(Cont).

Figure 1: The sour(:e form of a g rammar rule

Figure 1 shows the source form of a simplified
version of I tPSG Scheina 2 with zero eoint)h',nmnt
daughters. ~ l i s t 1 is a l;emplate which ext)ands to
a list; wil;h one meml)ei'. The # symbol is required
by SGX to identify the semantic, head of ~ chain
rule for SlID generation.

1.3 G r a m m a r c o m p i l a t i o n

The P roFIT system (Erbaeh, 1995) iv an exten-
sion of fq'olog whic, h SUl)ports a typed feature for-
malisin with multiple inheiitalwe. CLE used a
sort hierarchy only for senlantie seleetional restric-
tions. HPSG uses a sort hierarchy also for syntac-
tic resl;rictions, aim exploits multiple inheritmme
for lexicon organization.

2In this pape, r we follow (Shieber et al., 1990) and
(Pollard add Sag, 1.994) in equating logical form with
semmltic content. A separate logical form is therefore
redundant, as the. content fe.ature could /)e used to
<:ontrol SHD generation. Itowever, logical form may
need to include other inforination, suet, as unscot)ed
quantifiers (HPSG qstore), i)resul)positions (IIPSG
context) , pragmatic and discourse factors (in fact
Shieber et al. include mood ot)erators). An impor-
tant consequence of this is that a semmttic head in the
sense of the IIPSG Content Princil)le is not necessar-
ily a semantic head in the sense of the StID generation
algorithm.

P roFIT compiles the, typed hmture formalism
into Prolog terlns, which can be used with any
appropriate parser or generator. We therefore use
I)roFIT in order to combine I[PSG g~ra,lrllIl&r with
the SAX l)a,i'ser and the SGX generator, 1)y (;{)tit-
piling the grmnmar in two separate stages.

In the tirst stage, the typed feature structures
in the I)CG rules are compiled by I ' r oF IT into ef-
ficient Prolog terms. Like CI,E, P r o F f l ' t:ompiles
feature, structures into terms, so that relatively
slow unification of fe, ature strucl;ures is ret)laced t)y
relatively fast mfitication of terins. Also like CLE,
l ' rol!Tl ' uses the technique of (Mellish, 1988) tbr
compiling finite domains such as index agreement
into booh;an vectors for fast unification.

In the second stage, tlle resulting I)C(] contain-
ing only Prolog terms is COml)ih',d sel)a.rately by
the SAX l, rmmlator t'or pa,rsing mid 1)y the SGX
trallsl&tor for generation. (~rgtHin&r rules Call 1)e
labelled to be compiled only by SAX or only by
SGX, st) thai, parsing could for e, xaml)le use some
rules with wider coverage l;han others used in gen-
ergttion, while sharing I[IOSt of the gra, innl&r.

Like the earlier BUP parser, the SAX transla-
t;or uses t)art;ial execution to t)roduee efficient code
for bol;1;om-ut) (:hart t)arsing. The SGX transla, tor
eontl)iles tal)les of chain rules and also uses partial
ex(~eution to l)rt)dut:e efliehmt code for Sill) (:ha,rt
ge, ncration.

1.4 L e x i c o n c o m p i l a t i o n

We, do not compile tile lexicon off:line ill/;() a static
list of signs. Instead, the existence of a lexieal sign
is proved on-line by lexical inlhrence rules. We
specify a morph, ological lexicon inl;erfiu:e

m o r p h _ l e x (F o r n , , Cat , [LF, Sign])
where N) r m is ~.~ specific morl)hological form, and
Sign is a typed li,~atut'e structure. A lexieal infer-
ence ruh, is shown in simplified form in Figure 2.
In ProFIT, sorts axe writl;en as < s o r t and fea-
tures as f e a t u r e ! va lue .

morph_lex(Vbse, word, [if(Cont),
synsem!loc!(

cat!(head!(vform!<bse &
aux!<n & inv!<n) &

subcat!@listl(loc!(
cat!(head!<noun

subcat!<elist
cont!(Subj g

index!<ref))))
cont!(Cont ~ <psoa &

quants!<elist &
nucleus!(reln!Reln

Role!Subj)))])

verb(Vbse, Rein, [np/Role]).

Figure 2: A morphJex rule for a verb base form

759

We use lexical inference rules to derive flfll
HPSG lexical signs from a database of simple Pro-
log clauses. Such rules can partially re-use avail-
able non-HPSG lexical information. The example
assumes a lexical entry such as
verb(walk, walk1, [np/agent])

specifying a verb with base form walJg and sense,
walk1, which subcategorizes for a noun phrase
subject assigned to a thematic role agent.

We also use rules like normal HPSG lexical
rules, to derive new signs fl'om other lexical signs
for morphological derivations, complement extrac-
tion and so on. We have no automatic defaults,
so these rules must be written carefully. The sim-
plified example in Figure 3 instantiates nomina-
tive and 3rd singular in the first subcat item, and
copies the rest of subcat by unification.

morph_lex(V3sg, word, [if(Cont),
synsem!loc!(

cat!(head!(vform!<fin
aux!<n & inv!<n)

subcat!(first!loc!(
cat!(head!case!<nom

subcat!<elist)
cont!(Subject

index!agr!(3&sg)))
rest!Rest))

cont!(Cont & nucleus!reln!Reln))])

morph_lex(Vbse, word, [if(Cont),
synsem!loc!(

cat!(head!(vform!<bse
aux!<n & inv!<n)

subcat!(first!loc!(
cat!(head!<noun

subcat!<elist)
cont!Subject) g

rest!Rest))
cont!Cont)]),

morph_infl(verb_3sg, Vbse, Reln, V3sg).

Figure 3: Lexical rule for 3rd singular verb form

The typed feature structures in the lexical rules
are compiled by P r o F I T into Prolog terms. The
resulting rules arc then compiled by SICStus Pro-
log, together with the database of simple lexical
entries.

2 Delayed lexical choice

Delayed lexical choice is an established technique
in natural language generation. When a back-
tracking algorithm is combined with a lexicon of
morphological forms, there is considerable non-
determinism during syntactic generation, because
features required for a deterministic choice of mor-
phological form are not yet instantiated. With de-
layed lexical choice, a lexicon of stems is used dur-

ing syntactic generation, and the choice of mor-
phological form is delayed to a postprocess. In-
stead of producing a string of word forms, syntac-
tic generation produces a string of lexical items.
The morphological postprocess converts the lexi-
cal items to final lexical forms, when all required
syntactic features have become instantiated.

2.1 Monotonicity
Describing the implementat ion of delayed lexical
choice in the MiMo2 system, Shieber et al. (1990)
pointed out that only monotonic rules (which tilt-
ther instantiate the feature structure of a lcxi-
cal i tem but do not change it) can be delayed.
For example, the choice of singular or plural verb
i'orm can be delayed until after the subject has
been generated, by perforIning syntactic genera-
tion with a lexical i tem based on the verb stem,
which does not specify singular or plural. By con-
trast , a lexical rule for passivization which changes
the order of items on the subcat list is nonmono-
tonic. Both the active and the passive variants
must be made available as distinct lexical items
during syntactic generation, a

In an inheritance-based typed feature formal-
ism, monotonicity is tmilt into the subsumption
relation in the sort hierarchy. A sort subsumes
its subsorts, which may further instantiate its fea-
tures, but cannot change them. We exploit tile
monotonicity of subsumption in the sort hierarchy
in our implementat ion of delayed lexical choice.

2.2 Syntactic-semantic lexicon
In place of the MiMo2 lexicon of stems, we specify
a syntactic-semantic lezicon interface

synsemJex(Lex, Cat, [LF, Sign])
where L e x has no significance for generation. En-
tries in tile syntactic-seInantic lexicon are derived
by a small number of lexical rules from entries
in the morphological lexicon. Like the morph Jex
rules, the synsem_lex rules are compiled first, by
P roFIT and then by SICStus Prolog.

To implement delayed lexical choice, we use the
synsem_lex interface during syntactic generation,
and then use the morph_lex interface in the mor-
phological postprocess. We must therefore ensure
that the delayed morph_lex rules will be mono-
tonic. We do that by ensuring that tile synsem_tex
entries subsume the morphJex entries from which
they are derived.

Figure 4 shows a simplified form of a synsem_lex
rule for verbs. The rule derives the synsemJex en-
t ry from tile morphJex base form entry, in which
vform has a vahm of sort <bse. The s u b c a t of the
synsem_lex entry is unified with the s u b c a t of the

awe currently make such variants available via al-
ternative forms of the lexicon access rule (Section 2.3).
This could be improved by using constraints to enable
subcat-changing rules to be delayed (van Noord and
Bouma, 1994; Meurers and Minnen, 1995).

760

morph_lex entry, so that the synsem_lex entry sub-
categorizes for the appropriate synt;actic comple-
inents. The morptl_lex base form entry is used so
that the agreement Datures of tile subject, will not
t)c restricted. The c o n t e n t vahte, s are also unified,
so that the synseni_lex entry inchldes the appro-
I)riate semantic roles. However, the head Datures
are not unified. Tile synsemJex vform has a value.
of sort <vform, wtfich is tim immediate supersort
of the mort)hJex vform sort, <bse. Instead of flfll
unification, the synselnJex hea(l feat,ures sut)sumc
those of the morI)hJex entry.

s y n s e m _ l e x (L e x , word, [If(Cont g <psoa),
synsem!loc!(

cat!(head!(vform!<vform
aux!<n & inv!<n)

subcat!Subcat)
cont!Cont)])

morph_lex(Lex, word, [if(Cont),
synsem!loc!(

cat!(head!(vform!<bse
aux!<n & inv!<n)

subcat!Subcat)
cont!Cont)]).

Figure. 4: A synsem_le.x rule for verbs

2 .3 G r a m m a r - l e x i c o n i n t e r f a c e

In I)CG-based systems, the interface between the
grammar and the lexicon can often }m speciiied by
a DCG rule which accesses the lexicon by means
of an extra condition. In our fl'amework, such a
rule might, be:

word (S i g n) / L F - ->
[Word] ,
{morph_lex(Word, word, [LF, Sign])}.

Ilowevcr, since our concurrent t)roeessing algo-
rithms require extra conditions to be determinis-
tic, such a rule would find only one lexical entry
(the first unifiable one), which would depend on
the order of lexical rules and lexical entries.

For parsing this is not a problem because, like
CLE, wc use a morphological preprocess which
performs lexicon access, building a morpheme lat-
tice to be passed to the syntactic parsing pro-
tess. Lexicon access is therefore separated from
the parsing algorithm, and is not required to be
deterministic.

For generation with delayed lexical choice, we
use a modified form of the nile:

sgx w o r d (S i g n) / L F - ->
[Sign],
{synsem_lex(Word, word, [LF, Sign])}.

The label 'sgx' shows that the rule is to be com-
piled only by SGX, not by SAX. It differs from the

previous rule not only by accessing the synt,act,ic-
semantic lexicon instead of dm morphological lex-
icon, but also by speci[ying that the lexical item
is [Sign] instead of [Word]. That is, the output of
syntactic geueration is a string of HPSG signs.

2 . 4 S e m a n t i c h e a d - d r i v e n g e n e r a t i o n

When syntactic generation begins, the StlD algo-
rithm uses chain rules (like the rule ill Figure 1) to
identify tim piw)t, the semantic head of the scn-
t,ence. The synsem lex entry for the pivot is then
accessed by the. extra condition in tile DCG rule
above..

Since the synsem_lex entry for verbs (Figure 4)
does not specify subject agreement or vform sub-
type, but does specify subcategorization and se-
mantic roles, it can be used equally well as the sc.-
mantle head to drive syntactic generation of, say,
a 3rd-singular finite clause or an infinitival eom-
t)lemt;nt. Since a single entry ('.all be used in this
way, the extra condition can be detcrtninist,ic, as
required.

If the verb is the head of an infinitiwll con>
p]enlent, its vfornl l/econles ilmtant,iat,ed to <bse
fl'om subcategorization by the auxiliary to. If t,hc
vert) is the head of tlte main clause, its vform be-
eonms instantiated to <f in (finite) by a rule R)r
grammatical mfit,s in our grantmar. 4

After syntactic generation, the string of I{PSG
signs is conw~rted to a string of word forms by a
morphological t)ostprocess, which unifies the signs
with entries in the. inorphological lexicon. As the
signs are t]llly instantiated during syntactic gen-
eration, this postprocess is also deterministic.

a Revers ib l e de layed lexical choice

Most forms of robust parsing are based on coil-
straint, relaxation. Our approactl to delayed lexi-
cal choice is based on using less instantiated signs
flom the syntactic-semantic lexicon, rather than
the more instant,iated signs from the morpholog-
ical lexicon. Tiffs can be viewed as equivalent to
constraint, re.laxation. It therefore seelns reason-
able to consider reversing the approach, using de-
layed lexical choice for parsing.

Constraint, relaxer,ion in parsing typically has
a two-pass approach. Strict parsing is attempted
with normal gralmnar rules and the normal pars-
ing algorithm. If strict parsing fails to produce a
parse, relaxed parsing is attempted, using a mod-
ified algorithm or modified grammar rules. With
a lexicalist grammar like HPSG it seems more ap-
propriate to use modified lexical rules, as in our
syntactic-semantic lexicon.

4In addition to the HPSG categories word and
phrase, we have a category gram_unit for grammati-
cal units which can be uttered independently. These
include finite sentences, accusative NPs, and others.
The rule for gram_unit thus instantiates certain tha-
I, ures which arc" required for well-formed generation.

761

However, in our approach to delayed lexieal
ehoice we do not start with strict constraints and
then relax them. On the contrary, we start with
relaxed constraints from less instantiated signs
and then further instantiate the signs as other con-
straints become available. Our approach is there-
fore incremental description refinement (Mellish,
1988) rather than constraint relaxation.

3.1 Parsing and generation with delay
When the syntactic-semantic lexicon is used for
generation, tile logical form is the retriewfl key,
and the name of the lexeme is irrelewmt. In tile
interface synseIn_lex(Lex, word, [LF, Sign]),
the variable Lex does not need to be unified with
the name of the morpheme in tile morph_lex entry,
and could be given another value, such as "verb".
However, if we use the syntactic-semantic lexicon
for parsing, tile value of this variable will be the
retrieval key. If the value is taken directly from
the words of the input string, it will not necessar-
ily unify with the name of the morpheme in the
morph_lex entry.

In the case of verbs (Figure 4), where the input
word may be an inflected form but the synsem_lex
entry uses the m orphJ ex entry for the base form,
we nmst first use the morphological preprocess to
obtain tile "root" form of the word, which is the
same as the base form. We then use tile root form
instead of the input form as the retrieval key. In
the ease of pronouns, which take different forms
according to case and reflexivity but have no nat-
ural root form, the input form is used directly as
the retrieval key (Section 3.2).

Since the synsem_lex entry for verbs in Fig-
ure 4 does not restrict subject agreement, an ill-
formed input with ineorrect subject-verb agree-
ment is parsed in exactly the same way as a well-
formed intmt. The 'subject agreement in the verb's
sign remains uninstantiated until the subject and
the verb phrase are combined by Schema 1, when
the agreement features are instantiated to those
of the subject. So "she swim" is accepted, but
only "she swims" is generated ill a finite clause.
Tile synsemAex entry in Figure 4 also does not,
restrict vform, which remains uninstantiated until
the verb phrase is combined into a larger phrase.
So "she can swimming" is accepted, but only "she
can swim" is generated, since "can" subeatego-
rizes for a VP with vform of sort, <bse.

3.2 Experimenting with delay

Of course, difl'erent specifications in tile rules for
the syntactic-semantic lexicon produce different
etfects. In tile synsem_lex entry for pronouns in
Figure 5, instead of unifying tile head feature case
with the morphJex entry, the head is specified
only as sort <noun, leaving the case unspecified.
There are distinct morphJex entries for nomina-
tive and accusative forms of personal pronouns,

but it is irrelevant which one happens to be found
when the rule is executed, because the rule does
not unify the head features which include case.
So the synsem_lex entry can be used deterministi-
(:ally for syntactic generation, leaving tile case to
be instantiated from subcategorization by a verb
or preposition.

In parsing, tile effect of this form of the rule
is that the case of an input, pronoun is ignored.
Whether this is good or bad depends oil both the
language and tile level of relaxation desired. This
form of the rule would clearly be unsuitable tbr
free word order languages, but seems useful for
English, accepting "for yon and I" but generating
' ~ f o r y o u a n d n l e '~ .

synsem_lex(Lex, word, [if(SynsemCont),
synsem!loc!(

cat!(head!<noun
subcat!<elist)

cont!(SynsemCont & <pron
index!Index
restr!<elist))])

:-

morph_lex(Lex, word, [if(MorphCont),
synsem!loc!(

cat!(head!<noun
subcat!<elist)

cont!(MorphCont ~ <pron
index!Index
restr!<elist))]).

Figure 5: A synsem_lex rule for pronouns

In Figure 5, the synsem_lex content value is not
unified with the morphJex c o n t e n t vahm. Only
the index values are unified, including tile gender,
number and person features essential for pronouns
(tile restr vahms are elnpty lists). The contant
values are constrained only to be of sort <pron
(pronominal). Ill the sort hierarchy, <pron has
subsorts <ana (anaphoric) and <ppro (personal-
pronominal), and <ana has its own subsorts < re f 1
(reflexive) and <recp (reciprocal). HPSG binding
theory is based on these sortal distinctions, which
are part of the content value.

Again, there are distinct morphJex entries for
reflexive and personal-pronominal forms, but, it is
irrelevant which one happens to be found when the
rule is executed, because the rule does not unify
the c o n t e n t values. Therefore the synsemJex en-
t ry can be used deterministically for syntactic gem
eration before the sort, becomes instantiated to
<ana or <ppro by the binding principles.

Tile effect of this form of tile rule is to relax the
binding constraints in parsing, accepting "I saw
me" but generating "I saw myself". Of course tile
distinction between "They saw themselves" (co-
indexed) and "They saw them" (eontra-indexed)
is also lost in parsing with this version. The bind-

762

ing constraints can l)e re-instated simply by unify-
ing the c o n t e n t values in the rule, but the above
version is not neee.ssarily bad, for example in pars-
ing non-native English. The rule could t)e im-
t)roved by having alternative forms which distin-
guish ard and non-ard person.

4 Conclusion

Our fralnework seeks to combille the elegance of
a typed feature fornlalisln and IIPSG syntactic
theory with efficient processing. The ProFIT sys-
tem gives an efticient encoding of typed feature
structures. The SAX and SGX systems use an ef-
ficient (:hart implementation, and their concurrent
processing algorithms give turther motivation for
eliminating enlpty categories and reducing non-
determinism.

Wc have addressed the issue of bidirectional use
of shared linguistic descril)tions, rather than ro-
bust parsing. Itowevcr, the idea of using delwed
lexical choice in reverse makes it possible, widlout
modifying the parsing and generation algorithms,
to parse certain types of ill-formed inputs and to
generate corresponding well-formed outpul, s, us-
ing the same shared linguistic descril)tions.

Acknowledgements

The first author would like to thank Mr Ilitoshi
Suzuki (Sharp Cort)oration) and Prof aun-ichi
Tsujii (UMIST) for making this work possible. We
also thank Dr Kristiina aokinen (NAIST) and the
anonymous reviewers for valuable conlinetll;s.

References

Hiyan Alshawi, editor. 1992. The Core Language
Engine. The MIT Press.

Yasuharu l)en. 1994. Generalized chart algo-
rithm: an efficient t)rocedure for cost-based ab-
duction. In 32nd Annual Meeting of the Associ-
ation for Computational Linguistics, pages 218
225. Association for Computational Linguistics.

Gregor Erbaeh. 1995. ProFIT: Prolog with Fea-
tures, Inheritance, and Templates. In Seve'nth
Conference of the European Chapter of the As-
sociation fin" Computational Linguistics. Asso-
ciation for Computational Linguistics.

Masahiko Haruno, Yasuhm'u Den, Yuji Matsu-
mote, and Makoto Nagao. 1993. Bidirectional
chart gene.ratioil of natural language texts. In
Proceedings of the Eleventh National Confer-
ertcc on Artificial lntclligence, pages 350 356.
AAAI Press /The MIT Press.

Osamu hnaichi and Yuji Matsumoto. 1995. In-
tegration of syntactic, semantic and contex-
tual information in processing grammaticMly

ill-fi)rmed inputs, in I)~vccedings of the Four-
teenth International Joint Conference on Arti-
ficial lntelligenes, pages 1435 40.

Yuji Matsumoto and]{yoichi Suginmra. 1987.
A parsing system based on logic programming.
In Proceedings of the Tenth International Joint
Conference on ArliJieial Intelligence, volmne 2,
pages 671 4.

Yuji Matsumoto, Yasuharu l)en, and Takehito
Utsuro, 199,1. Koubun kaiseki shisutem'a SAX,
shiyou setsumcisho (Parsing system SAX Man-
hal) w'.rsio'u 2.1. Nm'a Institute of Sci('nc(~ and
Technoh)gy.

Christoph(:r S. Mellish. 1988. hnph'mcnting sys-
temic classification |)y mfitication. Compv.ta-
tional Linguistic, 14(1):40 51.

W. Detmar Meurers an([Guido Minnen. 1995. A
(:omputational treatment of IIPSG lexical rules
as cow~riation in lexical entries. In Proceedings
of the I~fth International Workshop on Natural
Language Understanding and Logic l'rogram-
ruing, Lisbon, Portugal.

Carl Pollard and Ivan Sag. 1994. Head-driven
Phrase Structure Grammar. University l'ress,
Chicago.

Ivan Sag. 1995. English relativ(• (:lausc construe-
dons. Unpublished inanuscript.

Stuart M. Shiet)er, Gertjan wm Noord, Fer-
nando C.N. P(;reira, and l{obert C. Moore.
1990. Semantic head-driven generation. Con>
putational Linguistics, 16(1):30 42.

Gertjan van Noord and Gosse Bouina. 1994.
Adjuncts and the 1)recessing of lexical rules.
In 15th International Conference on ComFu-
rational Linguistics. Association for Computa-
tional IAnguistics.

763

