
An Earley- type recognizer for d e p e n d e n c y g r a m m a r

Vincenzo Lombardo and Leonardo Lesmo
Dipartimento di lnformatica and Centro di Scicnza Cognitiva

Universith di Torino
c.so Svizzcra 185, 10149 Torino, Italy
e-mail: {vincenzo, lesmo}@di.unito.it

Abstract
The paper is a first attempt to fill a gap in the
dependency literature, by providing a
mathematical result on the complexity of
recognition with a dependency grammar. The
paper describes an improved Earley-type
recognizer with a complexity O(IGl2n3). The
improvement is due to a precompilation of the
dependency rules into parse tables, that determine
the conditions of applicability of two primary
actions, predict and scan, used in recognition.

1 Introduction

Dependency and constituency frameworks define
different syntactic structures. Dependency grammars
describe the structure of a sentence in terms of binary
head-modifier (also called dependency) relations on
the words of the sentence. A dependency relation is
an asymmetric relation between a word callexl head
(governor, parent), and a word called modifier
(dependent, daughter). A word in the sentence can
play the role of the head in several dependency
relations, i.e. it can have several modifiers; but each
word can play the role of the modifier exactly once.
One special word does not play the role of the
modifier in any relation, and it is named the root. The
set of the dependency relations that can be defined on
a sentence form a tree, called the dependency tree
(fig. la).

Although born in the same years, dependency
syntax (Tesniere 1959) and constituency, or phrase
structure, syntax (Chomsky 1956) (see fig.lb), have
had different impacts. The mainstream of formalisms
consists ahnost exclusively of const i tuency
approaches, but some of the original insights of the
dependency tradition have found a role in the
constituency formalisms: in particular, the concept of
head of a phrase and the use of grammatical relations.

The identification of the head within a phrase has
been a major point of all the recent frameworks in
linguistics: the X-bar theory (Jackendoff 1977),
defines phrases as projections of (pre)terminal
symbols, i.e. word categories; in GPSG (Gazdar et al,
1985) and HPSG (Pollard, Sag 1987), each phrase
structure rule identifies a head and a related
subcategorization within its right-hand side; in HG
(Pollard 1984) the head is involved in the so-called
head-wrapping operat ions, which allow the
formalism to go beyond the context-free power (Joshi
et al. 1991).

Grmmnatical relations are the primitive entities of
relational grammar (Perhnutter 1983) (classified as a
dependency-based theory in (Mercuk 1988)):

cooked

SUBJ

chef t i s h
T ~ r / , ,

the a
(a)

S

/ N P \ / V k

D N V NP

I I "
D N
I I

the dlef cooked a fish

Figure 1. A dependency tree (a) and a p.s.
tree (b) for the sentence "The chef cooked a
fish". The leftward or rightward orientation
of the arrows in the dependency tree
represents the order constraints: the
modifiers that precede the head stand on its
left, the modifiers that follow the head stand
on its right.

subject, object, xcomplement label the dependency
relations when the head is a verb. Grainmatical
relations gained much populari ty within the
unification formalisms in early 1980%. FUG (Kay
1979) and LFG (Kaplan, Bresnan 1982) exhibit
mechanisms for producing a relational (or functional)
structure of the sentence, based on the merging of
feature representations.

All the recent cons t i tuency fo rmal i sms
acknowledge the importance of the lexicon, and
reduce the amount of information brought by the
phrasal categories. The "lexicalization" of context-
free grmnmars (Schabes, Waters 1993) points out
many similarities between the two paradigms
(Rainbow, Joshi 1992). Dependency syntax is an
extremely lexicalized framework, because the phrase
structure component is totally absent. Like the other
lexicalized frameworks, the dependency approach
does not produce spurious grammars, and this facility
is of a practical interest, especially in writing realistic
grammars. For instance, there are no heavily
ambiguous , inf ini tely ambiguous or cyclic
dependency grammars (such as S ~ SS; S ~ a; S --*
~; see (Tomita 1985), pp. 72-73).

7 2 3

Dependency syntax is attractive because of the
immediate mapping of dependency structures on the
predicate-argmnents structure (accessible by the
semantic interpreter), and because of the treatment of
free-word order constructs (Sgall et al. 1986)
(Mel'cuk 1988) (Hudson 1990). A number of parsers
have been developed for some dependency
frameworks (Fraser 1989) (Covington 1990) (Kwon,
Yoon 1991) (Sleator, Temperley 1993) (Hahn et al.
1994) (Lai, Huang 1995): however, no result of
algorithmic efficiency has been published as far as
we know. The theoretical worst-case analysis of
O(n 3) descends from the (weak) equivalence between
projective dependency grammars (a restricted of
dependency grammars) and context-free grammars
(Gaifman 1965), and not from an actual parsing
algorithm,

This paper is a first attempt to fill a gap in the
literature between the linguistic merits of the
dependency approach (widely debated) and the
mathematical properties of such formalisms (quite
negleted). We describe an improved Earley-type
recognizer for a projective dependency formalism. As
a starting point we have adopted a restricted
dependency formalism with context-free power, that,
for the sake of clearness, is described in the notation
introduced by Gaifman (1965). The dependency
grammar is translated into a set of parse tables that
determine the conditions of applicability of the
primary parser operations. Then the recognition
algorithm consults the parse tables to build the sets of
items as in Earley's algorithm for context-free
grammars.

2 A d e p e n d e n c y f o r m a l i s m

In this section we introduce a dependency formalism.
We express the dependency relations in terms of rules
that are very similar to their constituency counterpart,
i.e. context-free grammars. The formalism has been
adapted from (Gaiflnan 1965). Less constrained
dependency formalisms exist in the literature
(Mel'cuk 1988) (Fraser, Hudson 1992), but no
mathematical studies on their expressive power exist.

A dependency grammar is a quintuple <S, C, W, L,
T>, where
W is a finite set of symbols (vocabulary of words of a

natural language),
C is a set of syntactic categories (preterminals, in

constituency terms),
S is a non-empty set of root categories (C _ S),
L is a set of category assignment rules of the form X:

x, where XCC, x@W, and

X

YI Y2 ... Yi-1 Yi+l ... Ym
Figure 2 - A dependency rule: X is the
governor, and Y1 Ym are the dependent
of X in the given order (X is in # position).

T is a set of dependency rules of the form X(Y1 Y2
... Yi-1 # Yi+l ... Ym), where XGC, Y1GC,
.... Ym@C, and # is a special symbol that does not
belong to C. (see fig. 2).

The modifier symbols Yj can take the form Yj*: as
usual, this means that an indefinite number of Yj's
(zero or more) may appear in an application of the
rule 1 . In the sample grammar below, this extension
allows for several prepositional modifiers under a
single verbal or nominal head without introducing
intermediate symbols; the predicate-arguments
structure is immediately represented by a one-level
(flat) dependency structure.

Let x=al a2...ap ~W* be a sentence. A dependency
tree of x is a tree such that:
1) the nodes are the symbols a i~W (l<i<p);
2) a node ak,j has left daughters ak,1 ak,j-1

occurring in this order and right daughters ak,j+l,
.... ak,q in this order if and only if there exist the
roles Ak,l: ak,1 Akj: akj Ak,q: ak,q in L and
the rule Ak,j(Ak,1 ... Akj-I # Akj+l ... Ak,q) in T.
We say that ak,1 akj-1, ak,j+l ak,q directly
depend on ak,j, or equivalently that ak,j directly
governs ak, 1 ak,j.1, akj+l ak, q. akj and ak, h
(h = 1 j - l , j+ l q) are said to be in a
dependency relation, where ak,j is the head and
ak,h is the modifier, if there exists a sequence of
nodes ai, ai+l aj-l, aj such that ak directly
depends on ak-1 for each k such that i+l~k-~j, then
we say that ai depends' on aj;

3) it satisfies the condition ofprojectivity with respect
to the order in x, that is, if ai depends directly on aj
and ak intervenes between them (i<k<j or j<k<i),
then either ak depends on a i or ak depends on aj
(see fig. 3);

4) the root is a unique symbol as such that As: as E L
and As~S.

The condition of projectivity limits the expressive
power of the formalism to be equivalent to the
context-free power. Intuitively, this principle states

aj

ai

Aik
i

' ak i
|

i
| |

i i
i i

aj

ai

Figure 3. The condition of projectivity.

1 The use of the Kleene star is a notational change with
respect to Gaifman: however, it is not uncommon to
allow the symbols on the right hand side of a rule to be
regular expressions in order to augment the perspicuity
of the syntactic representation, but not the expressive
power of the grammar (a similar extension appears in the
context-free part of the LFG formalism (Kaplan, Bresnan
1982)).

724

that a dependent is never separated from its governor
by anything other than another dependent , together
with its subtree, or by a dependent of its own.

As an example, consider the grammar
GI= <iV},

iV,N, P, A, D},
{I, saw, a, tall, old, man, in, the, park, with, telescope},
{N: I, V: saw, D: a, A: tall, A: old, N: man, P: in, D: the,

N: park, P: with, N: telescope}
TI>,

where T1 is the following set of dependency rules:
t. V(N # P*); 2. V(N # N P*);
3. N(A*#P*); 4. N(DA* # P*);
5. P(# N); 6. A(#); 7. D(#).

For instance, the two rules for the root ca tegory
V(erb) specify that a verb (V) can dominate one or
two nouns and some prepositions (*).

3 Recognition with a dependency
grammar

~[he recognizer is an improved Earley-type algorithm,
where the predictive component has been compiled in
a set of parse tables. We use two pr imary actions:
predict, that corresponds to the top-down guessing of
a category, and scan, that corresponds to the scanning
of the current input word. In the subsection 3.1 we
descr ibe the data structures and the algori thms for
translating the dependency rules into the parse tables:
the d e p e n d e n c y rules for a ca t ego ry are f i rs t
t ranslated into a transition graph, and then the
transition graph is mapped onto a parse table. In the
subsection 3.2 we present the Earley-type recognizer,
that equals the most efficient recognizers for context-
tree grmnmar.

3,1 Transition graphs and parse tables
A transition graph is a pair (V, E), where V is a set of
vertices called states, and E is a set of directed edges
label led with a syntactic category or the symbol #.
Given a grammar G=<S, C, W, L, T>, a state of the
transit ion graph for a category Cat ~ C is a ' se t of
dotted slxings of the Ibrm ". 13", where Cat(c~13) C T

* and et, [~ E (C U { }) ; an edge is a triple <si , sj, Y>,
where si, sj C V and Y G C U {#}. A state that
contains the dotted string "." is called final; a final
state signals that the recogni t ion of one or more
dependency rules has been completed. The fol lowing
a lgor i thm constructs the t ransi t ion graph for the
category Cat:

lSull.c.ti~ graph (('.at, G):
initialization
s 0 := O;

each rule in G of the iorm Cat(a) do
s o := s 0 U {star (.a)}

V := is0};
E := ~ ;
expansion
mllcat

take a non-marked state s from V;
mark s;

each eatcgory Y G C U {#} do
S' : : ~ ;

each dotted string r = .Y[5 in s do

i[Y is starred
s' := s' U star(.Y[~)

e , l~s ' :=s ' u {.F};
endfor each dotted string;
V := V U is'};
E := E U {<s, s', Y>}

each category
until all states in V are marked;
graph := <V,E>.

star (dotted-string):
set-of strings:= {dotted-string};
rsW~a~t

take a non-marked dotted string ds from set-of-strings;
mark ds;
if ds has the form ".Y[V' and Y is starred then

set-of-strings := set-of-strings U {".f~"}
all dotted strings in set-of-strings are marked

star:= set-of-strings.

The initial set of states consists of a single state so,
that contains all the possible strings " .a" , such that
Cat(c0 is a dependency rule. Each string is prefixed
with a dot. The marked states are the states that were
expanded in a previous step. The expansion of a state
s takes into account each symbol Y that i lmnediately
fo l lows a dot (Y C C U {#}). Y is a poss ib le
continuation to a new state s', that contains the dotted
string ".[3", where ".Y[5" is a dotted string in s. s' is
added to the set of states, and a new edge from s to s'
labelled with Y is added to the set of edges. A dotted
string of the form .Y'13 is treated as a pair of dotted
strings {.Y'13, .[3}, so to allow a number of iterations
(one or more Y's fol low) or no i teration (the first
symbol in [~ follows) in the next step. The function
"star" takes into account these cases; the repeat loop
accounts for the case when the first symbol of 13 is
starred too.

The t ransi t ion graphs ob ta ined for the f ive
categories of G1 are in fig. 4. Convent ional ly , we
indicate the non-final states as h and the final states
as Sk, where h and k are integers.

The total number of states o f all the transit ion
graphs for a grammar G is at most O(IGI), where IGI
is the sum of the lengths of the dependency rules. The
length of a dependency rule Cat(c0 is the length of (~.
Starting from the transition graph for a category Cat,
we can build the parse table for Cat , i.e. PTCa t.
VI'Ca t is an array h x k, where h is the number of
states of the transition graph and k is the nmnber of
syntactic categories in C. Each row is identified by a
pair <Cat, State>, where State is the label of a state of
the corresponding transition graph; each column is
associated with a syntact ic ca tegory . In order to
improve the top-down a lgor i thm we introduce the
concept of "first" of a ca tegory . The first of the
category Cat is the set of categories that appear as
leftmost node of a subtree headed by Cat. The first of
a category X is computed by a s imple procedure that
we omit here. The function parse_table computes the
parse tables of the various categories. E(t -graphcat)
returns the set of the edges of the graph t -g raphca t.
The contents of the entries in the parse tables are sets
(p o s s i b l y emp ty) o f p r e d i c t and scan. The
initialization step consists in setting all entries of the
table to the empty set.

725

0 1 $2 $3

(a) category V P

0 $1

@ ' -<D
(d) category A

0 1 $2 0 $1

(c) category P (e) category D

" • cat

<cat,state> ' ~

<V,0>

<V,I>

<V,$2>

<V,$3>

<N,0>

Fig. 4 - The transition graphs obtained for the grammar G 1.

V N A p

<scan,S2>

<predict(N),l>

D

<predict(N),l>

<predict(N),$3> <predict(P),$3> <predict(N),$3>

<predict(P),$3>

<scan,S2> <predict(D),l>

<N,I> <scan,S2>

<N,$2>

<P,O>

<predict(N),$2> <P,I>

<A,0>

<D,0>

<predict(N),l>

<predict(N),$3>

<predict(A),l>

<predict(A),l>

<predict(N),$2>

<scan,S1>

<predict(P),$2>

<scan, l>

<predict(N),$2>

<scan,S1 >

Figure 5 - The parse tables for the grammar G 1

although this does not happen for our simple
grammar G 1.

3-2 A dependency recognizer
The dependency recognizer exhibits the same data
structures of Earley's recognizer (Earley 1970), but
improves the performance of that algorithm because
of the precompilation of the predictive component
into the parse tables.
In order to recognize a sentence of n words, n+l sets
Si of items are built. An item is a quadruple

<Category, State, Position, Depcat>
where the first two elements (Category and State)
correspond to a row of the parse table PTCategory,
the third element (Position) gives the index i of the
set Si where the recognition of a substructure began,
and the fourth one (Depcat) is used to request the
completion of a substructure headed by Depcat,

parse-table (Cat, t-graphcat):
initialize PTCat;
for each edge <s, s', Y> in E(t-graphcat) do

if YECthen
for each category Z ~ first(Y) 0sa

PTCat(<Cat, s>, Z) := PTCat(<Cat, s>, Z) U
I~Cat(<Cat, ~ , Z) U
{<predict(Y), s'>}

elseif Y =#then
PTCat(<Cat, s>, Cat) := PTCat(<Cat, s>, Cat) U

{<scan, s'>}
endif:

endfor
parse-table := PTCa t.

The parse tables for the grammar G 1 are reported in
fig. 5. The firsts are: first(V)=first(N)={N, A, D};
first(P)={P}; first(A)={A}; first(D)={D}. Note that
an entry of a table can contain more than one action,

726

before continuing in the recognition of the larger
slructure headed by Category (Depcat = "_" means
that the item is not waiting for any completion).

Sentence: w 0 w 1 ... Wn. 1
initialization

each root category V do
INSERT <V, 0, 0, > into SO

~a~dfor
body
l ~ i fix/m0 ~ n do

each item P=<Cat, State, j, > in Si do
completer:
if final(State) then

.f.0Z each item <Cat', k, j', Cat> in S i d~
INSERT <Cat', k, j', > in to S i "

predictor:
if <predict(Cat'), State'>C l~l'Cat(<Cat, State> ×

lnputcat)
• r - ,) , INSERT <Cat ,0, ~, > tntc Si.

INSERT <Cat, State" j, Cat'>il]to S i
mdif
scaI l t I t ;F ."

if <scan, State'> C lrFCat(<Cat, State> ×
Inputcat) t h ~

INSERT <Cat, State', j, _> into Si+l

e, n d ~ each item

ternfination
j~ <V,$k, O, > is in S n l h ~ accept g]~reject

'File external loop of the algorithm cycles on the sets
Si (0 < i < n); tile inner loop cycles on the items of
the set Si of the form <Cat, State, j, > . At each step
of the inner hoop, the action(s) given by the entry
"<Cat, State> x lnputcat" in the parse table PTCa t
is(are) executed (where lnputcat is one of the
categories of the current word). Like in Earley's
parser there are three phases: completer, predictor
and scanner.
completer: When an item is in a final state (of the
form $h), the algorithm looks for the items which
represent the beginning of tile input portion just
analyzed: they are the l:i)ur-element items contained
in the set referred by j. These items are inserted into
Si after having set to "null" the fourth element (_).
predictor: "<predict(Cat'), State'>" corresponds to a
prediction of the category Cat' as a modifier of the
category Cat and to the transition to State', in case a
substructure headed by Cat' is actually found. This is
modeled by introducing two new items in the set:
a) <Cat', 0, i, > , which represents the initial state of

the transition graph of the category Cat' which will

span a portion of the input starting at i. In F, arley's
terms, this item corresponds to all the dotted rules
of the form Cat'(. cz).

b) <Cat, State', j, Cat'>, which represents the arc of
the transition graph of the category Cat, entering
the state State' and labelled Cat'. In Earley's terms,
this item corresponds to a dotted rule of the form
Cat(~z . Cat' l~). The items including a non-null
Depcat are just passive receptors waiting to be re-
activated later when (and ii) the recognition of the
hypo thes ized subst ructure has successfu l ly
completed.

scanner: "<scan, State'>" results in inserting a new
item <Cat, State', i, __> into the set Si+l.

Let us trace the recognition of the sentence "I saw
a tall old man in the park with a telescope". The first
set SO (fig. 6) includes three items: the first one, <V,
0, 0, > , is produced by the initialization; the next
two, <V, 1 ,0 , N> arid <N, 0, 0, _> are produced by
the predictor (a N-headed subtree beginning in
position 0 must be recognized and, in case such a
recognition occurs, the governing V can pass to state
1).

In S1 the first item <N, $2 ,0 , > is produced by
tire scanner: it is the result of advancing on the input
string according to the item <N, 0, 0, > in SO with
an input noun "I" (the entry in the parse table PTN
<N, 0> x N contains <scan,S2>). The next item, <V,
1 ,0 ,_> is produced by applying the completer to the
item in S 0 <V, 1,0, N>.

$2 contains the item <V, $2 ,0 , _>, obtained by the
scanner, that advances on the verb "saw". The other
four items are the result of a double application of the
predictor, which, in a sense, builds a "chain" that
consists of a noun governed by the root verb and of a
determiner governed by that noun; this is the only
way, according to the grammar, to accomodate an
incoming determiner when a verb is under analysis.
The subsequent steps can easily be traced by the
reader. The input sentence is accepted because of the
appearance in the last set of the item <V, $3 ,0 , > ,
encoding that a structure headed by a verb (i.e. a root
category), ending in a final state ($3), and covering
all the words from the beginning of the sentence has
been successfully recognized.

The space complexity of the recognizer is O(IGI
n2). Each item is a quadruple <Cat, State, Position,
Depcat>: Depcat is a constant of the grammar; the
pairs of Cat and State are bounded by O(IGI);

S O [1] <N, O, 2 _> <N, 1, 2, _> <V, $3, O, P> <N, 1, 7, >
<V,O,O,_> <N, 1,2, D> <A,O, 4,_> <N,$2,2,P> Slola] S12
<V, 1, O, N> <D, O, 2, _> <N, 1, 2, A> S 9 [with] <P, 1, 9, _> <N, $2, 10, _>
<N, O, O, _> $7 ltlw] <N, $2, 7, > <N, O, 10, > <P, $2, 9, >

$3 [tall] S 5 #nan] <P, 1, 6, _> <P, $2,6, > <P, $2,9, N> <N, $2,7, >
S 1 [saw] <D,$1,2,_> <A,$1,4, > <N,O, 7, > <N,$2,2,_> <D,O, 10,_> <N,$2,2, >
<N,$2,0, > <N, 1,2,_> <N, 1,2, > <P,$2,6, N> <V,$3,0,_> <N,I, IO, D> <V,$3,0,_>
<V, 1, O, > <A, O, 3, _> <D, O, 7, > <P, O, 9, _> <P, $2,6, _>

<N, 1, 2, A> $6 lin] <N, 1, 7, D> <N, $2,7, P> S11 [telescope]
$2 [a] <N, $2,2, > <N, $2,2, P> <D, $1,10, _>
<V, $2, O, _> S 4 [old] <V, $3, 2, _> $8 [park] <V, $3, O, P> <N, 1, 10, _>
<V, $3, O, N> <A, $1,3, _> <P, O, 6, > <D, $1,7, >

Figure 6. Sets of items generated in recognizing "I saw a tall old man in the park with a telescope".

V 2 7

Position is bounded by O(n). The number of such
quadruples in a set of items is bounded by O(IGI n)
and there are n sets of items.

The time complexity of the recognizer is O(IGI 2
n3). The phases scanner and predictor execute at
most O(IGI) actions per item; the items are at most
O(IGI n 2) and the cost of these two phases for the
whole algorithm is O(IGl2n2). The phase completer
executes at most one action per pair of items. The
variables of such a pair of items are the two states
(O(IGI2)), the two sets that contain them (O(n2)), and
the two positions (O(n2)). But the pairs considered
are not all the possible pairs: one of the sets has the
index which is the same of one of the positions, and
the complexity of the completer is O(IGI 2 n3). The
phase completer prevails on the other two phases and
the total complexity of the algorithm is O(IGI 2 n3).
Even if the O-analysis is equivalent to Earley's, the
phase of precompilation into the parse tables allows
to save a lot of computation time needed by the
predictor. All the possible predictions are
precomputed in the transition to a new state. A
similar device is presented in (Schabes 1990) for
context-free grammars.

4 Conclusion

The paper has described a recognition algorithm for
dependency grammar. The dependency formalism is
translated into parse tables, that determine the
conditions of applicability of tile parser actions. The
recognizer is an improved Earley-type algorithm,
whose performances are comparable to the best
recognizers for the context-free grammars, the
formalism which is equivalent to the dependency
formalism described in this paper. The algorithm has
been implemented in Common Lisp and runs under
the Unix operating system. The next step in our
research will be to relax the condition of projectivity
in order to improve the expressive power and to deal
with phenomena that go beyond the context-free
power. These changes imply the restructuring of
some parts of the recognizer, with a plausible
increment of the complexity.

References

Chomsky N., Three models for the description of
language, IRE Transactions on Information Theory,
IT-2, 1956, 113-124.

Covington M. A., Parsing Discontinuous
Consti tuents in Dependency Grammar,
Computational Linguistics 16, 1990, 234-236.

Covington M. A., An Empirically Motivated
Reinterpretation of Dependency Grammar, Res. Rep.
AI-1994-01, Univ. of Georgia (also on CompLing
Server), 1994.

Earley J., An Efficient Context-free Parsing
Algorithm. Comm. of the ACM 13,1970, 94-102.

Fraser N.M., Parsing and Dependency Grammar,
UCL Working Papers in Linguistics, 1989, 296-319.

Fraser N.M., Hudson R. A., Inheritance in Word
Grammar, Computational Linguistics 18, 1992, 133-
158.

Gaifman H., Dependency Systems and Phrase
Structure Systems, Information and Control 8, 1965,
304-337.

Gazdar G., Klein E., Pullum G., Sag I.,
Generalized Phrase Structure Grammars, Basil
Blackwell, Oxford, 1985.

Graham S. L., Harrison M. A., Ruzzo W. L., An
improved Context-Free Recognizer, ACM Trans. on
Programming Languages and Systems 2, 1980, 415-
462.

Hahn U., Schacht S., Broker N., Concurrent,
Object-Oriented Natural Language Parsing: The
ParseTalk Model, CLIF Report 9/94, Albert-
Ludwigs-Universitat, Freiburg, Germany.

Hudson R., English Word Grammar, Basil
Blackwell, Oxford, 1990.

Jackendoff R., X-bar Syntax: A Study of Phrase
Structure, MIT Press, 1977.

Jacobs P.S., Rau L. F., Innovations in Text
Interpretation, Artificial Intelligence Journal 63/1-2,
1993, 143-191.

Joshi A.K., Vijay-Shanker K., Weir D., The
Convergence of Mildly Context-sensitive
grammatical formalisms, in Sells P., Shieber S.,
Wasow T. (eds.), Foundational Issues in Natural
Language Processing, MIT Press, 1991.

Kaplan R., Bresnan J., Lexical-Functional
Grammar: A Formal System for Grammatical
Representation, in Bresnan J. (ed.), The mental
representation of grammatical relations, MIT Press,
1982.

Kay M., Functional Grammar, Proc. 5th Meeting
of the Berkeley Linguistic Society, 1979, 142-158.

Kwon H., Yoon A., Unification-Based
Dependency Parsing of Governor-Final Languages,
Proc. IWPT 91, 1991, 182-192.

Lai B.Y.T., Huang C., Dependency Grammar and
the Parsing of Chinese Sentences, Unpublished
Manuscript on CompLing Server, 1995.

Mel'cuk I., Dependency Syntax: Theory and
Practice, SUNY Press, Albany, 1988.

Perlmutter 1983, Studies in Relational Grammar 1,
Univ. of Chicago Press, Chicago, 1983.

Pollard C.J., Generalized Phrase Structure
Grammars, Head Grammars, and Natural Language,
Ph.D. Thesis, Stanford Univ., 1984.

Pollard CJ., Sag I., An Information Based Syntax
and Semantics, vo1.1, Fundamentals, CSLI Lecture
Note 13. CSLI, Stanford, 1987.

Rambow O., Joshi A., A Formal Look at
Dependency Grammars and Phrase-Structure
Grammars, with Special Consideration of Word-
Order Phenomena, Proc. of the Int. Workshop on the
Meaning-Text Theory, Darmstadt, 1992.

Schabes Y., Polynomial Time and Space Shift-
Reduce Parsing of Arbitrary Context-Free Grammars,
Proc. ACL 90, Pittsburgh (PA), 1990, 106-113.

Schabes Y., Waters R. C., Lexicalized Context-
Free Grammars, Proc. ACL 93, 121-129.

Sgall P., Haijcova E., Panevova J., The Meaning of
Sentence in its Semantic and Pragmatic Aspects,
D.Reidel Publ. Co., Dordrecht, 1986.

Sleator D. D., Temperley D., Parsing English with
a Link Grammar, Proc. oflWPT 93, 1993, .277-291.

Tesniere L., Elements de Syntaxe Structurale,
Kliensieck, Paris, 1959.

Tomita M., Efficient Parsing for Natural
Language, Kluwer Acad. Publ., 1985.

728

