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Abstract 
The paper is a first attempt to fill a gap in the 
dependency literature, by providing a 
mathematical result on the complexity of 
recognition with a dependency grammar. The 
paper describes an improved Earley-type 
recognizer with a complexity O(IGl2n3). The 
improvement is due to a precompilation of the 
dependency rules into parse tables, that determine 
the conditions of applicability of two primary 
actions, predict and scan, used in recognition. 

1 Introduction 

Dependency and constituency frameworks define 
different syntactic structures. Dependency grammars 
describe the structure of a sentence in terms of binary 
head-modifier (also called dependency) relations on 
the words of  the sentence. A dependency relation is 
an asymmetric relation between a word callexl head 
(governor, parent), and a word called modifier 
(dependent, daughter). A word in the sentence can 
play the role of the head in several dependency 
relations, i.e. it can have several modifiers; but each 
word can play the role of the modifier exactly once. 
One special word does not play the role of the 
modifier in any relation, and it is named the root. The 
set of the dependency relations that can be defined on 
a sentence form a tree, called the dependency tree 
(fig. la). 

Although born in the same years, dependency 
syntax (Tesniere 1959) and constituency, or phrase 
structure, syntax (Chomsky 1956) (see fig.lb),  have 
had different impacts. The mainstream of formalisms 
consists ahnost  exclusively of  const i tuency 
approaches, but some of the original insights of the 
dependency tradition have found a role in the 
constituency formalisms: in particular, the concept of 
head of a phrase and the use of grammatical relations. 

The identification of the head within a phrase has 
been a major point of all the recent frameworks in 
linguistics: the X-bar theory (Jackendoff 1977), 
defines phrases as projections of (pre)terminal 
symbols, i.e. word categories; in GPSG (Gazdar et al, 
1985) and HPSG (Pollard, Sag 1987), each phrase 
structure rule identifies a head and a related 
subcategorization within its right-hand side; in HG 
(Pollard 1984) the head is involved in the so-called 
head-wrapping  operat ions,  which allow the 
formalism to go beyond the context-free power (Joshi 
et al. 1991). 

Grmmnatical relations are the primitive entities of 
relational grammar (Perhnutter 1983) (classified as a 
dependency-based theory in (Mercuk 1988)): 
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Figure 1. A dependency tree (a) and a p.s. 
tree (b) for the sentence "The chef cooked a 
fish". The leftward or rightward orientation 
of the arrows in the dependency tree 
represents the order constraints: the 
modifiers that precede the head stand on its 
left, the modifiers that follow the head stand 
on its right. 

subject, object, xcomplement .... label the dependency 
relations when the head is a verb. Grainmatical 
relations gained much populari ty within the 
unification formalisms in early 1980%. FUG (Kay 
1979) and LFG (Kaplan, Bresnan 1982) exhibit 
mechanisms for producing a relational (or functional) 
structure of the sentence, based on the merging of 
feature representations. 

All the recent  cons t i tuency  fo rmal i sms  
acknowledge the importance of the lexicon, and 
reduce the amount of information brought by the 
phrasal categories. The "lexicalization" of context- 
free grmnmars (Schabes, Waters 1993) points out 
many similarities between the two paradigms 
(Rainbow, Joshi 1992). Dependency syntax is an 
extremely lexicalized framework, because the phrase 
structure component is totally absent. Like the other 
lexicalized frameworks, the dependency approach 
does not produce spurious grammars, and this facility 
is of a practical interest, especially in writing realistic 
grammars.  For instance, there are no heavily 
ambiguous ,  inf ini tely ambiguous  or cyclic 
dependency grammars (such as S ~ SS; S ~ a; S --* 
~; see (Tomita 1985), pp. 72-73). 
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Dependency syntax is attractive because of the 
immediate mapping of dependency structures on the 
predicate-argmnents structure (accessible by the 
semantic interpreter), and because of the treatment of 
free-word order constructs (Sgall et al. 1986) 
(Mel'cuk 1988) (Hudson 1990). A number of parsers 
have been developed for  some dependency 
frameworks (Fraser 1989) (Covington 1990) (Kwon, 
Yoon 1991) (Sleator, Temperley 1993) (Hahn et al. 
1994) (Lai, Huang 1995): however, no result of 
algorithmic efficiency has been published as far as 
we know. The theoretical worst-case analysis of 
O(n 3) descends from the (weak) equivalence between 
projective dependency grammars (a restricted of 
dependency grammars) and context-free grammars 
(Gaifman 1965), and not from an actual parsing 
algorithm, 

This paper is a first attempt to fill a gap in the 
literature between the linguistic merits of  the 
dependency approach (widely debated) and the 
mathematical properties of such formalisms (quite 
negleted). We describe an improved Earley-type 
recognizer for a projective dependency formalism. As 
a starting point we have adopted a restricted 
dependency formalism with context-free power, that, 
for the sake of clearness, is described in the notation 
introduced by Gaifman (1965). The dependency 
grammar is translated into a set of parse tables that 
determine the conditions of  applicability of the 
primary parser operations. Then the recognition 
algorithm consults the parse tables to build the sets of 
items as in Earley's algorithm for context-free 
grammars. 

2 A d e p e n d e n c y  f o r m a l i s m  

In this section we introduce a dependency formalism. 
We express the dependency relations in terms of rules 
that are very similar to their constituency counterpart, 
i.e. context-free grammars. The formalism has been 
adapted from (Gaiflnan 1965). Less constrained 
dependency formalisms exist in the literature 
(Mel'cuk 1988) (Fraser, Hudson 1992), but no 
mathematical studies on their expressive power exist. 

A dependency grammar is a quintuple <S, C, W, L, 
T>, where 
W is a finite set of symbols (vocabulary of words of a 

natural language), 
C is a set of syntactic categories (preterminals, in 

constituency terms), 
S is a non-empty set of root categories (C _ S), 
L is a set of category assignment rules of the form X: 

x, where XCC, x@W, and 

X 

YI Y2 ... Yi-1 Yi+l ... Ym 
Figure 2 - A dependency rule: X is the 
governor, and Y1 ..... Ym are the dependent 
of X in the given order (X is in # position). 

T is a set of dependency rules of the form X(Y1 Y2 
... Yi-1 # Yi+l  ... Ym),  where XGC, Y1GC, 
.... Ym@C, and # is a special symbol that does not 
belong to C. (see fig. 2). 

The modifier symbols Yj can take the form Yj*: as 
usual, this means that an indefinite number of Yj's 
(zero or more) may appear in an application of the 
rule 1 . In the sample grammar below, this extension 
allows for several prepositional modifiers under a 
single verbal or nominal head without introducing 
intermediate symbols;  the predicate-arguments 
structure is immediately represented by a one-level 
(flat) dependency structure. 

Let x=al a2...ap ~W* be a sentence. A dependency 
tree of x is a tree such that: 
1) the nodes are the symbols a i~W (l<i<p); 
2) a node ak,j has left daughters ak,1 . . . . .  ak,j-1 

occurring in this order and right daughters ak,j+l, 
.... ak,q in this order if and only if there exist the 
roles Ak,l: ak,1 ..... Akj: akj ..... Ak,q: ak,q in L and 
the rule Ak,j(Ak,1 ... Akj-I  # Akj+l  ... Ak,q) in T. 
We say that ak,1 ..... akj-1, ak,j+l ... . .  ak,q directly 
depend on ak,j, or equivalently that ak,j directly 
governs ak, 1 ..... ak,j.1, akj+l ...... ak, q. akj and ak, h 
(h = 1 . . . . .  j - l ,  j+ l  . . . . .  q) are said to be in a 
dependency relation, where ak,j is the head and 
ak,h is the modifier, if there exists a sequence of 
nodes ai, ai+l . . . . .  aj-l, aj such that ak directly 
depends on ak-1 for each k such that i+l~k-~j, then 
we say that ai depends' on aj; 

3) it satisfies the condition ofprojectivity with respect 
to the order in x, that is, if ai depends directly on aj 
and ak intervenes between them (i<k<j or j<k<i), 
then either ak depends on a i or ak depends on aj 
(see fig. 3); 

4) the root is a unique symbol as such that As: as E L 
and As~S. 

The condition of projectivity limits the expressive 
power of the formalism to be equivalent to the 
context-free power. Intuitively, this principle states 
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Figure 3. The condition of projectivity. 

1 The use of the Kleene star is a notational change with 
respect to Gaifman: however, it is not uncommon to 
allow the symbols on the right hand side of a rule to be 
regular expressions in order to augment the perspicuity 
of the syntactic representation, but not the expressive 
power of the grammar (a similar extension appears in the 
context-free part of the LFG formalism (Kaplan, Bresnan 
1982)). 
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that a dependent is never separated from its governor 
by anything other than another dependent ,  together  
with its subtree, or by a dependent of  its own. 

As an example,  consider the grammar 
GI= <iV}, 

iV,N,  P, A, D}, 
{I, saw, a, tall, old, man, in, the, park, with, telescope}, 
{N: I, V: saw, D: a, A: tall, A: old, N: man, P: in, D: the, 

N: park, P: with, N: telescope} 
TI>, 

where T1 is the following set of  dependency rules: 
t. V(N # P*); 2. V(N # N P*); 
3. N(A*#P*); 4. N(DA* # P*); 
5. P(# N); 6. A(#); 7. D(#). 

For  instance,  the two rules for the root  ca tegory  
V(erb) specify that a verb (V) can dominate  one or 
two nouns and some prepositions (*). 

3 Recognition with a dependency 
grammar  

~[he recognizer is an improved Earley-type algorithm, 
where the predictive component has been compiled in 
a set of  parse tables.  We  use two pr imary actions: 
predict, that corresponds to the top-down guessing of  
a category, and scan, that corresponds to the scanning 
of  the current input word. In the subsection 3.1 we 
descr ibe  the data structures and the algori thms for 
translating the dependency rules into the parse tables: 
the d e p e n d e n c y  rules  for a ca t ego ry  are  f i rs t  
t ranslated into a transition graph, and then the 
transition graph is mapped onto a parse table. In the 
subsection 3.2 we present the Earley-type recognizer,  
that equals the most efficient recognizers for context- 
tree grmnmar. 

3,1 Transition graphs and parse tables 
A transition graph is a pair (V, E), where V is a set of  
vertices called states, and E is a set of directed edges 
label led with a syntactic category or the symbol  #. 
Given a grammar G=<S,  C, W,  L,  T>, a state of  the 
transit ion graph for a category Cat  ~ C is a ' se t  of  
dotted slxings of the Ibrm ". 13", where Cat(c~13) C T 

# * and et, [~ E (C U { }) ; an edge is a triple <si ,  sj,  Y>, 
where si, sj C V and Y G C U {#}. A state that 
contains the dotted string "." is called final; a final 
state signals that the recogni t ion  of  one or more  
dependency rules has been completed.  The fol lowing 
a lgor i thm constructs  the t ransi t ion graph for the 
category Cat: 

lSull.c.ti~ graph (('.at, G): 
initialization 
s 0 := O; 

each rule in G of the iorm Cat(a) do 
s o := s 0 U {star ( .a )} 

V := is0}; 
E := ~ ;  
expansion 
mllcat 

take a non-marked state s from V; 
mark s; 

each eatcgory Y G C U {#} do 
S' : :  ~ ;  

each dotted string r = .Y[5 in s do 

i[ Y is starred 
s' := s' U star(.Y[~) 

e , l~s ' :=s '  u {.F}; 
endfor each dotted string; 
V := V U is'}; 
E := E U {<s, s', Y>} 

each category 
until all states in V are marked; 
graph := <V,E>. 

star (dotted-string): 
set-of strings:= {dotted-string}; 
rsW~a~t 

take a non-marked dotted string ds from set-of-strings; 
mark ds; 
if ds has the form ".Y[V' and Y is starred then 

set-of-strings := set-of-strings U {".f~"} 
all dotted strings in set-of-strings are marked 

star:= set-of-strings. 

The initial set of  states consists of  a single state so, 
that contains all the possible  strings " .a" ,  such that 
Cat(c0 is a dependency rule. Each string is prefixed 
with a dot. The marked states are the states that were 
expanded in a previous step. The expansion of a state 
s takes into account each symbol  Y that i lmnediately 
fo l lows a dot (Y C C U {#}). Y is a poss ib le  
continuation to a new state s', that contains the dotted 
string ".[3", where ".Y[5" is a dotted string in s. s' is 
added to the set of  states, and a new edge from s to s' 
labelled with Y is added to the set of  edges. A dotted 
string of the form .Y'13 is treated as a pair of  dotted 
strings {.Y'13, .[3}, so to allow a number of iterations 
(one or more Y's fol low) or no i teration (the first  
symbol  in [~ follows) in the next step. The function 
"star" takes into account these cases; the repeat loop 
accounts for the case when the first symbol of  13 is 
starred too. 

The  t ransi t ion graphs  ob ta ined  for the f ive  
categories of G1 are in fig. 4. Convent ional ly ,  we 
indicate the non-final states as h and the final states 
as Sk, where h and k are integers. 

The total number of  states o f  all the transit ion 
graphs for a grammar G is at most  O(IGI), where IGI 
is the sum of  the lengths of  the dependency rules. The 
length of a dependency rule Cat(c0 is the length of  (~. 
Starting from the transition graph for a category Cat,  
we can build the parse table for Cat ,  i.e. PTCa t. 
VI'Ca t is an array h x k, where h is the number of  
states of  the transition graph and k is the nmnber of  
syntactic categories in C. Each row is identified by a 
pair <Cat, State>, where State is the label of a state of  
the corresponding transition graph; each column is 
associated with a syntact ic  ca tegory .  In order  to 
improve  the top-down a lgor i thm we introduce the 
concept  of  "first" of  a ca tegory .  The first of  the 
category Cat is the set of  categories that appear as 
leftmost node of a subtree headed by Cat. The first of  
a category X is computed by a s imple procedure that 
we omit  here. The function parse_table computes the 
parse tables of the various categories.  E( t -graphcat )  
returns the set of  the edges of  the graph t -g raphca  t. 
The contents of  the entries in the parse tables are sets 
( p o s s i b l y  emp ty )  o f  p r e d i c t  and scan.  The 
initialization step consists in setting all entries of  the 
table to the empty set. 
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Fig. 4 - The transition graphs obtained for the grammar G 1. 
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D 

<predict(N),l> 

<predict(N),$3> <predict(P),$3> <predict(N),$3> 

<predict(P),$3> 

<scan,S2> <predict(D),l> 

<N,I> <scan,S2> 

<N,$2> 

<P,O> 

<predict(N),$2> <P,I> 

<A,0> 

<D,0> 

<predict(N),l> 

<predict(N),$3> 

<predict(A),l> 

<predict(A),l> 

<predict(N),$2> 

<scan,S1> 

<predict(P),$2> 

<scan, l> 

<predict(N),$2> 

<scan,S1 > 

Figure 5 - The parse tables for the grammar G 1 

although this does not happen for our simple 
grammar G 1. 

3-2 A dependency recognizer 
The dependency recognizer exhibits the same data 
structures of  Earley's recognizer (Earley 1970), but 
improves the performance of that algorithm because 
of the precompilation of the predictive component 
into the parse tables. 
In order to recognize a sentence of n words, n+l sets 
Si of items are built. An item is a quadruple 

<Category, State, Position, Depcat> 
where the first two elements (Category and State) 
correspond to a row of the parse table PTCategory, 
the third element (Position) gives the index i of the 
set Si where the recognition of a substructure began, 
and the fourth one (Depcat) is used to request the 
completion of a substructure headed by Depcat, 

parse-table (Cat, t-graphcat): 
initialize PTCat; 
for each edge <s, s', Y> in E(t-graphcat) do 

if YECthen  
for each category Z ~ first(Y) 0sa 

PTCat(<Cat, s>, Z) := PTCat(<Cat, s>, Z) U 
I~Cat(<Cat, ~ ,  Z) U 
{<predict(Y), s'>} 

elseif Y =#then 
PTCat(<Cat, s>, Cat) := PTCat(<Cat, s>, Cat) U 

{<scan, s'>} 
endif: 

endfor 
parse-table := PTCa t. 

The parse tables for the grammar G 1 are reported in 
fig. 5. The firsts are: first(V)=first(N)={N, A, D}; 
first(P)={P}; first(A)={A}; first(D)={D}. Note that 
an entry of a table can contain more than one action, 
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before continuing in the recognition of  the larger 
slructure headed by Category (Depcat = "_" means 
that the item is not waiting for any completion). 

Sentence: w 0 w 1 ... Wn. 1 
initialization 

each root category V do 
INSERT <V, 0, 0, > into SO 

~a~dfor 
body 
l ~ i  fix/m0 ~ n do 

each item P=<Cat, State, j, > in Si do 
completer: 
if final(State) then 

.f.0Z each item <Cat', k, j', Cat> in S i d~ 
INSERT <Cat', k, j', > in to  S i " 

predictor: 
if <predict(Cat'), State'>C l~l'Cat(<Cat, State> × 

lnputcat) 
• r - , ) , INSERT <Cat ,0, ~, > tntc Si. 

INSERT <Cat, State" j, Cat'>il]to S i 
mdif 
scaI l t I t ;F ."  

if <scan, State'> C lrFCat(<Cat, State> × 
Inputcat) t h ~  

INSERT <Cat, State', j, _> into Si+l 

e, n d ~  each item 

ternfination 
j~ <V,$k, O, > is in S n l h ~  accept g]~reject 

'File external loop of  the algorithm cycles on the sets 
Si (0 < i < n); tile inner loop cycles on the items of  
the set Si of  the form <Cat, State, j, > .  At each step 
of  the inner hoop, the action(s) given by the entry 
"<Cat, State> x lnputcat" in the parse table PTCa t 
is(are) executed (where lnputcat  is one of  the 
categories of the current word). Like in Earley's 
parser there are three phases: completer, predictor 
and scanner. 
completer: When an item is in a final state (of the 
form $h), the algorithm looks for the items which 
represent the beginning of  tile input portion just 
analyzed: they are the l:i)ur-element items contained 
in the set referred by j. These items are inserted into 
Si after having set to "null" the fourth element (_). 
predictor: "<predict(Cat'), State'>" corresponds to a 
prediction of  the category Cat' as a modifier of the 
category Cat and to the transition to State', in case a 
substructure headed by Cat' is actually found. This is 
modeled by introducing two new items in the set: 
a) <Cat', 0, i, > ,  which represents the initial state of 

the transition graph of  the category Cat' which will 

span a portion of the input starting at i. In F, arley's 
terms, this item corresponds to all the dotted rules 
of the form Cat'(. cz). 

b) <Cat, State', j, Cat'>, which represents the arc of 
the transition graph of  the category Cat, entering 
the state State' and labelled Cat'. In Earley's terms, 
this item corresponds to a dotted rule of  the form 
Cat(~z . Cat' l~). The items including a non-null 
Depcat are just passive receptors waiting to be re- 
activated later when (and ii) the recognition of  the 
hypo thes ized  subst ructure  has successfu l ly  
completed. 

scanner: "<scan, State'>" results in inserting a new 
item <Cat, State', i, __> into the set Si+l. 

Let us trace the recognition of the sentence "I saw 
a tall old man in the park with a telescope". The first 
set SO (fig. 6) includes three items: the first one, <V, 
0, 0,  > ,  is produced by the initialization; the next 
two, <V, 1 ,0 ,  N> arid <N, 0, 0, _> are produced by 
the predictor (a N-headed subtree beginning in 
position 0 must be recognized and, in case such a 
recognition occurs, the governing V can pass to state 
1). 

In S1 the first item <N, $2 ,0 ,  > is produced by 
tire scanner: it is the result of  advancing on the input 
string according to the item <N, 0, 0, > in SO with 
an input noun "I" (the entry in the parse table PTN 
<N, 0> x N contains <scan,S2>). The next item, <V, 
1 ,0 ,_>  is produced by applying the completer to the 
item in S 0 <V, 1,0,  N>. 

$2 contains the item <V, $2 ,0 ,  _>, obtained by the 
scanner, that advances on the verb "saw". The other 
four items are the result of a double application of the 
predictor, which, in a sense, builds a "chain" that 
consists of a noun governed by the root verb and of a 
determiner governed by that noun; this is the only 
way, according to the grammar,  to accomodate an 
incoming determiner when a verb is under analysis. 
The subsequent steps can easily be traced by the 
reader. The input sentence is accepted because of  the 
appearance in the last set of  the item <V, $3 ,0 ,  > ,  
encoding that a structure headed by a verb (i.e. a root 
category), ending in a final state ($3), and covering 
all the words from the beginning of the sentence has 
been successfully recognized. 

The space complexity of  the recognizer is O(IGI 
n2). Each item is a quadruple <Cat, State, Position, 
Depcat>: Depcat is a constant of  the grammar; the 
pairs of  Cat and State are bounded by O(IGI); 

S O [1] <N, O, 2 _> <N, 1, 2, _> <V, $3, O, P> <N, 1, 7, > 
<V,O,O,_> <N, 1,2, D> <A,O, 4,_> <N,$2,2,P> Slola] S12 
<V, 1, O, N> <D, O, 2, _> <N, 1, 2, A> S 9 [with] <P, 1, 9, _> <N, $2, 10, _> 
<N, O, O, _> $7 ltlw] <N, $2, 7, > <N, O, 10, > <P, $2, 9, > 

$3 [tall] S 5 #nan] <P, 1, 6, _> <P, $2,6, > <P, $2,9, N> <N, $2,7, > 
S 1 [saw] <D,$1,2,_> <A,$1,4, > <N,O, 7, > <N,$2,2,_> <D,O, 10,_> <N,$2,2, > 
<N,$2,0, > <N, 1,2,_> <N, 1,2, > <P,$2,6, N> <V,$3,0,_> <N,I, IO, D> <V,$3,0,_> 
<V, 1, O, > <A, O, 3, _> <D, O, 7, > <P, O, 9, _> <P, $2,6, _> 

<N, 1, 2, A> $6 lin] <N, 1, 7, D> <N, $2,7, P> S11 [telescope] 
$2 [a] <N, $2,2, > <N, $2,2, P> <D, $1,10, _> 
<V, $2, O, _> S 4 [old] <V, $3, 2, _> $8 [park] <V, $3, O, P> <N, 1, 10, _> 
<V, $3, O, N> <A, $1,3, _> <P, O, 6, > <D, $1,7, > 

Figure 6. Sets of  items generated in recognizing "I saw a tall old man in the park with a telescope". 
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Position is bounded by O(n). The number of such 
quadruples in a set of items is bounded by O(IGI n) 
and there are n sets of items. 

The time complexity of the recognizer is O(IGI 2 
n3). The phases scanner and predictor execute at 
most O(IGI) actions per item; the items are at most 
O(IGI n 2) and the cost of these two phases for the 
whole algorithm is O(IGl2n2). The phase completer 
executes at most one action per pair of items. The 
variables of such a pair of items are the two states 
(O(IGI2)), the two sets that contain them (O(n2)), and 
the two positions (O(n2)). But the pairs considered 
are not all the possible pairs: one of the sets has the 
index which is the same of one of the positions, and 
the complexity of the completer is O(IGI 2 n3). The 
phase completer prevails on the other two phases and 
the total complexity of the algorithm is O(IGI 2 n3). 
Even if the O-analysis is equivalent to Earley's, the 
phase of precompilation into the parse tables allows 
to save a lot of computation time needed by the 
predictor. All the possible predictions are 
precomputed in the transition to a new state. A 
similar device is presented in (Schabes 1990) for 
context-free grammars. 

4 Conclusion 

The paper has described a recognition algorithm for 
dependency grammar. The dependency formalism is 
translated into parse tables, that determine the 
conditions of applicability of tile parser actions. The 
recognizer is an improved Earley-type algorithm, 
whose performances are comparable to the best 
recognizers for the context-free grammars, the 
formalism which is equivalent to the dependency 
formalism described in this paper. The algorithm has 
been implemented in Common Lisp and runs under 
the Unix operating system. The next step in our 
research will be to relax the condition of projectivity 
in order to improve the expressive power and to deal 
with phenomena that go beyond the context-free 
power. These changes imply the restructuring of 
some parts of the recognizer, with a plausible 
increment of the complexity. 
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