
Top-Down Predictive Linking and Complex-Feature-Based Formalisms

James Kilbury
Seminar ftir Allgemeine Sprachwissenschaft

Heinrich-Heine-Universit~it Dtisseldorf
Universit~itsstraf3e 1

D-40225 Dtisseldorf, Germany
kilbury@ling.uni-duesseldorf.de

Abstract

Automatic compilation of the linking relation
employed in certain parsing algorithms for con-
text-free languages is examined. Special pro-
blems arise in the extension of these algorithms
to the possibly infinite domain of feature struc-
tures. A technique is proposed which is design-
ed specifically for left-recursive categories and
is based on the generalization of their occurren-
ces in a derivation. Particular attention is drawn
to the top-down predictive character of the link-
ing relation and to its significance not only as
a filter for increasing the efficiency of syntactic
analysis but as a device for the top-down in-
stantiation of information, which then serves as
a key to the directed analysis of inflected forms
as well as "unknown" or "new" words.

1 Introduction

Complex-feature-based formalisms are under-
stood here as equivalent to unification-based
formalisms as exemplified by PATR-II, HPSG,
and others (cf Shieber 1986, Carpenter 1992).
Such formalisms typically include a context-
free (CF) base, which allows the use of parsing
algorithms designed for CF languages despite
the fact that complex-feature-based formalisms
are essentially more powerful than CF gram-
mars. However, such an adaptation of CF algo-
rithms involves their extension to possibly infi-
nite nonterminal domains, which, as Shieber
(1985) and Haas (1989) have shown, is nontriv-
ial.

Various CF algorithms make use of a binary
relation between a goal category and the cate-
gory of a constituent (phrase or word) which
either has just been parsed or is to be parsed
next. Different terms have been used to desig-
nate this relation; Kay (1980) speaks of reach-

ability, while Pereira/Shieber (1987) and others
before them use the term linking for the rela-
tion.

Whatever term one takes, an important aspect
of the relation is that it can be used to reduce
the search space of possible syntactic analyses
at an earlier point in parsing and thus serves to
improve the efficiency of a parser. Shieber
(1985, 1992) follows established terminology
in speaking of top-down filtering in connection
with the prediction step of the Earley algo-
rithm. His central notion of restriction, whereby
a restrictor is a finite subset of the paths speci-
fied in a feature structure, is related to the tech-
nique we introduce here, since both guarantee
the finiteness of an otherwise possibly infinite
domain of complex categories, but Shieber's re-
strictors are specified manually.

We propose a general algorithmic method of
compilation that avoids manual specification.
The focus of this discussion is on the linking
relation used to extend left-corner parsers, rath-
er than on the prediction step of the Earley
algorithm as with Shieber, although the results
carry over.

Whereas Shieber et al. (1990) have discussed
similar techniques in the context of semantic-
head-driven generation, we are concerned here
with parsing. We view the linking relation not
simply as a filter to increase efficiency within
the domain of syntactic analysis--this aspect is
stressed by Shieber (1985) and other investiga-
tors such as Bouma (1991)--but rather as a
device for the top-down predictive instantiation
of information, as Shieber et al. (1990) have
shown for semantic-head-driven generation. In
this paper we are concerned especially with
morphosyntactic information and illustrate the
relevance of predictive linking for morphologi-
cal analysis and for the analysis of "unknown"
or "new" lexical items.

658

2 Left-Corner Parsing and Linking

2.1 The Left-Corner Parsing Algorithm

The so-called left-corner (LC) parsing algo-
rithm is generally credited to Rosenkrantz/
Lewis (1970). It has been presented so often
since and is now so welbknown that a brief
informal statement of the algorithm should suf-
rice here:

The algorithm applies to CF grammars in
general; it is both correct and, with the excep-
tion of derivations of the form A --+* A, where
A is a nonterminal, is complete. It can be used
either to compile a given CF grammar into a
parser or to interpret it.

The principle is simple. To parse a string, the
current word form is first parsed, i.e. looked up
in the lexicon. Whenever a constituent, be it a
word form or a phrase, is successfully parsed,
the syntax rules are chosen which have the
category of the identified constituent as their
left corner, i.e. the left-most category in the
right-hand side of the rule. If the remaining
sister categories of the left corner can be
parsed, then the mother category of the rule is
the result tbr the corresponding substring, and
the algorithm continues recursively until the
entire string is covered by a category; if the
category of an expectation was specified, it
must match the category found.

2.2 The Linking Relation

It was soon noted that the efficiency of the
algorithm could be improved significantly
through the use of a reachability or linking
relation compiled out of the grammar before
parsing; this consists of the reflexive and transi-
tive closure of the relation defined by the pairs
of mother and LC categories specified in the set
of syntax rules of the grammar. Whenever a
lexical entry is found that assigns a category C
to a given word form, the linking relation is
used to determine whether C can be useful in
reaching the goal category C', i.e. whether C is
a (transitive) left corner of C'; this test is car-
ried out before the parser looks for rules having
C as the left corner. Of course, C may itself be
the category C' sought, hence the reflexive clo-
sure. Likewise, when a rule is found in which
C is the left corner, the relation tests whether

the mother Co of C can be used to reach the
goal C' before an attempt is made to parse the
sisters of C.

Computation of the linking relation from a
set of CF syntax rules is straightforward. Since
the nonterminal symbols are atomic, one merely
needs to check for left recursive symbols so
that the computation terminates.

2.3 Complex-Feature-Based Formalisms

As noted above, the extension of the LC algo-
rithm to a potentially infinite nonterminal do-
main, i.e. complex feature structures, is nontriv-
ial. An example of the pitfalls awaiting naive
attempts at such an extension is provided by the
grammars illustrating the list technique for sub-
categorization introduced by Shieber (1986: 32,
77-78); also see the similar example of Haas
(1989: 227). We quote Shieber's syntax rules
for his second analysis of subcategorization
(p.84), in which the subject of a verb appears
as the first element of the subcategorization list:

S ---> NP VP : <S head> : <VP head>
<S head form> : finite
<VP subcat first> = <NP>
<VP subcat rest> = end.

VP ---> V : <VP head> = <V head>
<VP subcat> == <V subcat>.

VP i ---> VP 2 X :
- <VP 1 head> : <VP 2 head>

<VP-2 subcat first> :
-<VP] subcat first>

<VP 2 s~bcat rest first> = <X>
<VP--2 subcat rest rest> =

<VP 1 subcat rest>.

The difficulties clearly lie in the last syntax
rule: VP (or VP_I and VP2) seems to be left
recursive--whatever we may mean by that at
this point--so perhaps no link arises at all from
this rule. On the other hand, the two feature
structures are unifiable, but their unification
produces a cyclic feature structure, which raises
additional problems for the definition of linking
and possibly for implementation. The difficulty,
of course, is that VP 1 and VP 2 are schematic
and that these rules recursively generate a de-
numerably infinite set of VP-type categories, all
of which may give rise to distinct elements in
the linking relation. Whether this is linguistical-
ly important, which is improbable, or merely a
mathematical game is beside the point: the for-
real problem is there, and we cannot individ-
ually specify infinitely many links.

659

Consider the LC analysis of the sentence
John loves Mary. After analyzing [John]Np, the
parser expects a VP[1], where VP[n] is used as
an informal alias for a VP that subcategorizes
for n complements. Now, there is an entry for
[loves]v, so a link <VP[1], V[2]> is needed
since loves subcategorizes for a subject and an
object. Indeed, since the grammar allows verbs
to subcategorize for any finite number of com-
plements, we need an infinite number of links
between VP[1] and V[n] categories. Moreover,
once we have these links we need the same
number between VP[1] and VP[n] categories
since the first VP expansion simply unifies the
subcategorization of the Vdaughter with that of
the VP mother.

Other problems arise in grammars with indi-
rect left recursion. This is linguistically plausi-
ble in the following example, where both NP
and Det are indirectly left recursive:

S ---> NP VP : <NP agr> = <VP agr>.

NP ---> Det N : <NP agr> = <N agr>
<NP agr> = <Det agr>.

Det ---> NP Posessive Marker

The rules account for sentences like The child's
father sleeps. We must take care not to exclude
A mother's children sleep, which will happen
if the linking relation is defined so that any de-
terminer--also in a possessive construction--
must have the same agreement features as the
sentence subject of which it is a left corner.

2.4 Top-Down Predictive Linking

The aim of our proposal is to define equiva-
lence relations that keep the linking relation
finite while also preventing it from being too
restrictive; this turns the linking relation into a
weakpredietion table in the sense of Haas (19-
89: 227ff). Like Shieber (1985, 1992) with the
notion of restriction, we confine our attention
to a subset of specifications; in particular, we
can define a feature structure that subsumes all
VP-type feature structures of Shieber's recursive
subcategorization rules. But unlike Shieber, our
restrictors are computed automatically by build-
ing the generalization of the occurrences ofleft-
recursive categories in a grammar.

The intuitive idea is that we consider catego-
ries to be left recursive if their tokens can be
unified (rather than being identical, as in the

case of atoms); we then use their generaliza-
tion, or greatest lower bound, as a common
denominator defining an equivalence relation.

We shall say that two categories build a left-
recursive link, i.e. <X, X'> e L 1 i f fon the basis
of the given grammar there is a derivation A
-->* A't~' (where o~'is a string of categories and
terminal symbols)such that the unification A u
A' exists, whether or not it is cyclic, and there
is no A" such that A --->' A" t~" -->' A' t~', where
A u A" and A" u A' exist. Let Age, be the gene-
ralization A rq A' of A and A'; then we define X
and X' as distinct copies of Ag~, such that for
every path n where A@n = A '@~, it also holds
that X@n = X'@n, where F@n is "the value of
the feature structure F at some path n at which
it is defined" (Carpenter 1992:38) and '=' de-
notes token identity. We thus expressly allow
reentrancies between the distinct feature struc-
tures X and X'; as we shall see below, this is
essential in order for us to use the linking rela-
tion to instantiate information during parsing.

A second relation, corresponding directly to
the conventional notion of links as compiled
directly from rules, can now be defined: two
categories build a rule link, i.e. <Ao', A , ~ ~ L 2
iff on the basis of the given grammar there is
a finite derivation A o --> AIo~ ~ ... A,,vo~,v ---> A,t~,
with 1 < n such that for all i with 1 _< i < n it
is the case that A o u Aj is undefined (i.e. the
derivation is nonrecursive), and for all i with 0
< i < n it is the case that if <X, X~> ~ L 1 and
A i u X exists, then A/a l so exists and is the ex-
tension X'E A / t h a t arises when A~ is unified
with X. Intuitively, L 2 is given by the set of
nonrecursive derivations licensed by the gram-
mar, where each left-recursive left-most catego-
ry in the derivation is replaced by (i.e. restrict-
ed to) the generalization of the instances of that
left-recursive category.

The overall linking relation L is then defined
so that <B, B~> E L iff(1) there is a <X, X'>
(L~ u L2) such that B u X and B' m X' exist, or
else (2) B u B' exists (the reflexive case where
B' satisfies the parse goal B).

Moore and Alshawi (1992: 134ff) describe
a similar algorithm that compiles the linking
relation for complex-feature-based formalisms.
But rather than computing the generalization of
left-recursive categories to avoid the possibility
of generating an infinite relation, they instead
"impose a cutoff after two nested occurrences
of the same functor in a feature specification,

660

substituting new unique variables for the argu-
ments of the inner occurrence of the functor, so
that any constituent with a more complex fea-
ture description will be accepted." Moreover,
they discuss linking only with regard to filter-
ing.

Our use of the linking relation with destruc-
tive unification in parsing requires special com-
ment. I fB is a goal and B' is a parsed left cor-
ner such that <X, X'> e L and B u X and B' u
X' exist, then there is a link between B and B';
we can stop here with a mere test of unification
if we only want to use linking as a filter to
reduce the search space. But if B and B' are
actually unified with X and X', respectively,
information may become shared between B and
B'. In the reflexive case of linking for comple-
tion, B and B' are unified with each other.
Since the information that becomes shared via
L 1 is subsumed by that of the reflexive case,
completion works correctly for left-recursive
categories, but B and B' must still be unified in
the actual completion step.

We have employed generalization in the defi-
nition of linking to make a kind of mask allow-
ing just the appropriate information to become
shared between B and B'. Thus, linking ceases
to be a mere test or filter and can instead func-
tion as an independent device for the transmis-
sion of information in parsing.

Returning to Shieber's rules for subcategori-
zation, the definition of L given here allows
instantiated head features of a VP goal to be
passed top-down to a verb. Moreover, since the
treatment of subcategorization of Shieber (1986:
84) is adopted in which the subject NP appears
consistently as thefirst element of the subcate-
gorization list in all projections of V, then in-
stantiated agreement features and other infor-
mation about the subject can be passed top-
down as well. The linking relation compiled
from the grammar in (2.3) above is listed here:

ll([cat:vp,head:A, subcat:[first:B, rest:C]],
[cat:vp,head:A, subcat:[first:B, rest:D]]).

12([cat:s], [cat:np]).

12([cat:vp,head:A, subcat:[first:B, rest:C]],
[cat:v, head:A, subcat:[first:B, rest:D]]).

Finally, we list the linking relation compiled
from the example with left-recursive categories
Det and NP:

ii
ii

12
12
12
12

[cat:np], [cat:np]).
[cat:det], [cat:det]).

[cat:s], [cat:np]).
[cat:np], [cat:det]).
[cat:det], [cat:np]).
[cat:s], [cat:det]).

In contrast to the previous example, agreement
specifications have been compiled out of the
relation, but no additional convention whereby
eat specifications define a context-free skeleton
is involved here.

2.5 Notes on Implementation in Prolog

Implementation of the LC algorithm in Prolog
has been discussed by Matsumoto et al. (1982)
for the BUP system, by Pereira/Shieber (1987),
Kilbury (1990), and Covington (1994). Here we
present, with minor changes, the LC-based in-
terpreter with linking for a modified DCG for-
malism as formulated by Pereira/Shieber (1987:
180ff); note that the interpreter itself is encoded
as a DCG:

parse(NT) --> leaf(LC, NT), ic(LC, NT).

leaf(Cat,NT) --> [Word],
{lex(Word,Cat), link(NT,Cat)}.

Ic(LC, NT) -->
ic(LC, NT) -->

[], {unify(LC, NT)}.
{CO ---> [CllCats],
unify(LC, Cl),
link(NT,C0)},

right(Cats),
Ic(C0,NT).

right([]] --> [].
right([Cat[Cs]) --> parse(Cat), right(Cs).

Our version stated here tranfers the call to
link from the definition of parse to that of
leaf; the motivation for this change steins from
our use of top-down information in the mor-
phological analysis and in the treatment of mis-
sing lexical entries.

Moreover, our implementation uses the open
Prolog lists of Eisele/D6rre (1986) to encode
the feature structures of PATR-II (also see
Gazdar/Mellish 1989: 228ff). Since simple vari-
able sharing does not capture the unification of
these objects, we instead employ unify/2.

The transitive subset of the linking relation
can be implemented as follows:

link(C0,C] :- (II(X,Y) ; 12(X,Y)),
unify(X,C0), unify(Y,C).

661

Of course, such clauses lead to a highly ineffi-
cient search for Prolog. A better solution, which
we have adopted from Kilbury (1990), is to
introduce rule numbers, which are then used to
define a purely filtering linking relation. This
amounts to the simplest case of the restriction
technique of Shieber (1985). Only when a link
between numerical pointers is first found is the
linking relation between feature structures used
to instantiate information.

3 Consequences of Predictive Linking

What is the advantage of predictive linking as
discussed above in (2)? In the previous parsing
literature attention has been drawn mainly to
linking as a filter employed to reduce the
search space as early as possible in a syntactic
analysis. But we have seen that linking as de-
fined above in terms of feature structures and
used in parsing with destructive unification
leads to the top-down instantiation of informa-
tion. This has far-reaching consequences for the
analysis of inflectional morphology and lexical
items for which no entry at all or no adequate
entry is found in the parser's lexicon. We brief-
ly address these areas separately.

3.1 Inflectional Morphology

If we ignore capitalization, the German word
form runden 'round' can be assigned the cate-
gory N, A, or V; the corresponding inflected
forms are too numerous to list here but include
e.g. accusative plural for N, genitive singular
weak inflection for A, and first person plural
present indicative for V. The facts of German
inflection lead to massively disjunctive analyses
in conventional systems of morphological anal-
ysis that simply take an isolated inflected word
form and consider what it might be. But if we
are given a top-down prediction or expectation
of the lexical category from the linking relation,
then we can first find a lexical entry for the
stem, use linking to confirm the appropriateness
of the entry (in our example, the appropriate-
ness of the category N, A, or V) for the context,
simultaneously use linking to further instantiate
features (in particular for agreement) on the
category, and then check the given inflection
within a highly restricted search space. This

captures our intuition that an inflection like -n
in German in itself bears practically no infor-
mation and is functional only because we nor-
mally have expectations and can greatly reduce
the range of inflections possible in a given con-
text.

3.2 Analysis of Unknown Words

A fundamental issue for parsing lies in the area
of "unknown" or "new" words. This involves
cases where no entry at all is found for a given
word form, but also cases where an entry for
the form is found, which, however, does not fit
the given context; the missing lexical entries
may simply have been omitted from the lexicon
of a system, or may reflect novel lexical cre-
ations. The theoretical and practical significance
of such unknown forms is great; see the discus-
sion in Kilbury/Barg/Renz (1994).

Even without the linking relation, unification,
together with backtracking through a space of
possible analyses (or corresponding use of a
chart) gives us information for the missing en-
try; this in itself is not novel. But simple exten-
sions of well-known parsing algorithms presup-
pose a random search through the space of
open lexical classes to get the candidate catego-
ry. The procedure is roughly as follows: (1)
once it is established that no appropriate entry
is in the lexicon, (2) arbitrarily select a catego-
ry for an open lexical class, (3) check whether
it fits the given context, and (4) if it fits, take
the final feature structure for the form which is
instantiated in the course of a successfully com-
pleted parse.

in contrast, top-down predictive linking pro-
vides for a directed search since top-down in-
stantiation can propose a category. The effi-
ciency can be further increased by partitioning
the linking relation according to lexical and
phrasal categories for the left corner and,
among the lexical left corners, open and closed
lexical classes.

In implementation, missing lexical entries
can be dealt with in a first approximation by
extending the interpreter with a second clause
in the definition of leaf:

leaf(Cat,NT) --> [Word],
((setof(C, lex(Word, C),Cs), !; Cs = []),
\+ (member(Old, Cs), link(NT,Old)),
open lexical link(NT,Cat),
new word(Wor~,Cat]}.

662

Obviously, more needs to be said about the
control strategy of the modified interpreter
since garden paths and structural ambiguity
must be dealt with before new entries are pos-
tulated, but that goes beyond the scope of this
paper.

4 Conclusion

We have presented a technique based on the
operation of generalization that provides for the
automatic computation of a linking relation for
use with complex-feature based grammar for-
malisms of the kind that are currently favored
in computational linguistics. Although our pro-
posal was developed lbr left-corner parsing
with backtracking, it obviously carries over to
other parsers with top-down prediction. A fur-
ther goal of this paper is to motivate a shift of
attention from linking as a mere filter to genu-
inely predictive linking as a valuable device for
the top-down transport of information essential
for other aspects of natural language parsing.

Acknowledgements

The research project Dynamische Erweiterung
des Lexikons (DYNALEX) is supported by the
German Research Foundation (DFG) in the
Sonderfbrschungsbereich 282 lheorie des Lexi-
kons. 1 wish to thank Petra Barg, Christof
Rumpf, Sebastian Varges and anonymous refer-
ees for their comments and suggestions.

References

Alshawi, Hiyan (ed.) (1992) The Core Lan-
guage Engine. Cambridge, Mass. & London:
MIT Press.

Bouma, Gosse (1991) Prediction in Chart
Parsing Algorithms for Categorial Unification
Grammar, Proceedings of the 5th EACL Con-
terence, 179-184.

Carpenter, Bob (1992) The Logic of Typed
Feature Structures. Cambridge: CUP.

Covington, Michael A. (1994) Natural Lan-
guage Processing for Prolog Programmers.
Englewood Cliffs: Prentice-Hall.

Eisele, Andreas / Jochen DOrre (1986) A
Lexical Functional Grammar System in Prolog,
Proceedings' of COLING-86, 551-553.

Gazdar, Gerald / Chris Mellish (1989) Natu-
ral Language Processing in Prolog. An Intro-
duction to Computational Linguistics. Woking-
ham et al.: Addison-Wesley.

l laas, Andrew (1989) A Parsing Algoritlma
for Unification Grammar. Computational Lin-
guistics 15: 219-232.

Kay, Martin (1980) Algorithm Schemata and
Data Structures in Syntactic Processing (= Re-
port CSL-80-12). Palo Alto: Xerox Corp.

Kilbury, James (1990) QPATR and Cons-
traint Threading, Proceedings of COLING-90,
Vol. 3, 282-284.

Kilbury, James / Petra Barg / lngrid Renz
(1994) Simulation lexikalischen Erwerbs, S. W.
Felix / Chr. Habel / G. Rickheit (eds), Kogniti-
ve Linguistik: Reprgisentation und Prozesse,
251-271. Opladen: Westdeutscher Verlag.

Matsumoto, Y. / H. Tanaka / It. tlirakawa /
H. Miyoshi / tl. Yasukawa (1983) BUP: A
Bottom-Up Parser Embedded in Prolog. New
Generation Computing 1 : 145-158.

Moore, Robert C. / Alshawi, Hiyan (1992)
Syntactic and Semantic Processing, in Alshawi
(1992), 129-148.

Pereira, Fernando C. N. / Stuart M. Shieber
(l 987) Prolog and Natural-Language Analysis
(= CSLI Lecture Notes 10). Stanford: CSLI.

Rosenkrantz, D. J / P. M. Lewis (1970) l)e-
terministic Left Corner Parser, IEEE Con[er-
ence Record of the l l th Annual Symposium on
Switching and Automata Theory, 139-152.

Shieber, Stuart M. (1985) Using Restriction
to Extend Parsing Algorithms for Complex-Fea-
ture-Based Formalisms, Proceedings of the
23rd ACL Conference, 145-152.

Shieber, Stuart M. (1986)An Introduction to
Unification-Based Approaches to Grammar (=
CSLI Lecture Notes 4). Stanford: CSLI.

Shieber, Stuart M. (1992) Constraint-Based
Grammar Formalisms. Cambridge, Mass. &
London: M|T Press.

Shieber, Stuart M. / Gertjan van Noord /
Fernando C. N. Pereira / Robert C. Moore
(1990) Semantic-Head-Driven Generation.
Computational Linguistics 16: 30-42.

663

