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Abstract 

Automatic compilation of the linking relation 
employed in certain parsing algorithms for con- 
text-free languages is examined. Special pro- 
blems arise in the extension of these algorithms 
to the possibly infinite domain of feature struc- 
tures. A technique is proposed which is design- 
ed specifically for left-recursive categories and 
is based on the generalization of their occurren- 
ces in a derivation. Particular attention is drawn 
to the top-down predictive character of  the link- 
ing relation and to its significance not only as 
a filter for increasing the efficiency of syntactic 
analysis but as a device for the top-down in- 
stantiation of  information, which then serves as 
a key to the directed analysis of  inflected forms 
as well as "unknown" or "new" words. 

1 Introduction 

Complex-feature-based formalisms are under- 
stood here as equivalent to unification-based 
formalisms as exemplified by PATR-II, HPSG, 
and others (cf Shieber 1986, Carpenter 1992). 
Such formalisms typically include a context- 
free (CF) base, which allows the use of  parsing 
algorithms designed for CF languages despite 
the fact that complex-feature-based formalisms 
are essentially more powerful than CF gram- 
mars. However, such an adaptation of  CF algo- 
rithms involves their extension to possibly infi- 
nite nonterminal domains, which, as Shieber 
(1985) and Haas (1989) have shown, is nontriv- 
ial. 

Various CF algorithms make use of a binary 
relation between a goal category and the cate- 
gory of  a constituent (phrase or word) which 
either has just been parsed or is to be parsed 
next. Different terms have been used to desig- 
nate this relation; Kay (1980) speaks of reach- 

ability, while Pereira/Shieber (1987) and others 
before them use the term linking for the rela- 
tion. 

Whatever term one takes, an important aspect 
of  the relation is that it can be used to reduce 
the search space of possible syntactic analyses 
at an earlier point in parsing and thus serves to 
improve the efficiency of  a parser. Shieber 
(1985, 1992) follows established terminology 
in speaking of  top-down filtering in connection 
with the prediction step of the Earley algo- 
rithm. His central notion of  restriction, whereby 
a restrictor is a finite subset of  the paths speci- 
fied in a feature structure, is related to the tech- 
nique we introduce here, since both guarantee 
the finiteness of  an otherwise possibly infinite 
domain of  complex categories, but Shieber's re- 
strictors are specified manually. 

We propose a general algorithmic method of 
compilation that avoids manual specification. 
The focus of this discussion is on the linking 
relation used to extend left-corner parsers, rath- 
er than on the prediction step of the Earley 
algorithm as with Shieber, although the results 
carry over. 

Whereas Shieber et al. (1990) have discussed 
similar techniques in the context of  semantic- 
head-driven generation, we are concerned here 
with parsing. We view the linking relation not 
simply as a filter to increase efficiency within 
the domain of syntactic analysis--this aspect is 
stressed by Shieber (1985) and other investiga- 
tors such as Bouma (1991)--but rather as a 
device for the top-down predictive instantiation 
of information, as Shieber et al. (1990) have 
shown for semantic-head-driven generation. In 
this paper we are concerned especially with 
morphosyntactic information and illustrate the 
relevance of  predictive linking for morphologi- 
cal analysis and for the analysis of "unknown" 
or "new" lexical items. 
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2 Left-Corner Parsing and Linking 

2.1 The Left-Corner Parsing Algorithm 

The so-called left-corner (LC) parsing algo- 
rithm is generally credited to Rosenkrantz/ 
Lewis (1970). It has been presented so often 
since and is now so welbknown that a brief 
informal statement of  the algorithm should suf- 
rice here: 

The algorithm applies to CF grammars in 
general; it is both correct and, with the excep- 
tion of derivations of  the form A --+* A, where 
A is a nonterminal, is complete. It can be used 
either to compile a given CF grammar into a 
parser or to interpret it. 

The principle is simple. To parse a string, the 
current word form is first parsed, i.e. looked up 
in the lexicon. Whenever a constituent, be it a 
word form or a phrase, is successfully parsed, 
the syntax rules are chosen which have the 
category of  the identified constituent as their 
left corner, i.e. the left-most category in the 
right-hand side of  the rule. If the remaining 
sister categories of  the left corner can be 
parsed, then the mother category of  the rule is 
the result tbr the corresponding substring, and 
the algorithm continues recursively until the 
entire string is covered by a category; if the 
category of  an expectation was specified, it 
must match the category found. 

2.2 The Linking Relation 

It was soon noted that the efficiency of the 
algorithm could be improved significantly 
through the use of  a reachability or linking 
relation compiled out of  the grammar before 
parsing; this consists of  the reflexive and transi- 
tive closure of  the relation defined by the pairs 
of  mother and LC categories specified in the set 
of  syntax rules of  the grammar. Whenever a 
lexical entry is found that assigns a category C 
to a given word form, the linking relation is 
used to determine whether C can be useful in 
reaching the goal category C', i.e. whether C is 
a (transitive) left corner of  C'; this test is car- 
ried out before the parser looks for rules having 
C as the left corner. Of  course, C may itself be 
the category C' sought, hence the reflexive clo- 
sure. Likewise, when a rule is found in which 
C is the left corner, the relation tests whether 

the mother Co of  C can be used to reach the 
goal C' before an attempt is made to parse the 
sisters of  C. 

Computation of the linking relation from a 
set of  CF syntax rules is straightforward. Since 
the nonterminal symbols are atomic, one merely 
needs to check for left recursive symbols so 
that the computation terminates. 

2.3 Complex-Feature-Based Formalisms 

As noted above, the extension of  the LC algo- 
rithm to a potentially infinite nonterminal do- 
main, i.e. complex feature structures, is nontriv- 
ial. An example of  the pitfalls awaiting naive 
attempts at such an extension is provided by the 
grammars illustrating the list technique for sub- 
categorization introduced by Shieber (1986: 32, 
77-78); also see the similar example of  Haas 
(1989: 227). We quote Shieber's syntax rules 
for his second analysis of  subcategorization 
(p.84), in which the subject of  a verb appears 
as the first element of the subcategorization list: 

S ---> NP VP : <S head> : <VP head> 
<S head form> : finite 
<VP subcat first> = <NP> 
<VP subcat rest> = end. 

VP ---> V : <VP head> = <V head> 
<VP subcat> == <V subcat>. 

VP i ---> VP 2 X : 
- <VP 1 head> : <VP 2 head> 

<VP-2 subcat first> : 
-<VP ] subcat first> 

<VP 2 s~bcat rest first> = <X> 
<VP--2 subcat rest rest> = 

<VP 1 subcat rest>. 

The difficulties clearly lie in the last syntax 
rule: VP (or VP_I and VP2)  seems to be left 
recursive--whatever we may mean by that at 
this point--so perhaps no link arises at all from 
this rule. On the other hand, the two feature 
structures are unifiable, but their unification 
produces a cyclic feature structure, which raises 
additional problems for the definition of  linking 
and possibly for implementation. The difficulty, 
of  course, is that VP 1 and VP 2 are schematic 
and that these rules recursively generate a de- 
numerably infinite set of  VP-type categories, all 
of which may give rise to distinct elements in 
the linking relation. Whether this is linguistical- 
ly important, which is improbable, or merely a 
mathematical game is beside the point: the for- 
real problem is there, and we cannot individ- 
ually specify infinitely many links. 
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Consider the LC analysis of  the sentence 
John loves Mary. After analyzing [John]Np, the 
parser expects a VP[1], where VP[n] is used as 
an informal alias for a VP that subcategorizes 
for n complements. Now, there is an entry for 
[loves]v, so a link <VP[1], V[2]> is needed 
since loves subcategorizes for a subject and an 
object. Indeed, since the grammar allows verbs 
to subcategorize for any finite number of  com- 
plements, we need an infinite number of  links 
between VP[1] and V[n] categories. Moreover, 
once we have these links we need the same 
number between VP[1] and VP[n] categories 
since the first VP expansion simply unifies the 
subcategorization of  the Vdaughter with that of 
the VP mother. 

Other problems arise in grammars with indi- 
rect left recursion. This is linguistically plausi- 
ble in the following example, where both NP 
and Det are indirectly left recursive: 

S ---> NP VP : <NP agr> = <VP agr>. 

NP ---> Det N : <NP agr> = <N agr> 
<NP agr> = <Det agr>. 

Det ---> NP Posessive Marker 

The rules account for sentences like The child's 
father sleeps. We must take care not to exclude 
A mother's children sleep, which will happen 
if the linking relation is defined so that any de- 
terminer--also in a possessive construction-- 
must have the same agreement features as the 
sentence subject of  which it is a left corner. 

2.4 Top-Down Predictive Linking 

The aim of  our proposal is to define equiva- 
lence relations that keep the linking relation 
finite while also preventing it from being too 
restrictive; this turns the linking relation into a 
weakpredietion table in the sense of  Haas (19- 
89: 227ff). Like Shieber (1985, 1992) with the 
notion of  restriction, we confine our attention 
to a subset of  specifications; in particular, we 
can define a feature structure that subsumes all 
VP-type feature structures of  Shieber's recursive 
subcategorization rules. But unlike Shieber, our 
restrictors are computed automatically by build- 
ing the generalization of  the occurrences ofleft- 
recursive categories in a grammar. 

The intuitive idea is that we consider catego- 
ries to be left recursive if their tokens can be 
unified (rather than being identical, as in the 

case of  atoms); we then use their generaliza- 
tion, or greatest lower bound, as a common 
denominator defining an equivalence relation. 

We shall say that two categories build a left- 
recursive link, i.e. <X, X'> e L 1 i f fon the basis 
of  the given grammar there is a derivation A 
-->* A't~' (where o~'is a string of  categories and 
terminal symbols)such that the unification A u 
A' exists, whether or not it is cyclic, and there 
is no A" such that A --->' A" t~" -->' A' t~', where 
A u A" and A" u A' exist. Let Age, be the gene- 
ralization A rq A' of  A and A'; then we define X 
and X' as distinct copies of  Ag~, such that for 
every path n where A@n = A '@~, it also holds 
that X@n = X'@n, where F@n is "the value of  
the feature structure F at some path n at which 
it is defined" (Carpenter 1992:38) and '=' de- 
notes token identity. We thus expressly allow 
reentrancies between the distinct feature struc- 
tures X and X'; as we shall see below, this is 
essential in order for us to use the linking rela- 
tion to instantiate information during parsing. 

A second relation, corresponding directly to 
the conventional notion of  links as compiled 
directly from rules, can now be defined: two 
categories build a rule link, i.e. <Ao', A , ~  ~ L 2 
iff on the basis of  the given grammar there is 
a finite derivation A o --> AIo~ ~ ... A,,vo~,v ---> A,t~, 
with 1 < n such that for all i with 1 _< i < n it 
is the case that A o u Aj is undefined (i.e. the 
derivation is nonrecursive), and for all i with 0 
< i < n it is the case that if <X, X~> ~ L 1 and 
A i u X exists, then A/a l so  exists and is the ex- 
tension X'E A / t h a t  arises when A~ is unified 
with X. Intuitively, L 2 is given by the set of  
nonrecursive derivations licensed by the gram- 
mar, where each left-recursive left-most catego- 
ry in the derivation is replaced by (i.e. restrict- 
ed to) the generalization of  the instances of  that 
left-recursive category. 

The overall linking relation L is then defined 
so that <B, B~> E L iff(1)  there is a <X, X'> 
(L~ u L2) such that B u X and B' m X' exist, or 
else (2) B u B' exists (the reflexive case where 
B' satisfies the parse goal B). 

Moore and Alshawi (1992: 134ff) describe 
a similar algorithm that compiles the linking 
relation for complex-feature-based formalisms. 
But rather than computing the generalization of  
left-recursive categories to avoid the possibility 
of  generating an infinite relation, they instead 
"impose a cutoff after two nested occurrences 
of  the same functor in a feature specification, 
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substituting new unique variables for the argu- 
ments of  the inner occurrence of the functor, so 
that any constituent with a more complex fea- 
ture description will be accepted." Moreover, 
they discuss linking only with regard to filter- 
ing. 

Our use of the linking relation with destruc- 
tive unification in parsing requires special com- 
ment. I fB  is a goal and B' is a parsed left cor- 
ner such that <X, X'> e L and B u X and B' u 
X' exist, then there is a link between B and B'; 
we can stop here with a mere test of  unification 
if we only want to use linking as a filter to 
reduce the search space. But if  B and B' are 
actually unified with X and X', respectively, 
information may become shared between B and 
B'. In the reflexive case of linking for comple- 
tion, B and B' are unified with each other. 
Since the information that becomes shared via 
L 1 is subsumed by that of  the reflexive case, 
completion works correctly for left-recursive 
categories, but B and B' must still be unified in 
the actual completion step. 

We have employed generalization in the defi- 
nition of linking to make a kind of mask allow- 
ing just the appropriate information to become 
shared between B and B'. Thus, linking ceases 
to be a mere test or filter and can instead func- 
tion as an independent device for the transmis- 
sion of information in parsing. 

Returning to Shieber's rules for subcategori- 
zation, the definition of  L given here allows 
instantiated head features of  a VP goal to be 
passed top-down to a verb. Moreover, since the 
treatment of subcategorization of Shieber (1986: 
84) is adopted in which the subject NP appears 
consistently as thefirst  element of  the subcate- 
gorization list in all projections of V, then in- 
stantiated agreement features and other infor- 
mation about the subject can be passed top- 
down as well. The linking relation compiled 
from the grammar in (2.3) above is listed here: 

ll([cat:vp,head:A, subcat:[first:B, rest:C]], 
[cat:vp,head:A, subcat:[first:B, rest:D]]). 

12([cat:s], [cat:np]). 

12([cat:vp,head:A, subcat:[first:B, rest:C]], 
[cat:v, head:A, subcat:[first:B, rest:D]]). 

Finally, we list the linking relation compiled 
from the example with left-recursive categories 
Det and NP: 

ii 
ii 

12 
12 
12 
12 

[cat:np], [cat:np]). 
[cat:det], [cat:det]). 

[cat:s], [cat:np]). 
[cat:np], [cat:det]). 
[cat:det], [cat:np]). 
[cat:s], [cat:det]). 

In contrast to the previous example, agreement 
specifications have been compiled out of  the 
relation, but no additional convention whereby 
eat specifications define a context-free skeleton 
is involved here. 

2.5 Notes on Implementation in Prolog 

Implementation of the LC algorithm in Prolog 
has been discussed by Matsumoto et al. (1982) 
for the BUP system, by Pereira/Shieber (1987), 
Kilbury (1990), and Covington (1994). Here we 
present, with minor changes, the LC-based in- 
terpreter with linking for a modified DCG for- 
malism as formulated by Pereira/Shieber (1987: 
180ff); note that the interpreter itself is encoded 
as a DCG: 

parse(NT) --> leaf(LC, NT), ic(LC, NT). 

leaf(Cat,NT) --> [Word], 
{lex(Word,Cat), link(NT,Cat)}. 

Ic(LC, NT) --> 
ic(LC, NT) --> 

[], {unify(LC, NT)}. 
{CO ---> [CllCats], 
unify(LC, Cl), 
link(NT,C0)}, 

right(Cats), 
Ic(C0,NT). 

right([]] --> []. 
right([Cat[Cs]) --> parse(Cat), right(Cs). 

Our version stated here tranfers the call to 
link from the definition of parse to that of  
leaf; the motivation for this change steins from 
our use of  top-down information in the mor- 
phological analysis and in the treatment of  mis- 
sing lexical entries. 

Moreover, our implementation uses the open 
Prolog lists of  Eisele/D6rre (1986) to encode 
the feature structures of  PATR-II (also see 
Gazdar/Mellish 1989: 228ff). Since simple vari- 
able sharing does not capture the unification of  
these objects, we instead employ unify/2. 

The transitive subset of  the linking relation 
can be implemented as follows: 

link(C0,C] :- (II(X,Y) ; 12(X,Y)), 
unify(X,C0), unify(Y,C). 
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Of course, such clauses lead to a highly ineffi- 
cient search for Prolog. A better solution, which 
we have adopted from Kilbury (1990), is to 
introduce rule numbers, which are then used to 
define a purely filtering linking relation. This 
amounts to the simplest case of  the restriction 
technique of  Shieber (1985). Only when a link 
between numerical pointers is first found is the 
linking relation between feature structures used 
to instantiate information. 

3 Consequences of Predictive Linking 

What is the advantage of predictive linking as 
discussed above in (2)? In the previous parsing 
literature attention has been drawn mainly to 
linking as a filter employed to reduce the 
search space as early as possible in a syntactic 
analysis. But we have seen that linking as de- 
fined above in terms of  feature structures and 
used in parsing with destructive unification 
leads to the top-down instantiation of  informa- 
tion. This has far-reaching consequences for the 
analysis of  inflectional morphology and lexical 
items for which no entry at all or no adequate 
entry is found in the parser's lexicon. We brief- 
ly address these areas separately. 

3.1 Inflectional Morphology 

If we ignore capitalization, the German word 
form runden 'round' can be assigned the cate- 
gory N, A, or V; the corresponding inflected 
forms are too numerous to list here but include 
e.g. accusative plural for N, genitive singular 
weak inflection for A, and first person plural 
present indicative for V. The facts of  German 
inflection lead to massively disjunctive analyses 
in conventional systems of  morphological anal- 
ysis that simply take an isolated inflected word 
form and consider what it might be. But if we 
are given a top-down prediction or expectation 
of  the lexical category from the linking relation, 
then we can first find a lexical entry for the 
stem, use linking to confirm the appropriateness 
of  the entry (in our example, the appropriate- 
ness of  the category N, A, or V) for the context, 
simultaneously use linking to further instantiate 
features (in particular for agreement) on the 
category, and then check the given inflection 
within a highly restricted search space. This 

captures our intuition that an inflection like -n 
in German in itself bears practically no infor- 
mation and is functional only because we nor- 
mally have expectations and can greatly reduce 
the range of  inflections possible in a given con- 
text. 

3.2 Analysis of Unknown Words 

A fundamental issue for parsing lies in the area 
of  "unknown" or "new" words. This involves 
cases where no entry at all is found for a given 
word form, but also cases where an entry for 
the form is found, which, however, does not fit 
the given context; the missing lexical entries 
may simply have been omitted from the lexicon 
of  a system, or may reflect novel lexical cre- 
ations. The theoretical and practical significance 
of  such unknown forms is great; see the discus- 
sion in Kilbury/Barg/Renz (1994). 

Even without the linking relation, unification, 
together with backtracking through a space of  
possible analyses (or corresponding use of  a 
chart) gives us information for the missing en- 
try; this in itself is not novel. But simple exten- 
sions of  well-known parsing algorithms presup- 
pose a random search through the space of  
open lexical classes to get the candidate catego- 
ry. The procedure is roughly as follows: (1) 
once it is established that no appropriate entry 
is in the lexicon, (2) arbitrarily select a catego- 
ry for an open lexical class, (3) check whether 
it fits the given context, and (4) if it fits, take 
the final feature structure for the form which is 
instantiated in the course of  a successfully com- 
pleted parse. 

in contrast, top-down predictive linking pro- 
vides for a directed search since top-down in- 
stantiation can propose a category. The effi- 
ciency can be further increased by partitioning 
the linking relation according to lexical and 
phrasal categories for the left corner and, 
among the lexical left corners, open and closed 
lexical classes. 

In implementation, missing lexical entries 
can be dealt with in a first approximation by 
extending the interpreter with a second clause 
in the definition of  leaf: 

leaf(Cat,NT) --> [Word], 
((setof(C, lex(Word, C),Cs), !; Cs = []), 
\+ (member(Old, Cs), link(NT,Old)), 
open lexical link(NT,Cat), 
new word(Wor~,Cat]}. 
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Obviously, more needs to be said about the 
control strategy of the modified interpreter 
since garden paths and structural ambiguity 
must be dealt with before new entries are pos- 
tulated, but that goes beyond the scope of this 
paper. 

4 Conclusion 

We have presented a technique based on the 
operation of generalization that provides for the 
automatic computation of a linking relation for 
use with complex-feature based grammar for- 
malisms of the kind that are currently favored 
in computational linguistics. Although our pro- 
posal was developed lbr left-corner parsing 
with backtracking, it obviously carries over to 
other parsers with top-down prediction. A fur- 
ther goal of this paper is to motivate a shift of 
attention from linking as a mere filter to genu- 
inely predictive linking as a valuable device for 
the top-down transport of information essential 
for other aspects of natural language parsing. 
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