Modularizing Codescriptive Grammars for Efficient Parsing

*

Walter Kasper and Hans-Ulrich Krieger
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken, Germany
{kasper,krieger}@dfki.uni-sb.de

Abstract

Unification-based theories of grammar al-
low to integrate different levels of linguis-
tic descriptions in the common framework
of typed feature structures. Dependencies
among the levels are expressed by corefer-
ences. Though highly attractive theoreti-
cally, using such codescriptions for analysis
creates problems of efficiency. We present
an approach to a modular use of codescrip-
tions on the syntactic and semantic level.
Grammatical analysis is performed by tight-
ly coupled parsers running in tandem, each
using only designated parts of the grammat-
ical description. In the paper we describe
the partitioning of grammatical information
for the parscrs and present results about the
performance.

1 Introduction

Unification-based theories of grammar allow for
an integration of different levels of linguistic de-
scriptions in a common framework of typed fea-
ture structures. In HPSG this assumption is em-
bodied in the fundamental concept of a sign (Pol-
lard and Sag, 1987; Pollard and Sag, 1994). A
sign is a structure incorporating information from
all levels of linguistic analysis, such as phonology,
syntax, and semantics. This structure specifies in-
teractions between these levels by means of coref-
erences, indicating the sharing of information. It
also describes how the levels constrain cach other
mutually. Such a concept of linguistic description
is attractive for several reasons:

1. it supports the use of common formalisms and
data structures on all linguistic levels,

2. it provides declarative and reversible inter-
face specifications between these levels,

3. all information is simultaneously available,
and

4. no procedural interaction between linguistic
modules needs to be set up.

*This work was funded by the German Federal
Ministry of Education, Science, Rescarch and Tech-
nology (BMBF) in the framework of the Verbmobil
Project under Grant 01 1V 101 K/1. The responsibil-
ity for the content of this study lics with the authors.

628

Similar approaches, espccially for the syntax-
semantics interface, have been suggested for all
major kinds of unification-based theories, such as
LI'G or CUG. (Halvorsen and Kaplan, 1988) call
such approaches codescriptive in contrast to the
approach of description by analysis which is close-
ly related to sequential architectures where lin-
guistic levels correspond to components, operat-
ing on the basis of the (complete) analysis results
of lower levels. In a codescriptive grammar sc-
mantic descriptions are expressed by additional
constraints.

Though theoretically very attractive, codescrip-
tion has its price: (i) the grammar is difficult to
modularize due to the fact that the levels con-
strain each other mutually and (ii) there is a com-
putational overhead when parsers use the com-
plete descriptions. Problems of these kinds which
werce already noted by (Shieber, 1985) motivat-
ed the research described here. The goal was to
develop more flexible ways of using codescriptive
grammars than having them applied by a pars-
er with full informational power. The underlying
observation is that constraints in such grammars
can play different roles:

e Genuine constraints which relate directly
to the grammaticality (wellformedness) of the
input. Typically, thesc are the syntactic con-
straints.

¢ Spurious constraints which basically build
representational structures. These are less
concerned with wellformedness of the input
but rather with output for other components
in the overall system. Much of semantic de-
seriptions are of this kind.

If a parser treats all constraints on a par, it
cannot distinguish between the structure-building
and the filtering constraints. Since unification-
based formalisms are monotonic, large structures
are built up and have to undergo all the steps of
unification, copying, and undoing in the proces-
gor. The costs of these operations (in time and
space) increase exponentially with the size of the
structures.

In the VERBMOBIL project, the parser is used
within a speech translation system (Wahlster,
1993; Kay, Gawron, and Norvig, 1994). The pars-

[intrans-fin-verb-lex 7
INDEX 10281
[np-nom-type 7
contZquant
SEM
CONTENT [VAR [5]]
CAT-SYM np-cat
s5C
syntaz-lype
LOCAL [DBr yes |
SYN
AGR [7]
HISAD
L CASE () nom-val
[semantics-lype b
QUANT emply-diff-list
rp-type Asubwff-inst-shr-var
VAR
SEM 2 .
atomic-wff-type
CONTENT i
INST
COND
AGENT [5]
_ PRID come
syntaz-type
SYN CAST: (1)
IEAD
AGR
L PHHON "komme"]

Figure 1: The simplified feature structure for the
German verb komme (to come).

cr input consists of word lattices of hypotheses
from specch recognition. The parser has to iden-
tify those paths in the lattice which represent a
grammatically acceptable utterance. Parser and
recognizer are incremental and interactively run-
ning in parallel. Hven for short utterances, the
lattices can contain several hundreds of word hy-
potheses, most of which do not combine to gram-
matical utterances. Parsing these lattices is much
more complex than parsing written text.

The basic idea presented here is to distribute
the labour of evaluating the constraints in the
grammar on several processors (i.c., parsers). Im-
portant considerations in the design of the system
were

1. increasing the performance,

2. achieving incremental and interactive be-
haviour,

3. minimizing the overhead in communication
between the processors.

We used a mid-size HPSG-kind German gram-
mar written in the 7DC formalism (Krieger and
Schifer, 1994). The grammar cospecifies syntax
and semantics in the attributes SYN and seEM. A
simplified example is shown in the lexical entry
for the verb come in Fig. 1.

In the following section, we start with a top-
down view of the architecture. After that we will
describe the communication protocol between the

parsing processcs. Then several options for cre-
ating subgrammars from the complete grammar
will be discussed. The subgrammars represent the
distribution of information across the parsers. Fi-
nally, some experimental results will be reported.

2 The Architecture

The most important aspect for the distribution
of analysis tasks and for defining modes of inter-
action is that one of the processes must work as
a filter on the input word lattices, reducing the
search gpace. The other component then works
only with successful analysis results of the previ-
ous one. This means, that one parser is in control
over the other, whereas the latter one is not di-
rectly exposed to the input. For reasons which
will become obvious below, we will call the first
of thesc parsers the sYN-parser, the second one
controlled by the syN-parser, the SEM-parser.

Another consideration to be taken into account
is that the analysis should be incremental and
time synchronous. 'This implies that the Syn-
parser should not send its results only when it is
completely finished, thus forcing the sEM-parser
to wait.! Interactivity is another aspect we had
to consider. The SEM-parser must be able to re-
port, back to the syN-parser at lcast when its hy-
potheses failed. This would not be possible when
the sEM-parser has to wait till the syN-parser is
finished. This requirement also constrains the ex-
change of messages.

Incrementality and interactivity imply a steady
exchange of messages between the parsers. An im-
portant consideration then is that the overhead for
this communication should not outweigh the gains
of distributed processing. This rules out that the
parsers should communicate by exchanging their
analysis results in terms of resulting feature struc-
tures, since it would imply that on cach commu-
nication event the parsers would have to analyze
the structurcs to detect changes, whether a struc-
ture is part of other alvready known structures, ctc.
It is hard to see how this kind of communication
can be interleaved with normal parsing activity in
cfficient ways.

In contrast to this, our approach allows to ex-
ploit the fact that the grammars employed by the
parsers arc derived from the same grammar and
thereby “similar” in structure. This makes it pos-
gible to restrict the communication between the
parsers to information about what rules werc suc-
cessfully or unsuccessfully applied. BEach parser
then can reconstruct on its side the state the other
parser is in- ~how its chart or analysis tree looks
like. Both parsers try to maintain or arrive at

! Another problem in incremental processing is that
it is not known in advance when an utierance is
finished or a new utterance starts. To deal with
this, prosodic information is taken into account; see
(K{asper and Krieger, 1996) for more details.

629

isomorphic charts. The approach allows that the
parsers never need to exchange analysis results in
terms of structures as the parsers should always be
able to reconstruct these if necessary. On the oth-
er hand, this reconstructibility poses constraints
on how the codescriptive grammar can be split up
in subgrammars.

The requirements of incrementality, interactivi-
ty and efficient communication show that our ap-
proach does not emulate the “description by anal-
ysis” methodology in syntax-semantics interfaces
on the basis of codescriptive grammars.

3 The Parsers and the Protocol

The SyN-parser and the SEM-parser are agenda-
driven chart parsers. For speech parsing, the
nodes represent points of times and cdges repre-
sent word hypotheses/paths in the word lattice.
The parsers communicate by exchanging hypothe-
ses, bottom-up hypotheses from syntax to seman-
tics and top-down hypotheses from semantics to
syntax; see (Kasper, Kricger, Spilker, and Weber,
1996) for an in-depth description of the current
setup.

e Bottom-up hypotheses are emitted by the
SyN-parser and sent to the SEM-parser. They
undergo verification at the semantic level.
A bottom-up-hypothesis describes a passive
edge (complete subtree) constructed by the
syntax parser and consists of the identifier of
the rule instantiation that represents the edge
and the completion history of the constructed
passive edge. Having passive status is a nec-
essary but not sufficient condition for an edge
to be sent as hypothesis. Whether a hypothe-
sis 1s sent also depends on other criteria, such
as its score.

e Top-Down hypotheses result from activ-
itics of the SEM-parser, trying to verify
bottom-up-hypotheses. To keep the commu-
nication efforts low, only failures are reported
back to the syN-parser by sending simply the
hypothesis’ identifier. This narrows the space
of successful hypotheses on the SyN-parser’s
side (see remarks in Section 4.3.1).

The central data structure by which synchro-
nization and communication between the parsers
is achieved is that of a completion history, con-
taining a record on how a subtree was complet-
ed. Basically it tells us for cach edge in the chart
which other edges are spanned. The nodes in the
chart correspond to points in time and edges to
time intervals spanned. Completion histories are
described by the following EBNF:

{R<rule-id><edge~id><start><end>{E<edge~id>}"|
L<lex-id><edge-id><start><end>}*

<rule-id>, <lex-id>, <edge-id>, <start>, and
<end> are integers. R<rule-id> and L<lex-id>

630

denote rules and lexicon entries, resp. <edge-id>
uniquely identifies a chart edge. Finally, <start>
and <end> specify the start/end point of a span-
ning edge.

This protocol allows the parsers to cfficiently
exchange information about the structure of their
chart without having to deal with explicit analysis
results as feature structures. Since the SEM-parser
does not directly work on linguistic input, there
are two possible parsing modes:

e Non-autonomous parsing. The parsing
process mainly consists of constructing the
tree described by the completion history, us-
ing the semantic counterparts of the rules
which led to a syntactic hypothesis. If this
fails, it is reported back to the SYN-parser.

e Quasi-autonomous parsing. The parser
extends the chart on its own through predic-
tion and completion steps. Obviously, this
is only possible after some initial information
by the syN-parser, since the skM-parser is not
directly connected to the input word lattice.

4 Compilation of Subgrammars

In the following, we discuss possible options and
problems for the distribution of information in a
cospecifying grammar. Our approach raises the
question which of the parsers uses what informa-
tion. This set of information is what we call a
subgrammar. These subgrammars are generated
from a common source grammar.

4.1 Reducing the Representational
Overhead by Separating Syntax and
Semantics

An obvious choice for splitting up the grammar
was to separate the linguistic levels (strata), such
as syntax and semantics. This choice was also
motivated by the observation that typically the
most important constraints on grammaticality of
the input are in the syntactic part, while most
of the secmantics is purely representational.? A
straightforward way to achicve this is by manipu-
lating grammar rules and lexicon entries—for the
SYN-parser, we recursively delete the information
under the SEM attributes and similarly clear the
SYN attributes to obtain the subgrammar for the
SEM-parser. We abbreviate these subgrammars by
Goyn and Gy and the original grammar by G.
This methodology reduces the size of the struc-
tures for the sYN-parser to about 30% of the com-

2This must be taken cum grano salis as it depends
on how a specific gramnmar draws the line between
syntax and semantics: selectional constraints, e.g., for
verb arguments, arc typically part of semantics and
are “true” constraints. Also, semantic constraints
would have a much larger impact if, for instance,
agreement constraints arc considered as semantic, too,
as (Pollard and Sag, 1994) suggest.

plete structure. One disadvantage of this simple
approach is that coreferences between syntax and
semantics disappear (we call the collection of these
common reentrancics the coref skeleton). This
might lead to several problems which we address
in Section 4.2. Section 4.3 then discusses possible
solutions.

Another, more sophisticated way to keep the
structures small is due to the type expansion
mechanism in 7DL (Krieger and Schifer, 1995).
Instead of destructively modifying the feature
structures beforchand, we can employ type expan-
sion to let SYN or siM unexpanded. This has the
desired cffect that we do not lose the coreference
consiraints and furthermore are free to expand
parts of the feature structure afterwards. We will
discuss this feature in Section 4.4.

4.2 Problems

Obviously, the major advantage of our method is
that unification and copying become faster dur-
ing processing, due to smaller structures. We can
even cstimate the speedup in the best case, viz.,
quasi-lincar w.r.t. input structure if ouly conjunc-
tive structures are used. Clearly, if inany disjunc-
tions arc involved, the speedup might even be ex-
ponential.

However, the most important disadvantage of
the compilation method is that it no longer guar-
antees soundness, that is, the subgrammar(s)
might accept utterances which are ruled out by
the full grammar. This is due to the simple fact
that certain constraints have been eliminated in
the subgrammars. If at least one such constraint
is a filtering constraint, we automatically enlarge
the language accepted by this subgrammar w.r.t.
the original gramumar. Clearly, completeness is not
affccted, since we do not add further constraints
to the subgrammars.

At this point, let us focus on the estimation
above, since it is only a best-case forecast. Clear-
ly, the structures become smaller; however, due
to the possible decrease of filter constraints, we
must expect an increase of hypotheses in the pars-
cr. In fact, the experimental results in Section
5 show that our approach has a different impact
on the syN-parser and the sEM-parser (see Figure
2). Our hope here, however, is that the increase
of non-determinism inside the parser is compen-
sated by the processing of smaller structures; see
(Maxwell ITT and Kaplan, 1991) for more argu-
ments on this theme.

In gencral, even the intersection of the lan-
guages accepted by Gy and G, does not yield
the language accepted by G- -only the weaker re-
lation £L{G) C L{Gsyn) N L(Gsem) holds. This be-
haviour is an outcome of our compilation schema,
namely, cutting reentrancy points. Thus, cven if
an utterance is accepted by G with analysis fs
encoded as a featurce structure, it might be the

631

case that the unification of the corresponding re-
sults for Gy and Gy, will truly subsume fs:
fS ~ f‘qsyn A f's.s(r‘nL

Let us mention further problems. irstly, ter-
mination might change in case of the subgram-
mars. Consider a subgrammar which containg
cmpty productions or unary (cocrcion) rules. As-
sume that such rules were previously “controlled”
by constraints which arce no longer present. Ob-
viously, if a parser is not restricted through addi-
tional (mmeta-)constraints, the iterated application
of these rules could lead to an infinite computa-
tion, i.c., a loop. This was sometimes the case
during our experiments. Secondly, recursive rules
could introduce infinitely many solutions for a giv-
en utterance. Theoretically, this might not pose a
problem, since the intersection of two infinite sets
of parse trees might be finite. However in practice,
this problem might occur.

4.3 Solutions

In this scction, we will discuss three solution to
the problems mentioned hefore.

4.3.1 Feedback Loop

Although semantics construction is driven by
the specch parser, the use of different subgran-
mars suggest that the speech parser should also
be puided by the stM-parser. This 1s achieved
by sending back falsified hypotheses. Because hy-
potheses are uniquely identified in our framework,
we must only send the integer that identifies the
falsified chart edge. In the syN-parser, this infor-
mation might cither lead to a true chart revision
process or be employed as a filter to narrow the
sct of emitted hottom-up hypotheses.

4.3.2 Coref Skeleton

In order to guarantee correctness of the anal-
ysis, we might unify the results of both parsers
with the corresponding coref skeletons at the end
ol an analysis. We did not. pursue this strategy
since it introduces an additional processing step
during parsing. Instead, as explained above, it is
preferable to cinploy type expansion here, letting
SYN or sM unexpanded, so that coreferences arce
preserved. This treatment will be investigated in
Section 4.4.

4.3.3 Full-Size Grammar

The most straightforward way to guarantee
soundness is simply by employing the full-size
grammar in one of the two parsers. This might
sound strange, but if one processor basically only
verifics hypotheses from the other and does not
generate additional hypotheses, the overhead is
neglectable. We have used this scheme in that
the sEM-parser operates on the full-size grammar,
whercas the speech parser directly communicates
with the word recognizer. This makes sense since

the word lattice parser processes an order of mag-
nitude more hypotheses than the SEM-parser; see
(Kasper, Krieger, Spilker, and Weber, 1996) for
more details. Because the SEM-parser passes its
semantic representation to other components, it
makes further sense to guarantee total correctness
here.

4.4 Improvements

This section investigates several improvements of
our compilation approach, solving the problems
mentioned before.

4.4.1 Identifying Functional Strata
Manually

Normally, the grammarian “knows” which in-
formation needs to bc made explicit. Hence, in-
stead of differentiating between the linguistic stra-
ta SYN and SEM, we let the linguist identify which
constraints filter and which only serve as a means
for representation; see also (Shieber, 1985). In
contrast to the separation along linguistic levels,
this approach adopts a functional view, cutting
across linguistic strata. On this view, the syntac-
tic constraints together with, e.g., semantic sclec-
tion constraints would constitute a subgrammar.

4.4.2 Bookkeeping Unifications

In case that the grammarian is unaware of these
constraints, it is at least possible to determine
them relatively to a training corpus, simply by
counting unifications. Features that occur only
once on top of the input feature structures do not
specialize the information in the resulting struc-
ture (actually the values of these features). Fur-
thermore, unrestricted features (value T) do not
constrain the result. For instance,

A S A SAY
3 A t
Cu Cu

indicates that only the path A needs to be made
explicit, since its value is more specific than the
corresponding input values: sAv < s and sAv < v.

4.4.3 Partial Evaluation

Partial evaluation, as known from function-
al/logic programming, is a method of carrying
out parts of computation at compile time that
would otherwise be done at run time, hence im-
proving run time performance of programs; see,
e.g., (Jones, Gomard, and Stestoft, 1993). Anal-
ogous to partial evaluation of definite clauses, we
can partially evaluate annotated grammar rules,
since they drive the derivation. Partial evaluation
means here to substitute type symbols by their
expanded definitions.

Because a grammar contains finitely many rules
of the above form and because the daughters (the
right hand side of the rule) are type symbols (and

632

there are only finitely many of them), a great deal
of this partial evaluation process can be performed
offline. In contrast to a pure CF grammar with
finitely many terminal/nonterminals, the evalua-
tion process must not terminate, due to corefer-
ence constraints within feature structures. How-
ever, meta-constraints such as offline parsability
or lazy type expansion (see next section) help us
to determine those features which actively partic-
ipate in unification during partial evaluation. In
contrast to the previous method, partial evalua-
tion is corpus-independent.

4.4.4 Lazy Type Expansion

We have indicated carlier that type expansion
can be fruitfully employed to preserve the coref
skeleton. Type expansion can also be chosen to
expand parts of a feature structure on the fly at
run time.

The general idea is as follows. Guaranteeing
that the lexicon entries and the rules are consis-
tent, we let everything unexpanded unless we are
enforced to make structurc explicit. As was the
case for the previous two strategies, this is only
necessary if a path is introduced in the resulting
structure whose value is more specific than the
value(s) in the input structure(s).

The biggest advantage of this approach is
obvious—only those constraints must be touched
which are involved in restricting the set of possi-
ble solutions. Clearly, such a test should be done
every time the chart is extended. The cost of such
tests and the on-line type expansions need further
investigation.

5 Experimental Results

This section presents experimental results of our
compilation method, indicating that the simple
SYN/SEM separation does not match the distinc-
tion between true and spurious constraints, most-
ly due to semantic selectional constraints (sec Fig.
2). The measurements have been obtained w.r.t.
a corpus of 56 sentences/turns from 4 dialogsiin
the VERBMOBIL corpus.

The column Syn shows that parsing with syn-
tax only takes 50% of the time of parsing with
the complete grammar (SynSem). The num-
ber of readings, hypotheses, and chart edges on-
ly slightly increase here. The column SemNA
shows the results for operating the SEM-parser
in non-autonomous mode, that is, simply veri-
fying /falsifying hypotheses from the SyN-parser.
The parsing time of the coupled system is slightly
higher than that for sYN-parser alone, due to the
fact that the SEM-parser can only terminate after
the syN-parser has sent its last hypothesis. Nev-
ertheless, the overall time is still only 50% of the
system with the complete grammar (a sequential
coupling only improves the overall run time for
SemNA only by 5-10%). This illustrates that

number of sentences: 56

average length: 7.6

SynSem Syn SemNA SemQA

% % %

run time: 306 | 15.2 50 | 1564 50 45.8 | 150

#readings: 1.7 2.1 | 123 1.7 | 100 1.8 | 1056

F#hypotheses: || 53.0 | 581 | 110 | 53.9 | 102 | 81.3 | 153
| #fchart edges: 192.0 | 215.0 | 1127 581 | 30 | 301.1 | 156 |

Figure 2: Experimental results of SYN/SEM separation. SemINA represents results for the sEM-parser
in non-autonomous mode, SemQA the results for SEM-parser as quasi-autonomous semautic parser.

The percentage values are relative to SynSem.,

the efficiency of the parallel running system main-
ly depends on that of the syN-parser. The column
SemQA shows the results for the sEM-parser in
quasi-autonomous mode. Since no syntactic con-
straints are involved in filtering, we expect a con-
siderable increase it processing time and number
of hypotheses. In fact, our measurcients indicate
that syntax (in our grammar) provides most of the
genuine constraints.

These results show that the modularization of
the grammar and the distribution of its informa-
tion lead to a considerable increase in parsing cf-
ficiency, thus improving the computational appli-
cability of codescriptive grammars.

6 Conclusions

Linguistic theories like HPSG provide an integrat-
cd view on linguistic objects by providing a uni-
form framework for all levels of linguistic analy-
sis. Though attractive from a theoretical point
of view, their implementation raises questions of
computational tractability. We subscribe to that
integrated view on the level of linguistic descrip-
tions and specifications. However, from a compu-
tational view, we think that for special tasks not
all that information is useful or required, at least
not all at the same time.

In this papcr we described attempts to make a
more flexible use of integrated linguistic descrip-
tions by splitting them up into subpackages that
arc handled by special processors. We also devised
an eflicient protocol for communication between
such processors and addressed a number of prob-
lems and solutions, some of which neced further
empirical investigation. The results obtained so
far indicate that our approach is very promising
for making efficient use of codescriptive grammars
in natural language analysis.

References

Talvorsen, Per-Kristian and Ronald M. Kaplan. 1988,
Projections and Semantic Description in lLexical-
Functional Grammar. In Proceedings of 5th Gener-
ation Computer Systems, pages 1116--1122.

633

Jones, Neil D., Carsten K. Gomard, and Peter Stestoft
1993. Partial Evaluation and Automatic Program
Generation. New York: Prentice Hall.

Kasper, Walter and HHans-Ulrich Krieger. 1996. Inte-
gration of Prosodic and Grammatical Information
in the Analysis of Dialogs. Verbmobil Report.

Kasper, Waller, Hans-Ulrich Krieger, Jorg Spilker,
and Hans Weber. 1996. I'vom Word Ilypotheses to
Logical Forin: An Efficient Interleaved Approach.
Verbmobil Report.

Kay, Martin, Jean Mark Gawron, and Peter Norvig.
1994, Verbmobil. A Translation Systern for Face-
to-F'ace Dialog. CSILI Lecture Notes, volume 33.
Chicago University Press.

Krieger, Hans-Ulrich and Ulrich Schiafer. 1994. 7DC
A Type Description Language for Constraint-Based
Grammars. In Proceedings of COLING-94, pages
893 899.

Krieger, Hans-Ulrich and Ulrich Schafer. 1995. Iiffi-
cient. Parameterizable ‘U'ype Iixpansion for 'yped
Feature Formalisms. In Proceedings of [JCAI-95,
pages 1428-1434.

Maxwell 111, John T. and Ronald M. Kaplan. 1993.
The Interface between Phrasal and l'unctional Con-
straints. In Computational Linguistics, Vol. 19,
No. 4, pages 571-590.

Pollard, Carl and Ivan A. Sag. 1987. Information-
Based Syntaz and Semantics. Vol. 11 Fundamen-
tals. CSLI lLecture Notes, Volume 13. Stanford:
CSLIL

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Chicago: University of
Chicago Press.

Shicber, Stuart M.” 1985. Using Restriction to
Iixtend Parsing Algorithms for Complex-Feature~
Based lormalisms. [n Proceedings of ACIL-85,
pages 145-152.

Wahlster, Wolfgang. 1993. Verbmobil: ﬁbcrsctzung
von Verhandlungsdialogen. Verbmobil Report.

