
Compi l ing a Part i t ion-Based Two-Leve l Formalism

E d m u n d Grimley-Evans*
University of Cambridge

(St John's College)
Computer Laboratory

Cambridge CB2 3QG, UK
Edmund. Grimley-Evans@cl. cam. ac. uk

George Anton K i r a z t
University of Cambridge

(St John's College)
Computer Laboratory

Cambridge CB2 3QG, UK
George. Kiraz@cl. cam. ac. uk

Stephen G. P u l m a n
University of Cambridge

Cointmter Laboratory
Cambridge CB2 3QG, UK

and SRI International, Cambridge
sgpOcam, sri. com

Abstract

This paper describes an algorithm for the
compilation of a two (or more) level or-
thographic or phonological rule notation
into finite state transducers. The no-
tation is an alternative to the standard
one deriving from Koskenniemi's work:
it is believed to have some practical de-
scriptive advantages, and is quite widely
used, but has a different interpretation.
Etficient interpreters exist for the nota-
tion, but until now it has not been clear
how to compile to equivalent automata
in a transparent way. The present paper
shows how to do this, using some of the
conceptual tools provided by Kaplan and
Kay's regular relations calculus.

1 I n t r o d u c t i o n

Two-level formalisins based on that introduced
by (Koskenniemi, 1983) (see also (Ritchie et al.,
1992) and (Kaplan and Kay, 1994)) are widely
used in practical NLP systems, and are deservedly
regarded as something of a standard. However,
there is at least one serious rival two-level notation
in existence, developed in response to practical
difficulties encountered in writing large-scale mor-
phological descriptions using Koskenniemi's nota-
tion. Tile formalism was first introduced in (Black
et al., 1987), was adapted by (Ruessink, 1989),
and an extended version of it was proposed for use
in the European Commission's ALEP language
engineering platform (Pulman, 1991). A flmther
extension to the formalisln was described in (Pul-
man and Hepple, 1993).

The alternative partit ion tbrmalism was mo-
tivated by several perceived practical disadvan-

*Supported by SERC studentship no. 92313384.
tSupported by a Benefactors' Studentship from St

John's College.

rages to Koskenniemi's notation. These are de-
tailed more fully in (Black et al., 1987, pp. 13-15),
and in (Ritchie et al., 1992, pp. 181-9). In brief:
(1) Koskennienli rules are not easily interpretable
(by tile grammarian) locally, for the interpretation
of 'feasible pairs' depends on other rules in the
set. (2) There are frequently interactions between
rules: whenever the lexieal/surface pair affected
by a rule A appears in tile context of another rule
B, the grammarian must check that its appearance
in rule B will not conflict with the requirements of
rule A. (3) Contexts may conflict: the same lexical
character may obligatorily have multiple realisa-
tions in different contexts, but it may be impossi-
ble to state the contexts in ways that do not block
a desired application. (4) Restriction to single
character changes: whenever a change affecting
more than one adjacent character occurs, multi-
ple rules nmst be written. At best this prompts
tile interaction problem, and at worst can require
the rules to be forInulated with under-restrictive
contexts to avoid mutual blocking. (5) There is
no mechanism for relating particular rules to spe-
cific classes of morpheme. This has to be achieved
indirectly by introducing special abstract trigger-
ing characters in lexical representations. This is
clumsy, and sometimes descriptively inadequate
('h'ost, 1990).

Some of these problems can be alleviated by
the use of a rule compiler that detects conflicts
such as that described in (Kart tunen and Beesley,
1992). Others could be overcome by simple exten-
sions to the tbrmalism. But several of these prob-
lems arise from the interpretation of Koskenniemi
rules: each rule corresponds to a transducer, and
the two-level description of a language consists of
the intersection of these transducers. Thus some-
how or other it must be arranged that every rule
accepts every two-level correspondence. We refer
1;o this class of formalisms as 'parallel': every rule,
in effect, is applied ill parallel at each point in the
input.

454

The part i t ion tbrmalism coImists of two types
of rules (defined in more detail beh)w) which en-
force optional or obligatory changes. Tl~e notion
of well-formedness is defined via the notion of a
'partition' of a sequence of lexical/surface corre-
spondences, informally, a partition is a valid anal-
ysis if (i) every element of the t)artition is licensed
by an optional rule, and (ii) no element of the
part i t ion violates an obligatory rule.

We have tbund tha t this formalism has some
practical adwmtages: (1) The rules are relatively
independent ot: each other. (2) Their interpreta-
tion is more familiar for linguists: each rule copes
with a single correspondence: in general you don' t
have to worry about all other rules having to t)e
(:ompatible with it. (3) Multiple character changes
a r t permit ted (with some restrictions discussed
below). (4) A category or term associated with
each rule is requi,'e(t to uni(y with the affected
morpheme, allowing for morI)ho-synta(:tic etfects
to be cleanly described. (5) There ix a simple and
etfMent direct interpreter for tt,e rule forrnalism.

Tile part i t ion formalism has been implemented
in the European Commission's ALEP system tbr
natural language engineering, distributed to over
30 sites. Descriptions of 9 EU languages arc
t)eing develot)e(1. A version has also be, en im-
plemented within SI{.I's Core l,anguage Engine
(Carl;er, 1995) and has been used to develot) de-
scriptions of English, French, Spanish, Polish,
Swedish, and Korean morphology. An N-level ex-
tension of the formalism has also been developed
by (Kiraz, 1994; Kiraz, 1996b) arrd used to de.-.
scribe t;he morphology of Syria(: and other Semitic
languages, arrd by (Bowden an(t Kiraz, 1995) for
error dete(',tion in noncon(:atenative strings. This
1)m.'tition-l)ased two-level formalism is thus a seri-
ous riwll to the s tandard Koskcnniemi notation.

lIowever, until now, the Koskenniemi notation
has had one clear advantage in that it was clear
how t;o compile it into transducers, with all the
consequent gains in etliciency and portabil i ty and
with |;ire ability t;o construct lexical transducers
as in (Kart tunen, 1.994). This paper sets out to
remedy (ha|; defect by descril)ing a comtfilation
algorithm for the I)artition-bas('d two-level nora-
lion.

2 D e f i n i t i o n o f t h e F o r m a l i s m

2.1 F o r m a l D e f i n i t i o n

We use n tapes, where tim first N tapes are
]exical and the remaining M are surface, n --
N q M. In practi(:e, M :: 1. We write Ei
for the alphabet of sylnbols used on tape i, and
E :: (Er U {el) x ... x (E,~ U {c}), so that E* is

the set of string-tuples representing possible con-
tents of the n tapes. A proI)er subset of regular
n-relations have the property that they are ex-
pressible as the Cartesian product of n regular
languages, H. = 1~1 × ... x l~n; we call such re=
lations 'orthogonal ' . (W('. present our detinitions
along tire lines of (Kat)lan and Kay, 1994)).

We use two regulm" ot)erators: Intro and Sub.
I n t r o s L denotes the set of strings in L into which
elements of S may be arbitrari ly inserted, and
SUBA,,~L denotes the set of strings in L ill which
substrings that are in /3 may be replaced by
strings from A. Both operators map regular lan-
guages into regular languages, because they can
be, t:haract(!rise(1 by regular relations: over tim al-.
phabct E, In t ros . = (Idz tO ({el × S))*, SubA,,~ =-
(Id>] tO (/3 x A))*, wtiere IdL = {(,% a') I .s' 6 L},
the identity relation over L.

There are two kinds of two-level rules. The con-
text restriction, or optional, rules, consist of a left
context 1, a centre c, and a right context r. Surface
coercion, or obligatory, rules require the centre to
be split into lexical cl and surface c, compolmnts.

D e t i n l t i o n 2.1 A N:M c o n t e x t r e s t r i e t i o n
(C R) ru le is a triple. (/,,c,r) where l , c , r are
'orthogonal ' regular relations of the form l ::
I l X . . . X ln~ (: = Cl X . . . X (: ~ ?' - ?'1 X . . . X '1"~,. [-1

D e f i n i t i o n 2.2 A N:M s u r f a c e c o e r c i o n (SC)
ru l e ix a quadruple (/ ,c/ ,c~,r) where l and r
are 'orthogonal ' regular relations of tile form l =
l I x ... x 1.n~ ?" : ~"r x . . . x l ' n , &lid Cl an(t c s

are 'orthogonal ' regular relations restricting only
the lexical and surface tapes, respectively, of the
[:or'rH C l 7£ C I X ... x G N X >~N [[x ... X ~N-} M a n d

,% = E~' x ... x) .] ~ x CN+:j x ... x (W+M. []

We usually use the following notat ion tbr rules:
LLC l,I.;x RI,C ~>[¢-[¢>
i,SC S J}{.1.']{.SC

w h e r e

I,LC (lel't l(,xi,:al corlt,,~t) = (~ , . . . , 1N>
LEX (lexical form) = <q,..., oN)
R L C (right lexical c o n t e x t) = (r , , . . . , rN)
LSC (left surface context) :: <IN+r,... ,1N+M)
S U l l] " (s u r f a c , c f o r l l l) == <c NI.I , . . . ,CN+M>
II,S(? (right surt'~(:e conl;cxt) = (r N + l , . . . , rN+M)

1. (Sm "e in t)racticc all the left conl;(;xts I.i star t
with E~ a.ud all the right contexts ?'i end with L*,
we omit wril;ing it and assume it by default. The
operators are: ~ for CII. rule, s, *{= for S(] rules and
4> for coInposite rules.

A prot)osed morphologit:at analysis 1) is an ,~-
tuI)le of strings, and th('. rules are intert)reted as
applying ~o a section of this analysis in conl;ext:

455

P = l} l~, t~ (n-way concatenation of a left con-
text, centre, aim right context). Formally:

Def i in i t ion 2 .3 A C19, rule (1, c, r) c o n t e x t u a l l y
al lows (1}, Pc, P,.) iff P~ E l, P,. E r and P~ G c.
[]

D e f i n i t i o n 2.4 An SC rule (l, cl, c,., r) c o e r -
c i v e l y disa l lows (Pt, P~,Pr) iff 1} G l, P,. E r,
P,. Ecl and P,~ ¢ c~. []

D e f i n i t i o n 2 .5 A N : M t w o - l e v e l g r a m m a r is
a pair (1~_~,]~,<=), where f ~ is a set of N : M con-
text restriction rules and I~¢ is a set of N : M sur-
face coercion rules. []

D e f i n i t i o n 2 .6 A two-level grmnmar (R~, R~=)
a e c e p t s the string-tuple l ' , partitioned as
Pt,... ,Pa:, iff P = PIt~...Pj,, (n-way concate-
nation) and (1) for each i there is a CR rule
A E I I , such that A contextually allows

•) . (I 1 ...I ,-1, Pi, Pi+l ...Pk) and (2) there are no i < j
such that there is an SC rule/3 E /~¢ such that B
coercively disallows U~ ...P~-I, P~..,Pj-~, 15...Pk).

There are some alternatives to condition (2):

(2 0 there is no i sudl that there is at, SC
rule B E R ¢ such that B coerciw,qy disallows

"D 3. (t:L...I,.--t,15,Pi+I...Pk): this is (2) with the re-
striction j = i + 1; since SC rules can only ap-
ply to the partitions P/, epenthetic rules such as
(~*@,~i),e X E.~,Z~ X (t ,@,k)S*) ('insert an a
between lexical and surface ks') can not be en-
forced: the rule would disallow adjacent (k,k)s
only if they were separated by an empty parti-
tion: ...(k, k), e, (k, k)... would be disallowed, but
...(k, k), (k, k}... would be accepted.

(2ii) there is no i such that there is an SC
rule B E R e such that, B coercively disallows
(P1...Pi-:,, Pi, Pi+,...P~) or B coercively disallows
(Pt . . .P i - I , Pi...P~): this is (2) with the restriction
j = i + 1 or j = i; this allows epenthetic rules
to be used but rnay in certain cases be counteriI>
tuitive for the user when insertion rules are used.
For example, the rule (E* (g, g), u x E~, E~ x v, E*)
('change 'u to v aft;re' a g') would not disallow a
string-tuple partit ioned as ...(.(I, g), (e, c), (u, u)... -
assmning some CR rule allows (e, e).

Earlier versions of the partit ion fbrmalism could
not (in practice) cope with multiple lexical char-
actors in SC r u l e s , see (Carter, 1995, §4.1). This
is not tit(; case here.

The tbllowing rules illustrate the formalism:
V B - * =>

RI: V b *

B - B - * =>
R2: b b *

c d ¢>
R3:

c b d

R1 and R2 illustrate the iterative application of
rules on strings: they sanction the lexical-surface
strings (VBBB,Vbbb), where the second (B,b)
pair serves as the centre of the first application
of R2 and as the left context of the second ap-
plication of the same rule. R,a is an cpenthetic
rule which also demonstrates centres of unequal
length. (We assume that <V,V), (c,c) and (d,d)
are sanctioned by other identity rules.)

The conditions in Definitions 2.1 and 2.2 that
restrict the regular relations in the rules to be-
ing 'orthogonal' are required in order for the fi-
nal hmguagc t;o be regular, because Definition 2.6
involves an implicit intersection of rule contexts,
and we know that the intersection of regular rela-
tions is not in general regular.

2.2 R e g u l a r E x p r e s s i o n s for C o m p i l a t i o n

'Ib compile a two-level grammar into an automa-
ton we use a calculus of regular languages. We
first use the standard technique of converting reg-
ular mrelations into same-length regular relations
by padding them with a space symbol 0. Unlike
arbitrary regulm' n-relations, same-length regular
relations m'e closed under intersection and comple-
mentation, be.cause a theorem tells us that they
correspond to regular languages over (e-free) n-
tuplcs of symbols (Kaplan and Kay, 1994, p. 342).

A proposed morphological analysis P = P1 ...P~:
can be represented as a sanle-length string-tuple
co l3lwt~2w...wlSt, w, where [~ E E* is Vi converted
to a same-length string-tuple by padding with
0s, and w = (wl,...,w~,), whe.re the {w~} are
new symbols to indicate the partit ion boundaries,
w~ ¢ ~ v {0} .

Since in a partitioned string-tuple accepted by
the grammar (R=>, R~=) each Pi E e for some CR
rule (l, c ,r) E R a , we can make this representa-
tion unique by defining a canonical way of convert-
ing each such possible centre (2 into a same-length
string-tuple 6'. A simple way of doing this is to
pad with 0s at, the right making each string as long
as the longest string in C: if C - (Pl, ...,pn),

(;' = (> 0 " , . . . ,p , ,0*) n >~* - z * (0 , ..., 0) (1)

However, since we know tit(; set of possible pro._
titions - it is U{c] ~l,r(l,(-,'r} E 1{:,}- we can
reduce the number of elements of E in use, and
hence silnplify the calculations, by inserting the 0s
in a more flexible manIter: e.g., if C -- (ab, b}, let
O = (ab, Ob) rather than (? : (ab, b0): assuming
another rule. requires us to use (b, b} anyway, we
only haw; to add (a, 0) rather than (a, b} and (b, 0).

456

The 1)reprocessor could use simI)le heuristics to
make such decisions. In any case, the padding of
t)ossibl(, t)art i t ions (:arries over to the (:entres c of
c a r , les : it" (l,,-,,-) e = { 0 I C c c}.
I t ence tbr th let 7c be l;he set; of e lements of E tha t
appea r in seine 0-padded rule centre.

The contexts of all rules and the lexical and
surface Celltres of SC rules Inust l)e conver ted into
same- leng th regular n-relat ions |)y insert ing 0s at
a]l 1)ossible posi t ions on each t ape independent ly:
if a; - 2 ; 1 x . . . x x n t

x ° = (I n t r o t o } x t × ... × In t ro{o}xn)Fi re* (2)

Note the difference between this insert ion of
0 everywhere , denoted x °, and the canonical
padd ing L'. Bo th r('quire the 'o r thogona l i ty ' condi-
t ion in ord('r for the intersect ion with 7r* to yield
a regular language: insert ing Os into (a, b}* at
all possibh; l)ositions on each t ape iIulependently
would give a non-regular relation, for examt)le.

Now we derive a formula ibr the set of O-padded
;rod pa r t i t ioned analysis st;rings accepted by the
g r a m m a r (/~,=>, 17,¢_): The set of O-pa(l(ted centres
of context; res t r ic t ion rules ix given by:

u = I c,,,..(L,c,,.) (s)
th , re we assume tha t these centres are disjoint

(Vc, d ~ . l) .c : d V c f] d = 0), because in prac-
tice each c in a s ingleton set,, however tiler(; is an
a l te rna t ive deriw~tion t ha t does not require this.

We proceed subtraet ively , s ta r t ing as an initial
app rox ima t ion with an ar t) i t rary conca tena t ion of
the possible l)arti t ions, i.e. the (:entres of Cl/, rules:

co(Dee)* (4)

From this we wish to sub t r ac t tim set of strings
containing a t)art i t ion t ha t is not allowed by any
CR rule: We in t roduce a new placeholder symbol
T, r ~ 7c O {co}, to represent the centre of a rule,
so the set of possihle contexts for a given centre

G D is given by:

[.J z%, .° (s)
(/ , ~ , r) ~ l l ,

So the set, of contexts in wlfich the centre c may
not, al)t)ear is the comlf lement of this:

rC*Tre* -- U I('T"'° (6)
(t,,Lr)<1~

Now we can in t roduce t;he par t i t ion sel)arator co

th roughout , then subs t i tu te the centre itself, w&o,

for its p laceholder T in order t() derive an expres-
sion for the set of par t i t ioned str ings in which an
instan('e of the centre c al)l)ears ill a c o n t e x t in
which it, is 'not allowed: [o denotes comt)osition]

(7)

If we sub t rac t a t e rm like this tbr each ~ 6 D
Dorn our initial app rox ima t ion (eq. 4), then we
have all ext)ression for tile set of str ings allowed
by the CR rules of tile gralnlnar:

C D

(l,~,r)C51i, >

]t remains to enforce the sm'fime coercion rules
/~ - . For a given SC ruh; (1, ct, Cs, r) 6 /~,<:, a, first
al)l lroxinmtion I;o tim set of str ings in which this
rule is violated is given by:

Intro{w} (/t/co(c'/' -- Cs°)cor 0) (.9)

Here (r,'(~) - c~) is the set of s tr ings t ha t m a t c h
the lexical centre but, do 11ol, ma tch the surface
centre. For par t (2) of Definition 2.6 to app ly this
mus t equal the concatemt t ion of 0 or more adja-
cent par t i t ions , hence it has on each side of it, the
par t i t ion separa to r co, and the ope ra to r Intro iil-
t roduces addi t ional par t i t ion separa to rs into tile
contexts and the centre. The only case not yet
{:overed is where dm centre matches 0 a([jacent
par t i t ions (i = j in pa r t (2) of Definition 2.6).
This can be dealt with by prefixing witll the sub-
s t i tu t ion opera to r Sub~o,o0w, so the set of str ings in
which one of the SC rules is violated is:

U Sub~o,~o~o o Intro{~} (l°co(cp, - c(:)cor °)
(I,,~, ,c., ,.,.)(. lt<~

We subtract; this too fl 'om our aporoxin , a~l(ur{
(eq. 8) in order to arrive at a formula for the set
of 0-padded and part i t ione(l strings t ha t are ac-
(:epted Iiy the g rammar :

& = c o (D w) * - [_J S u b ~ < ~ o

~GI)

(/ ,d , r)6 IL >

" " U S u b w , w w o

In t ro{~} (/°co(el ' - - c[~)co, '°) (1])

Finally, we can replace l;he par t i t ion sepa ra to r
co anti the st)ace sylnbol 0 /)y e to conver t So into
a regular (but no longer same- length) relat ion S
tha t maps t)etween lexical and surface representa-
tions, as in (Kaphm and Kay, 1994, p. 368).

3 Algori thm and Il lustration

This section goes th rough the compi la t ion of the
samI)le g r a m m a r in section 2.1 s tep by step.

457

3.1 P r e p r o c e s s i n g

Preprocessing involves making all expressions of
equal-length. Let, E1 = {V,B,c,d,0} and E~. =
{V,b,c,d,0} be the lexical and surface alphabets,
respectively. We pad all centres with O's (eq. 1),
then compute the set of 0-padded centres (eq. 3),

D = {(B,b), (0,b), {V,V), (c,c), (d,d)} (12)

We also compute contexts (eq. 2). Uninstantiated
contexts become

In t ro{o}(E~) x Intro{o}(E~) (13)

The right context of R3, for instance, becomes

Intro{o}(dS~) x Intro{o}(dE~) (]4)

3.2 Compilat ion into Automata

The algorithm consists of three phases: (1) con-
structing a FSA which accepts the centres, (2) ap-
plying CR rules, and (3) [brcing SC constraints.

The first approximation to the grammar (eq. 4)
produces FSA1 which accepts all centres.

D

FSA1

Phase 2 deals with CR rules. We have two cen-
tres to process: (B,b) (R1 ~ R2) and (0,b) (R3).
For each centre, we compute the set of invalid con-
texts in which the centre occurs (eq. 7). Then we
subtract this from FSA1 (eq. 8), yielding FSA2.

<d,d>

<d,d> ""

FSA2

The third phase deals with SC rules: here the
portion of R3. Firstly, we compute the set of

strings in which R3 is violated (eq. 10). Secondly,
we subtract the result from FSA2 (eq. 11), re-
sulting in an automaton which only differs from
FSA2 in that the edge from q5 to qo is deleted.

4 Comparison with Previous
Compilations

This section points out the differences in compil-
ing two-level rules in Koskenniemi's formalism on
one hand, and the one presented here on the other.

4.1 Ove r l app ing C o n t e x t s

One of the most important requirements of two-
level rules is allowing the multiple applications
of a rule on the same string. It is this require-
ment which makes the compilation procedures in
the Koskemfiemi formalism - described in (Ka-
plan and Kay, 1994) - inconvenient. 'The multi-
ple application of a given rule', they state, 'will
turn out to be the major source of difficulty in
expressing rewriting rules in terms of regular re-
lations and finite-state transducers' (p. 346). The
same difficulty applies to two-level rules.

Consider R1 and R2 (§2.1), and D =
{(V,V>, <B,b)}. (Kaplan and Kay, 1994) express
CR rules by the relation, 1

Restrict(c, l, r) : 7r*l c~r* N ~c*c rlr* (15)
This expression 'does not allow for the possibil-
ity that the context substring of one application
might overlap with the centre and context por-
tions of a preceding one' (p. 371). They resolve
this by using auxiliary symbols: (1) They intro-
duce left and right context brackets, <k and >k,
for each context pair lk - rk of a specific centre
which take the place of the contexts. (2) Then
they ensure that each <k:<k only occurs if its
context Ik has occurred, and each >k:>k only oc-
curs if followed by its context rk. The automaton
which results after compiling the two rules is:

V:V V:V
>k:>k >~:>~ >~:>~ ~:<,

V:V

B:b

V:V

>1:>1

.'2:>2

Removing all auxiliary symbols results in:

B:b
V:V

Our algorithm produces this machine directly.
Compiling Koskenniemi's formalism is compli-
cated by its interpretation: rules apply to the en-
tire input. A partition rule is concerned only
with the part of the input that matches its centre.

1This expression is an expansion of Restrict in
(Kaplan and Kay, 1994, p. 371).

458

4.2 Condit ional Compilat ion
Compiling epenthetic rules in the Koskenniemi
formalism requires special means; hence, the algo-
ri thm is conditional on the type of tim rule (Ka-
plan and Kay, 1994, p. 374). This peculiarity, in
the Koskenniemi formalism, is due to the dual in-
terpretat ion of the 0 symbol in the parallel formal-
isin: it is a genuine symbol in the alphabet, yet it
acts as the empty string e in two-level ext)ressions.
Note that it is the duty of the user to insert such
symbols as appropriate (Kart tunen and Beesley,
1992).

This duality does not hohl in the pm'tition
formalism. The user can express lexical-surface
pairs of unequal lengths. It is the duty of the rule
compiler to ensure that all expressions m'e of equal
length prior to compilation. With CR rules, this
is done by padding zeros. With SC rules, howew;r,
the I n t r o operator accomplishes this task. There
is a subtle, but important, (lifl~rence here.

Consider rule R3 (§2.1). The 0-padded centre
of the CR portion becomes (0,b). The SC portion,
however, is computed by the expression

Inser t{0}(() x Inser t{0l(b) (16)

yielding automaton (a):

1
<0,0> Any <o,o> A~,,

a b
If the centre of the SC portion had been padded

with 0's, the centre wouht have been

Insert{0}(0) x Insert{0}(/,) (17)
yielding the undesired automaton (b). Both are
similar except that state qo is final in the former.
Taking (a) as the centre, eq. 10 includes (cd,cd);
hence, eq. 11 excludes it. The compilation of our
rules is not conditional; it is general enough to
cope with all sorts of rules, epenthetic or not.

5 C o n c l u s i o n a n d F u t u r e W o r k

This paper showed how to compile the partition
formalism into N-tape automata. Apart from in-
creased efficiency and portability of impleinenta-
lions, this result also enables us to more easily
relate this formalism to others in the field, using
the finite-state calculus to describe the relations
implemented by the rule compiler.

A small-scale prototype of the algorithm has
been implemented in Prolog. The rule compiler
mak(;s use of a finite-state calculus library which
allows the user to compile regular expressions into
automata. The regular expression language in-
cludes standard operators in addition to the op-
erators defined here. The system has been tested
with a number of hypothetical rule sets (to test
the integrity of the algorithm) and linguistically
motivated morphological grammars which make
use of multiple tapes. Compiling realistic descrip-
tions would need a more efficient implementation
in a more suitable language such as C / C + + .

]Alture work includes an extension to simulate
a restricted torm of unification between categories
associated with rules and morphemes.

Refe rences
Black, A., Ritchie, G., Pulman, S., and Russell, G.

(1987). F()rmalisms for morphographemic descrip-
tion. In EACL-87, pp. 11 8.

Bowden, T. and Kiraz, G. (1995). A mor-
phographe.mic model for error correction in noncon-
catenative strings. In ACL-95, pp. 24-30.

Carter, D. (1995). Rapid development of morpholog-
ical descriptions for full language processing sys-
tems. in EACL-95, pp. 202-9.

Kaplan, R. and Kay, M. (1994). Regular models of
phonological rule systems. Computational Linguis-
tics, 20(3):331 78.

Karttunen, L. (1994). Constructing lexical transduc-
ers. In COLING-9~, pp. 406 411.

Karttunen, L. and Beesley, K. (1992). Two-Level Rule
Compiler. Palo Alto Resem'ch Center, Xerox Cot-
poration.

Kiraz, G. (1994). Multi-tape two-level morphology:
a case study in Semitic non-linear morphology. In
COLING-9]~, pp. 18{}-6.

Kiraz, G. (1996b). Computational Approach to Non-
Linear Morphology. PhD thesis, University of Cam-
bridge.

Koskenniemi, K. (1983). Two-Level Morphology. PhD
thesis, University of Helsinki.

Puhnan, S. (1991). Two level morphology. In Alshawi
et. al, ET6/I Rule Formalism and Virtual Machine
Design Study, chapter 5. CEC, Luxembourg.

Pulman, S. and Hepple, M. (1993). A feat{{re-based
formalism for two-level phonology: a description
and implementation. Computer Speech and Lan-
guage, 7:333 58.

Ritchic, G., Black, A., I{ussell, G., and Puhnan,
S. (1992). Computational Morphology: Practical
Mechanisms for the English Lexicon. MIT Press,
Cambridge Mass.

Ruessink, H. (1989). Two level formalisms. Technical
Report 5, Utrecht Working Papers in NLP.

Trost, H. (1990). The application of two-level mor-
phology to non-concatenative German morphology.
In Karlgren, H., editor, COLING-90, pages 371-6.

459

