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Abstract  

This paper  describes a nlethod for com- 
piling a constraint-based g rammar  into 
a potentially inore efficient form for pro- 
cessing. This method takes dependent 
disjunctions within a constraint formula 
and factors them into non-interacting 
groups whenever possibh; by determining 
their independence. When a group of de- 
pendent disjunctions is split into slnaller 
groups, an exponential amount  of redun- 
dant information is reduced. At runtime, 
this ineans that  all exponential alnount 
of processing can be saved as well. Since 
the performance of an algorithm ibr pro- 
cessing constraints with dependent dis- 
jmmtions is highly deterxnined by its in- 
put, the transformatioll  presented in this 
paper  should prove beneficial for all such 
algorithms. 

1 Introduct ion  

There are two facts that  conspire to make tile 
t rea tment  of disjunction an important  consider- 
ation when building a natural  language process- 
ing (NLP) system. The first fact is that  nat- 
ural languages are full of ambiguities, and in 
a g rammar  many of these ambiguities are de- 
scribed by disjunctions. The second fact is that  
the introduction of disjmmtion into a g rammar  
causes processing tilne to increase exponentially 
in the number of disjunets. This means that  a 
nearly linear-time operation, such as uififieation of 
Imrely conjunctive feature structures, becomes an 
exponential-time problem as soon as disjunctions 
are included, t Since disjunction is unlikely to dis- 
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appear  from natur~fl language gralnlnars, control- 
ling its form (:all save exponential amounts of time. 

This paper  introduces all etficient normal tbrm 
for processing dependent disjunctive constraints 
and an operation for compilation into this normal 
form. This ot)eration , modularization, can reduce 
exponential alnounts of redtmdant information in 
a grainmar and can consequently save correspond- 
ing alnounts of processing time. While this oper- 
ation is general enough to be applied to a wide 
variety of constraint systems, it; was originally de- 
signed to optimize processing of dependent dis- 
junctions in featm'e structure-based grammars.  In 
particular, modular fea.tuie structures are more 
eflicient R)r unification than non-Inodulm' ones. 
Since ill many current NLP systems, a signiti- 
cant amount of tilne is spent performing unifica- 
tion, optimizing feature structures for unillcatioll 
shouhl increase the tmrtbrmance of these, syst;ems. 

Many algorithms for etticient mfitication of lea 
tare structures with dependent disjunctions have 
been propose.d (Maxwell and Kaplan, 1989; F, isele 
and DSrre, 1990; Gerdemann,  1991; StrSmbSek, 
1992; Griflith, 1.996). However, all of these al- 
gorithms sutfer from a common problem: thc.ir 
performance is highly deternfined by their inputs. 
All of these algorithms will perform at their best 
when their dependent disjunctions interact as lit- 
tle as possible, but if all of the disjunctions inter- 
act, then these algorithms may perform redundant  
computations.  The need for ef[icient inputs has 
been noted in the literature 2 but there have been 
few a t tempts  to automatical ly optilnize gr;mnnars 
tor disjunetiw; unification algorithms. 

The modularization algorithm presented in this 
paper takes existing dependent disjunctions and 
splits them into independent groups by deterlnin- 
ing which disjunctions really interact. Indel}en- 
dent groups of disjunctions can be processed sepa- 
rat;ely during unification rathe, r than having to try 
every combination of one group with every com- 
bination of every other group. 

This pat)er is organized as follows: Section 2 
gives an informal introduction to dependent dis- 

~Cf. (Maxwell and Kaplan, ]991) fl)r instance. 
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juncl; ions and  shows how r(,ctundani; int(;raclli(lns 
lml,w(;en g roups  of (tisju:n(:l;ions (:mi bc r(;du(:ed. 
S(;c:i;ion 3 shows how n o r m a l  d is junc t ions  c;m t)(; 
r(;l)lac(;d t)y (:ont, cxtx;d constrainl:s.  S(,(:tion 4 t;hcn 
,<d~ows how t, hcs('~ cont(;xl;(',d ( ' ,onstraints can en- 
cod(, del)(',nd(;ni, d is junct ions .  S(!(:l;ion 5 1)r(!s(',nts 
the  mo(hl lm' iza t ion  a,lgorii;hm for conlx~xi;ed (',on-. 
si;ra.ini;s. Ih)wever,  e, ven t hough  this algor{l;hm is 
t~ (;omt)ih>t,im(', ot)(;ralJ(m , i t  i t se l f  has ( ;xt)on(ni t ia l  
comt)lexity,  so lilil, l(ing it IllOl(', (~tli(',i(mi; s h o u l d  ~Jso 
1)(; a (:onc:(,rn. A i;h(~or(;m w i l l  l,hc, I i  ])(; i)r(~s(mix;d 
ill S('x'J;iOll (i t]mL t)(!rllli(;s ;I, li (',xt)olt(!tll;ial t)&rt; ()[ 
i,tl(; nm(hllarizal; ion algo]'il,hm I;()I)c rct)l;t(:(',(l 1 W 
combina to r i a l  aam.lysis. 

2 D e p e n d e n t  d i s j u n c t i o n s  

l)(:l)enchull; disjuncl;ions are lik(' ]u ) ]ma i  dis.iun(:-- 
d o n s  cxc',c;1)t dial; (;very (lis.iun(:l;ion has a nanL(', 
mid l;h(; d is juncts  of disjuimti(ms wii;h tim sam(: 
IlllIll(~ IllltSt; |)(;  ch()s(~ll  i l l  SyllC. FoF  (~xmnt)l('. , 
(<, g,, d/,  (//') A (<t ',?, ~/)', ~//') is a (:,,ni.n,:i:io,~ ,)r i:wo 
dcl)cn(hmt dis jml( :dons wi th  tim s.~/lil(; lt~l,l[l(,., (/. 
Wtl;l,l; this m('.;ms ix llha.l; if l,h(', s(;('oml (lisjun(:l: in 
1;ho, til'sl; (tis.iul~(:tion, (//, ix (:hoscn, lJicn l;h(~ s(!(> 
ond  dis.jun(:t, of th(; ()th(;r disjun(:llion, '~//, Inllsl; 
t)(; chos(m as well. (Not(; thai; wilful; k ind (if con- 
sLrainl;s the  ¢/)s a.n(I 'l/~s are  ix no t  iml)ortmfl; here.) 
'Fh(', (',oIlll)lll;&/;iOll&l l'e;/,soll [()1 llSill{,; (h~t)(,,u(hml; 
(lis.iun('.i;ions ovc, r norma,] (tisjunc'.tions ix t;hal; (h> 
l)(;n(lcnl; d is jun( :dons  Mlow for more  (:Oral)a(;1, a.nd 
(dlici(;nl; sl;tllCi;/ll(~.s. 'Fhis is l ) m d c u l a r l y  lain(; whcli  
(h;1)cn(l(;nl; (l isjunc:l; ious arc (',lnl)(!d(hxt iusi(h; of  
[ea,l, urc sl;rutJl;llr(;s. Th i s  is [let',raise in l;li;tl, c.aso 
(lisjlln(:l;i(ins C}l,ll lic kept  hi('a,l ill it dirc;(:l;('d gl'ltlih 
Sl,]'llCI;lll'(1 t;hllS s:4Villl r l:(xhut(la.nl; ['(;;tl;ure I);~l;lis. 

Wc slty I;tiaA; d is juncl ; ions w i t h  l;]i(; san i ( ;  name',  
arc in l;h(; sa,mc g'ro'u,p. Oltc (lisl;inguishing fea- 
1;llr(~ of a, g roup  of ( l is jun( 'dons ix i;tl&l; (;~(;}1 dis- 
jun(;t;ion lnusi; ha, v(~ tim stun(', numl)(',r of dis- 
juncl is.  Th is  is ( ;sscnt ia l ly  who!re! r ( x lun ( la l i t  int, cr-  
a(',l;ions origina,  l;(',, l "or  inslia,lL(m~ in (<l (l)> (lJ, (I/, qi)') A 
(,1 '~1~, '~//, '~/~, '~//) (;ac:h dis jun(: t i ( )n has four  (tisjun(',ts, 
[)111; r(;ally Oll]y l;WO values. Bul; 111()I'( ~, iml)O]'- 
l;;~.nl;ly, no nla.l;l;(;r whal; wahl(,, of l,h0 lirsl; (lisjun(> 
l ion ix (:hos(m ((/) or ell) t;hc; sallle v~-I, lll(~S a,l(; t)(3s-. 
sibh; for i;h(*, s(;(',on(1 (9  or 'l//). hi  ol;hcr words ,  
thos('  d i s junc t ions  at(; a(: tually ind(;p(mdcnt  f rom 
one; anol;hcr,  and  Can t)0, pu t  into (lifl'er(',nl; g roups :  
(d' +, ¢') A (d" "/2, +' ) .  Th is  is th(: In OC(;Ss ,)t ,nod- 
ulmiz~tl;ion which will b(; forina,lized in s(;c;l;ion 5. 

One mi<ghl; t)c l;(mll)tc(l to l;hink thal; ul()(lulm'- 
izg-t,|;ion ix llllnCCCSS~l,l'y siIl(;(~ ~I'3,IlIIlI}LI wril;(;rs ~-/,1"(~ 
unlikely to writ('. (h;t)endc;nt; d i s junc t ions  which 
(',ontain iild(~,l)cm(tcn(; par ts .  Ih:)w('v(~r, gramma,  r 
wri ters  m;~y no t  b(; (;hi; only  sotlr(;(! o[ ([(;[)(;n(l(;ifl, 
disjunc:tions. Mmiy g r a j m n a r  l)ro(:(;ssing sysi;(;ms 
use high-level  dose:tit)lions whic:h arc  I;hcn t rans-  
form(;d into lttOr(; cxt)lic:il; [ow(~l'-hw(;1 g r m m n a r s .  
This  t r imsJbrmat ioI l  proc:c;ss m a y  very w('.ll in- 
l;rodu(;(; large' :tlllllll)(;l',<-; of dc;t)en(h;nl; d i s junc t ions  

wi th  (;×a(:l,ly this  t)rol)(;rl,y. 

()IIC ('×alnt)l(~ of who;r(; this can ha,l)l)(;n is in 
the; ('xmipilm;ion o1' h;xi(:a,1 ruh',s in (Mcmr('rs and  
Mimmn,  1995). In this t)apc!r, M(mr(ns mM Min 
n(;n (t('s(:rib(~ a ( :omt) ih ,  whic:h f, rmml~m;s a. s(,t of 
LIPS( ;  h;xi(:al ruh;s a im th(;ir int(;ra, l:d()n into (h;l- 
init;e r (Ja t ions  usc,d 1,o cons t r a in  h 'xical  (~niai(~s. 
In (Mem(u s  and  Mimmn,  199(i), th( 'y show how 
nn oil'-lin(; COml)ila, t ion te(:hniqu(; (:a,lh~d cons t r a in t  
l)roi)a,gation can I)e us(;d to inll)rov(; tim (leNnit(~ 
c:la,us(' (;nc:()cting produ(:(;d 1)y l;heir (:Oml)ih, t() a,1- 
h)w for m()r(~ (dti(:i(~nl; t)ro(:('ssing. T im use o[ (h' 
iron(hint d i s junc t ions  t)rovid(,.s ml a.l;tr;~(:dv(~ ~dLer- 
]mlJv(~ 1;o I;tm (:olisl,rainl, t)]op;~gal;ion ~q)l)roa(:h 1) 3, 
st)(;('.ifying all t;h(; i n fo rma t ion  associ;~lxxl with a 
h'xi(:al (;nl,ry dir(;c:dy as a singh', (h't)(;nd(;nl; f(!m 
l ; l lre sI;r/I(:LIII'(; r&l;h(;r th;tn hidd(m in a set; of (h~ti- 
nii;e (:la.us(;s. :~ C'onsidc.r the  AheM lmh)w: 

PIt()N ~ ll,d ...... lielnu,, lleht, li,d,I } 
i .  d 

VI,'()I(M { I)se, hse, fin I lilt} 
d 

.% Ull.I [-/ I 

{ ~ vn,'()aM ~,.,,, 

'lichen 

L au(~ I '" I I 

[VI,'()ILM hsE( 

[ 11 

[ VI,'()I{M I!he] } 
i , .]J > 

)' ( [(X)N'r )' ( ) 

This  comph' .x lexicM en t ry  relsrcs(;nl;s the  ha.so l e x  
ical enlay  fl)r t;ll('. G c r n m n  verb  lichen, "to love",  
mM tim t;hree lcxical c!ntrics l;haA; (:all 1)0. der ived 
f rom il; given th(! lcxi(:~d ruh;s prcsc;nl;c,xl in (Me.ur- 
ers and  Mimmn,  ]99(i). Tho  difl'(;renc:es tml,wc'x;n 
i;hese h~xi(:M (miaic;s arc (,nc:oded 1)y th(; (h~pc',nch;nl; 
d i s junc t ions  all o1" which a,rc in th(~ .~mnc gr(ml), 
d. The  first ([i~}llll(;l; ill c&ch (tisjun(;l,ioll (:()rr(~- 
Sill)nits to l;tm b;ts(; t'Olln~ (;hi; S(;(;()II(I (:orr('st)c)n(ls 
to the  al)pli(:~l;ion of l;lm Compl( 'mc;nt  F, xtracl;ic)u 
l,exicM lhtl(;, t he  th i rd  corrc 'sl)onds to the al)pli- 
ca t ion  of the  F in i t iv iza t ion  L(;xical l tuh;,  mid I;he 
last  COrlTo, s1)oIl(ls l;o Lhe apt) l icat ion of t)ol;h rltles. '1 
Modula r i z~ t ion  can l)e ilSc.(l t;o ilclak(; this t'('~tur(~ 
sl;ructur(; (wen m o r e  (dlichuit by  st)litl;ing all(; gro/ip 
d into two new gt'()llpS dl a, nd (12 as showu lmlow. 

aln I;he case of infinite h;xica, detinitc clauses arc. 
still necc.ss;try to encode recursive informal;ion. 

4q'ht',se lexical rules air(! s implit ied versions of those 
presented in (Polb~rd ~md Sag, ]994) .  
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PIION ~ lleben, liebt / 
[dl  

VFORM ~ bse, fill} 
I, el 

SUBJ [ ]  

f rVFORM bse] ] ) 
[lieben -] 

[AaG~ 2t!]] 

{ rv,,'OaMbsol } 
s , , , , s , ,  

d2 

Another example of where modularization 
might prove useful is in the t rea tment  of typed 
feature structures presented in (Gerdemann and 
King, 1994). Their approach produces a set of 
feature structures from a satisfiability algorithm 
such that  all of the feature structures have the 
same shape but the nodes may be labeled by dif- 
ferent types. They then collapse this set down to 
a single feature structure where nodes are labeled 
with dependent disjunctions of types. Many of the 
groups of disjunctions in their feature structures 
can be made more efficient via modularization. 

A final example is in the compaction algo- 
r i thm for feature structures, presented in (Grigith, 
1995). Compaction is another operation designed 
to optimize feature structures for unification. It  
takes a disjunction of feature structures, trans- 
forms them into a single feature structure with 
dependent disjunctions, and then pushes the dis- 
junctions down in the structure as far as possible. 
The result is a large number of dependent dis- 
junctions in the same group. Many of these can 
probably be split into new independent groups. 

3 Contex ted  constraints  

Maxwell and Kaplan (1989) showed how a dis- 
junction of constraints could be replaced by 
an equi-satisfiable conjunction of contexted con- 
straints as in lemma 1 below. 5 

Lemma 1 (Contexted Constraints) 
¢1 V ¢2 is satisfialtle if] (t) -+ ¢1) A (~ --4 ¢2) is 
satisfiable, where p is a new propositional variable. 

Disjunctions are replaced by conjunctions of im- 
plications from contexts (propositional formulae) 
to the base constraints fie. ¢:t and ¢2)- The na- 
ture of the base constraints is irrelevant as long 
as there is a satisfaction algorithm for them. The 
key insight is that  solving disjunctions of the base 
constraints is no longer necessary since they are 
purely conjunctive. 

SFor a proof see (Maxwell and Kaplan, 1989). 

Maxwell and Kaplan 's  goal in doing this was 
to have an efficient method for solving disjunctive 
constraints. The goal in this paper  is compilin.q 
disjunctive constraints into more efficient ones for 
fllture solution. To this end a somewhat different 
notion of contexted constraint will be used as show 
in lemma 2. 

Lemma 2 (Alternative-Case Form) 
(/)1 V ¢2 is satisfiable i f f  (al -4- ¢]) A (a2 ~- ¢:~) A 
(al V a2) is satisfiable, where al and a2 arc new 
propositional variables. 

We (:an see that  this formulation is nearly equiva- 
lent to Maxwell and Kaplan 's  by substituting p 
for at and p for a2. To make the formulation 
completely equivalent;, we would need to enforce 
the uniqueness of a solution by conjoining al  V g2. 
However, this is unnecessary since we want to per- 
mit  both solutions to be simultaneously true. The 
reason for using the modified version of contexted 
constraints in lemma 2 is that  we can separate the 
representation of disjunctions into a conjunction 
of the values that  the disjuncts can have, called 
the alternatives, and the way in which the we can 
choose the values, called the cases. The alterna- 
tives are the conjunction (al -~ ¢1) A (a2 -+ (/52) 
and the cases are the disjunction (al V a2). 

While we could use repeated applications of 
lemma 2 to turn a disjunction of n disjuncts into 
an alternative-case form, it will simplify the expo- 
sition to have a more general way of doing this, as 
shown in lemma 3. 

v----I~l~)ma 3 (N-ary Aiternative-CaseA (ai -~ ¢i) A vFarm)ai 

ieN is satisfiable iff i cN  icN iS 
satisfiable, where each ai is a new propositional 
variablA°(ai--~ ¢i) V a{ 

Itere iGN are the alternatives and i cN  

are the cases. So for example, ¢1 V ¢2 V Ca V ¢4 
is satisfiable just in case (at -~ ¢1) A (a2 -+ ¢2) A 
(a3 ~+ q~3) A (a4 -~ (~4) A (a:, V a2 V a3 V a4) is 
satisfiable. 

4 D e p e n d e n t  disjunct ions  as 
c o n t e x t e d  constraints  

The usefulness of the alternative-case form only 
becomes apparent  when considering dependent 
disjunctions. Dependent disjunctions can be rep- 
resented by al ternative-cast  forms as shown in def- 
inition 1 below. 

Definition 1 (Dependency Group) 
A dependency group is a conjunction of dependent 
disjunctions with the same name, d, where each 

V* A*, 
6ieN and ieN are disjunctions and conjunctions 

of formulae ¢i, respectively, where each i is a member 
of the set of indices, N. 
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disjunction is an alternative-case form such that 
there is one alternative for every disjunct of ev- 
ery disjunction in the group, and there is one case 
for each disjunct in the group which is a co*one- 
tion of the alternative variables for that disjunct 

<.M A A(a}-~¢}) V A a} 
: i 6 M j 6 N  AJ6NiC-M  

where each a} is a new propositional variable and 
N = { L < . . . , n } .  

So l;he dependent disjunction (,l ¢ , 0 , ¢ ' )  A 
(d ¢,'~//, 0'} is the alternative-case form with al- 
ternatives (a I -+ 0) A (a~ -~ 0) A (a:~ -+ 4/) A 
(,4 -"  ¢)  A ¢ ' )  A "/") and eases 
((a I Aa~) V (a~ Aa~) V (a~ A < ) ) .  The cases enforce 
that the corresponding disjuncts of every disjunet 
in the group inust be simultaneously satisfiable. 

We, can now star t  to see where redundancy in 
dependent disjmmtions originates. Because, every 
disjunction in a group of (lepen(le, nt disjunctions 
nmst have the, same nund)er of disjuncts, some, of 
those disjunets may appear  more, than once. In 
the above exmnple t:br instance, 5 occurs twice in 
the first disjunction and ~// occurs twi(:e in the 
second disjunction. To resolve this problem we 
impose the following condition, called alternative 
compactness: if a base constraint ¢} equals an- 
other base constraint from the same disjunction, 
¢[,, then the alternatives variables associated with 
those base constraints, (,ji and a~, are also equal. 7 
Doing this allows us to express the alternatives 
t;'om the example above as ( d  -~ ¢) A ( 4  -~ 
¢') A ( ~  --~ ¢) a (a~ ~ ¢ ') ,  an(1 the case,~ as 
((at: A a~t) V (all A (t 2) V (8,12 A a2)).8 One advall- 
tage of this is that the number of base constraints 
that  must be checked during satisfaction (:an po- 
tentially be exponentially reduced. 

'File nexl; section will show how an alt;ernative- 
case form for a, group of det)tndent disjuncl;ions 
can be split into a conjunction of two (or more) 
equivalent forms, thereby (potentially) exponen- 
tially reducing the munbt r  of alternative varial)le 
interactions that  must be checked during satisfac- 
l;ion, 

5 M o d u l a r i z a t i o n  

Consider again tile example from section 2: 
(d (/5, (I), ¢ ' ,  (/)') A (d 0, "~t/, ~1~, %/)'). i{epresented as a 
compact alternative-case form, the alternatives 
becomes: (al 0)A((4 ¢')A(d 
',//), with cases: ((a I A a~) V (al A a~) V (a.~ A 
a~) V (a 1 A a~)). The key to determining that  
the two disjunctions (:all be split into different 

rNote that this requires being able to determine 
equality of the base constraints. 

Sin this example, equivalent alternative variables 
have been replaced by representatives of theirequiva- 
lence chess. So a~ has been replaced by al and a?a has 
been replaced by a.~. 

groups then involves determining that  cases can 
be split into a conjunction of two smaller cases 
(a', V a~) A (a~ V a~). If the cases can be split in 
this manner,  we say the cases (and by extension 
tilt group of dependent disjunctions) are indepen- 
dent. 

D e f i n i t i o n  2 ( I n d e p e n d e n c e )  

A case ]orrn is independent iff it is equivalent to 

"j~{N i 6 M  ~ j ( iN '  i 6M'  A j c N "  i 6 M "  

where M'  and M" partition M.  

So in the above examph',, M = {1,2} where 1 rep- 
r(!sents l;he first disjunel;ion and 2 represents l;he 
second. Tha t  makes M '  = {1} and M "  = {2}. 
While M '  and M "  are derived Dora M, the ele- 
aleuts of the Ns are arbitrary. But a consequence 
of definil;ion 2 is that  [N[ =- IN'[ x [N"[. This 
will be proved in section 6. The size of the Ns,  
however, represent the nmnber  of cases. So for 
instance in the above example, N might equal 
{1,2,3,4} since there are four disjuncts in the 
original ease form, while N '  might equal {1,2} 
and N",  {1,2}, since the smaller case forms each 
contain two disjuncts. 

The process of splitting a group of dependent 
disjunctions into smallel" groups is called modu- 
larization. Modularizing a group of dependent 
disjunctions amounts to finding a conjunction of 
ease forms that  in equivalent; to the original ease 
form. The modularization algorithm consists of 
two main steps. Tile first is to take the original 
case form and to construct a pair of possibly in- 
dep(mdent ease forms from it:. The second step is 
to check if these (:as(', forms are actually indepen- 
(lent from each other with respect to the original 
one. The modularizatioil algorithm performs both 
of these steps repeatedly until either a pmr of in- 
depe, ndent ease R)rms is found or until all possi- 
ble pMrs have been checked. If tile later, then we 
know that; the original dependent disjunction in al- 
ready nn)(lulai'. If  on the ottmr hand we can split 
the case forms into a pair of smaller, independent 
(;as(; forlns, then we can again try to modularize 
each of those, until all groups are modular.  

'[b const;ruct a pair of potentially independent 
(:as(; forms, we first need to parti t ion the set of 
alternative vm'iablts from the original ca,qe form 
into two sets. The first, subset contains all of and 
only the, variables corresponding to some subset 
of the original disjunctions and tile second subset 
of variables is the complement of the first, corre- 
sponding to all of and only the other disjunctions. 
lh'om these  subsets  of  variables,  we construct  two  
new cast  forms Dora the original using the opera-  
t ion of  confinement, defined below. 

D e f i n i t j o p ,  A 3 ( C o n f i n e I n e n t )  
V / \  a~ 

COII,f ( j c  N iE M , J~/It) 
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V Aa; 
is the confinement  o f  J C N  iGM with respect to a 

4 V k a; 
i f f  co~tf(J CN i<M , M')  =- dnf(J CN i~M' ), 
where. M'  C M.  

Cons t ruc t ing  the eont inement  of a (:as(; form is 
essentially just  throwing out  all of the a l te rna t ive  
variables tha t  are not in M ' .  However,  only doing 
this might  leave us with dupl icate  disjuncts,  so 
conver t ing the result  to D N F  removes any such 
duplicates.  

To make  the definition of confinement  clearer, 
consider tile following conjunct ion of dependent  
disjunctions: 

(d ¢, 0, ¢, (/), ¢', ~//) A (d ~/% ~//, t/,, ,//, ~/o, t//)A 
((~ x, x, x', x', x', x'}. 

This  is equivalent  to tile compac t  a l te rnat ive  
f o r I n :  9 

(a~ -', ¢ ')  A (a~ --~ x) A (d + x'), 
and tile following case fornl: ease. = 

((el A a~/, ,*9 v (al A ~4 A a'0, V (4 A .,2 A d ) v  
(4  A a~ A d )  v ( 4  A (q A ai~) V ((4 A a~ A d) ) '  

Now we can compute  the confinements .  For in- 
s t a n c e  1 

eonf(case ,  {1, 2}) = dnf((a  I A a~) V (a I A a,~)V 
(al A (q) v (o' A a,9 v ((4 A d)  v (4  A d ) )  ,] 

After removing duplicates we get: 
.,,¢((,ase, {~, 2}) - 
( ( 4  A ab V (o * A " 9  V ( 4  A a~) V ( 4  A a,9) '1 

Likewise, for the c()mtflement of M '  with respect  
to M, we get: 

conf(case, {3}) : ((a a) V (ai~)). 
Now we jus t  need to test  whether  two confined 

case ibrms are independent  with respect  to the 
original. This  is done with the  free combination 
operat ion,  shown in definition 4. 

D e f i n i t i o n  4 (]~¥ee C o m b i n a t i o n  ®) 

The free combina t ion  of two ease forms is the dis- 
junctive 'normal form of their conjunction: 

case' ® case" -- dnf(case' A case") 

The  two ease forms, case' and case", are I )NF for- 
mulc t .  ~ib compu te  the free combinat ion ,  we con- 
join t hem and convert  the re.suit back into DNF.  
They  are independence  if their  free combina t ion  
is equal to the original ease tbrm, case. 

For example ,  the flee combina t ion  of the two 
confinements f rom above,  

((a I A a, 2) V (a*, a a,~) V (a~ A a~) V (a~ A a~)) and 
( (d)  v 0,9) 

is 
(ra' A a~ A 4 )  V (el A 4 A 4 )  V (a I / ,  a~ A d ) V  \ ] 

( 4  A a.~ A 4*) v (4  A ,q A d )  v (4  A a~/, d )V  
(a~ A d A d )  v (a~ A a~ A d ) )  

9in this examl)le , equivalent alternative variables 
have again been replaced by representat, ives of their 
equivalence class. So tbr instance., a~, c*~ and a~ are 
all represented by al. 

which is not  equM t;o the original (:as(.' form: 
((el A a~ A a~) V (a', A ,~,~ A 4') V (4  A d A ,,i])v 
(al A a~ A all) v (d  A a~ A d)  v 04 A d A a q)), 

so tim first two disjunctions are not indet)en- 
dent  from the third. However,  the second dis- 
jmmt ion  is independe.nt front the first and the 
third since, conf(case, {2}) - ((a~) V (a.~)), anti 
co ,¢ (ca .~e ,  {1, 3})  ( q , '  '~ ' ~ ' " : t ,Aa ' , )V(%Aai , )V(asAa! i ) )  , 
and their  free combina t ion  is equal to the oi'igi- 
nal case form. Therefore ,  the original formula  is 
equivalent  to (d' ~/a,*//)A (d,, ¢, ¢, ¢')A(d,, X, X', Z') .  

6 F r e e  c o m b i n a t i o n  e l i m i n a t i o n  

The  last section showed all efl'ective algori t lnn for 
modular iz ing  groups of dependent  disjunet;iolls. 
However,  even d lough  this is a compile t ime al- 
gor i thm we should be con(:erned abou t  its eflio 
ciency since it has ext)onential  comph;xity.  The  
main  source of complexi ty  is t ha t  we inight have to 
check (;very pair  of sul)sets of disjun(:tions fl'oin the 
group.  Ill the worst  case this is tnmvoidable  (el o 
though  we do not expect  na tura l  language grain- 
mars  to exhibit  such behavior) .  Other  sources of 
comi)lexity are comput ing  the fl'ee co inb inadon  
and test ing the result  against  the  original (:as(; 
form. l ,uckily it is possible to avoid bo th  of these 
operat ions .  This  Ceil t)e done by noting t ha t  bo th  
the original (:ase form aim each of the (:onfine{t 
(:as(; forms are in DNF.  Therefore  it; is a nee-. 
essary (:ondition t}tat if l;he fl'ee combina t ion  of 
the confinements  is the same as the original case 
form then  the I)roduet of tile number  of disjun('ts 
i,, ea(:h conflneme.t, lease'l x lease"l, re,st eq , la l  
the  number  of disjun(:ts in the original case form, 
lease I. Moreover,  since bo th  confinements  at(; de- 
rived fl 'om the original ease form, it is also a s u f  
ficient, condition. This  is shown more  forlnally in 
theorem 1. 

T h e o r e m  1 (l~Yee c o m b i n a t i o n  e l i m i n a t i o n )  

~.',~se = ~:as,/Oease" ¢=> ]case] = ba~e'l × Icase"l 

P r o o f  =:> We assulne tha t  c a s e ' ® c a s e "  =- case.  
Since ho th  case'® e a s # '  and ease are in DNF and 
DNI; is unique, we know tha t  ](:as('.' ® case"] =: 
lease]. We also know tha t  case' and case" have 
no disjunets in common  because they  have no al- 
te rna t ive  variables in colnmon,  so Icasc'®case"l = 
Icase'l x Icasc."l. Therefore .  le~s4 = Icasc'l x 
kase"]. U 

P r o o f  < - -  Again since case '  arm case"  have 
no disjuncts in cormnon, we know tha t  leas# @ 
case"] = ]case'] x Icase"] and therefore,  tha t  
l e a se  I --  l e a s e ' ® c o ,  s t " ] .  E v e r y  disjunct in case can 
be represented as A' A A" where A' is a disjnnet 
in case' and A" is a disjun(:t ill case". So the dis- 
.iunets in e a se '@ case" must  be every conjunct ion 
of possible A's  and A"s.  So case' ® case" must  
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c<mtain all (>f th<', <li@mcts in ca.sc mM it. could 
contain ev<m m<)re, }),it f,h<m + > 

case ~ ~ case" must  (:ontain cxacl;ly the disjuncl;s 
ill cas(: aIld l;hcrcforc (:as( t :: (:o,,~('J (29 (:(ts(:'. E] 

We can see t ha t  this would have hell>ed us in th('. 
p,'cvi<,us <`-x~t~,,p> t;<)k~,<,w m~t. <:<,,,/(,,<,,.~(,, {1,2}) 
(:(}lll(l 110|; |)('~ il,( |(,t)(!II(l(!llJ; ['1'()1[1 C()ILf(c(t,'~C,{3}) 
wit;h respect  to c<,,,sc, t>eca.use ):,,(f(ca,sc, {1,2 })! 

8. ()onvcrscly, sin(:(`- Ico'/~f(ca.s'c, {[ ,3})  I 3 and 
[conf(casc,  {2})1 : 2, we, know imm(,Jia.l;ely l;hat 
l;hcs('~ (:as(', forms are in(h`-t)c'nd(mt. 

This  the, orem also allows us to trotform other  
comt)inat, orial short  cuts, su<'h as not ing tha t  if 
t;he nunltmr of disjuncl;s in the  origimtl case torm 
is pr ime [;hen it; is a l ready modular .  

7 C o n c l u s i o n  

'[ 'his pape r  has [)r('~s<!nt(xl an (fllici(mt form for 
r(',l)r(;s(ml;ing (lc, p(!ll(h;nl, dis,jun(:t;i(>ns m~(i an algo- 
r i thm for d(`-I;(x;l,ing aim (;liminal;ing r(,,dmt(tmit in: 
te ract ions  within a group of <[(~l)(m(hmt disjmm- 
l;i<ms. This  mc, l;h<)<l shoul<l be useful for a.,y sys- 
(;era which (mq)l<)ys <let)endent <lisjun(:tions sin<:e, 
it, can (`-liminai;e exponenl;ial am(mnt;s of i)ro<:(~ssh~g 
during (:onstra.inl; sadsi]mtion. 
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