Modularizing Contexted Constraints

John Griffith*
Seminar fiir Sprachwissenschalt
Universitat Tiibingen
Kl. Wilhelmstr. 113,
D-72074 Tiibingen, Germany
griffith@sfs.nphil.uni-tuebingen.de

Abstract

This paper describes a method for com-
piling a constraint-based grammar into
a potentially more efficient, form for pro-
cessing. This method takes dependent
disjunctions within a constraint formula
and factors them into non-interacting
groups whenever possible by determining
their independence. When a group of de-
pendent disjunctions is split into smaller
groups, an exponential amount of redun-
dant information is reduced. At runtime,
this means that an exponential amount,
of processing can be saved as well. Since
the performance of an algorithm for pro-
cessing constraints with dependent dis-
junctions is highly determined by its in-
put, the transformation presented in this
paper should prove beneficial for all such
algorithms.

1 Introduction

There are two facts that conspire to make the
treatment of disjunction an important consider-
ation when building a natural language process-
ing (NLP) system. The first fact is that nat-
ural languages arc full of ambiguitics, and in
a grammar many of these ambiguitics are de-
scribed by disjunctions. The second fact is that
the introduction of disjunction into a grammar
causecs processing time to increase exponentially
in the number of disjuncts. This mecans that a
nearly lincar-time operation, such as unification of
purely conjunctive feature structures, becomes an
expornential-time problem as soon as disjunctions
are included.! Since disjunction is unlikely to dis-

*

This work was sponsored by Teilprojekt B4
“brom Constraints to Rules: Compilation of nrsa”
of the Sonderforschungsbereich 340 of the Deutsche
Forschungsgemeinschaft. 1 would also like to thank
Dale Gerdemann and Guido Minnen for helpful com-
ments on the ideas presented here. All remaiuing er-
rors arc of course my own.

! Assuming I? # NP,

448

appear from natural language grammars, control-
ling its form can save exponential amounts of time.

This paper introduces an cfficient normal form
for processing dependent disjunctive constraints
and an operation for compilation into this normal
form. This operation, modularization, can reduce
exponential amounts of redundant, information in
a grammar and can conscequently save correspond-
ing amounts of processing time. While this oper-
ation is general cnough to be applied to a wide
varicty of constraint systems, it was originally de-
signed to optimize processing of dependent dis-
junctions in feature structure-based grammars, In
particular, modular feature structures arc more
efficient, for unification than non-modular ones.
Since in many current NLP systems, a signifi-
cant amount of time is spent performing unifica-
tion, optimizing feature structures for unification
should increase the performance of these systems.

Many algorithms for cfficient unification of fea-
ture structures with dependent disjunctions have
been proposed (Maxwell and Kaplan, 1989; Liiscle
and Dorre, 1990; Gerdemann, 1991; Strombick,
1992; Griflith, 1996). Howcver, all of these al-
gorithms suffer from a common problem: their
performance is highly determined by their inputs.
All of these algorithms will perform at their best
when their dependent. disjunctions interact as lit-
tle as possible, but if all of the disjunctions inter-
act, then these algorithins may perform redundant
computations. The nced for eflicient inputs has
been noted in the literature? but there have been
few attempts to automatically optimize grammars
for disjunctive unification algorithms.

The modularization algorithm presented in this
paper takes existing dependent disjunctions and
splits them into independent groups by determin-
ing which disjunctions really interact. Indepen-
dent groups of disjunctions can be processed sepa-
rately during unification rather than having to try
every combination of one group with every com-
bination of cvery other group.

This paper is organized as follows: Section 2
gives an informal introduction to dependent dis-

?Cf. (Maxwell and Kaplan, 1991) for instance.

junctions and shows how redundant interactions
between groups of disjunctions can be reduced.
Scction 3 shows how normal disjunctions can be
replaced by coutexted constraints. Section 4 then
shows how these contexted constraints can en-
code dependent, disjunctions, Section 5 presents
the modularization algorithm for contexted con-
straints. Howcever, even though this algorithm is
a compile-time operation, it itself has exponential
complexity, so making it more eflicient, should also
be a concern. A theorem will then he presented

in section 6 that permits an exponential part of

the wodularization algorithm to be replaced by
combinatorial analysis.

2 Dependent disjunctions

Dependent disjunctions are like normal disjunc-
tions except that cevery disjunction has a name,
and the disjuucts of disjunctions with the same
name must be chosen in sync. For example,
{ad, ' ™Y A (g np, " ") is a conjunclion of two
dependent disjunctions with the same name, d.
What this means is that if the second digjunct in
the first disjunction, ¢', is chosen, then the scc-
ond digjunct of the other digjunction, ', must
be chosen as well. (Note that what kind of con-
straints the ¢s and s are is not important here.)
The computational rcason for using, dependent
disjunctions over normal disjunctions is that de-
pendent disjunctions allow for more compact and
cfficient structures. This is particularly true when
dependent. disjunctions are cmbedded
feature structures. This is because in that case
disjunctions can be kept local in a directed graph
structure thuas saving redundant {eature paths.
We say thal disjunctions with the same name
arc in the same group. Oue distinguishing fea-
ture of a group of digjunctions is that cach dis-
junction must have the same number of dis-
juncts. This is essentially where redundant inter-
actions originate, For instance, in {; ¢, ¢, &', ¢') A
(b, 1, 0"y cach disjinetion has four disjuncts,
but really only two values. Bul more impor-
tantly, no matter what value of the lirst digjunc-
tion is chosen (¢ or ¢') the same values are pos-
gible for the second (4 or "), In other words,
these disjunctions are actually independent from
one another, and can be put into different groups:
(o by "y Al b, ") T'his is the process of mod-
ularization which will be formalized in scction 5.
One might be tetpted to think that modular-
ization is unnccessary since gramiar writers are
unlikely to write dependent disjunctions which
contain independent parts. However, grammar
writers may not. be the only source of dependent
disjunctions. Many grammar processing systems
use high-level descriptions which are then trans-
formed into more explicit lower-level grammars.
This transformation process may very well in-
troduce large numbers of dependent disjunctions

449

imside of

with exactly this property.

One example of where this can happen is in
the compilation of lexical rules in (Meurers and
Minnen, 1995). Tn this paper, Meurers and Min-
nen deseribe a compiler which translates a set, of
HPSG lexical rules and their interaction into def-
inite relations used 1o constrain lexical cntries.
In (Meurers and Minnen, 1996), they show how
au off-line compilation technique called constraint
propagation can be used to improve the definite
clause encoding produced by their compiler to al-
low for more eflicient. processing. The use of de
pendent disjunctions provides an attractive alter-
native to the constraint, propagation approach by
specilying all the information associated with a
lexical entry directly as a single dependent fea-
turce structure rather than hidden in a set of defi-
nite clauses.® Consider the AVM below:

PHON { lichew, liehen, lieht, liul;l}
o

VIORM { hse, bse, fin, Im}
o

suid | [

VIPORM bse’

cont []]"

{1/
Tiehen
CON'T ARG

COMIP'S

VFORM bse
o CON'I];J)

/\H(2)

Vl"()l(.M bye’

<) ! (ION'T [;I

SLASH

VIFORM hse’
i CGON'TY m »O

"This complex lexical entry represents the base lex-
ical entry for the German verh licben, “to love”
and the three lexical entries that can be derived
from it given the lexical rules presented in (Meur-
ers and Minnen, 1996). The differences between
these lexical entries are encoded by the dependent,
disjunctions all of which arce in the same gronp,
d. The first digjunct in cach digjunction corre-
sponds to the base form, the second corresponds
to the application of the Complement Extraction
Lexical Rule, the third corresponds to the appli-
cation of the Finitivization Lexical Rule, and the
last, corresponds to the application of both rules.
Modularization can be used to make this feature
structure even more eflicient by splitting the group
d into two new groups d; and dy as shown below.

‘Iu lhv case ()i infinite lexica, delinite clanses are
still necessary to encode recursive information.

ese lexical rules are simplified versions of those
presented in (Pollard and Sag, 1994).

PHON lieben, liebt
dx

VFORM bse, fin
dq

SUBJ
{([VFORM bse]) ()}
COMPS v [o1]7
N CON'

lieben
CONT ARG1
ARG2
O ([VFORM bse)
SLASH "Yoont 2
N

Another example of where modularization
might prove uscful is in the treatment of typed
feature structures presented in (Gerdemann and
King, 1994). Their approach produces a set of
feature structures from a satisfiability algorithm
such that all of the fecature structures have the
same shape but the nodes may be labeled by dif-
ferent types. They then collapse this set down to
a single feature structure where nodes are labeled
with dependent disjunctions of types. Many of the
groups of disjunctions in their feature structures
can be madc more eflicient via modularization.

A final example is in the compaction algo-
rithm for feature structurcs, presented in (Griffith,
1995). Compaction is another operation designed
to optimize feature structurcs for unification. It
takes a disjunction of feature structures, trans-
forms them into a single feature structure with
dependent disjunctions, and then pushes the dis-
junctions down in the structure as far as possible.
The result is a large number of dependent dis-
junctions in the same group. Many of these can
probably be split into new independent groups.

=

3 Contexted constraints

Maxwell and Kaplan (1989) showed how a dis-
junction of constraints could be replaced by
an cqui-satisfiable conjunction of contexted con-
straints as in lemma 1 below.®

Lemma 1 (Contexted Constraints)

1 V o is satisfiable iff (p — 1) A (B — P2) is
satisfiable, where p is a new propositional variable.

Disjunctions are replaced by conjunctions of im-
plications from contexts (propositional formulae)
to the base constraints (ie. ¢y and ¢3). The na-
ture of the base constraints is irrelevant as long
as there is a satisfaction algorithm for them. The
key insight is that solving disjunctions of the base
constraints is no longer necessary since they are
purely conjunctive.

SFor a proof see (Maxwell and Kaplan, 1989).

450

Maxwell and Kaplan’s goal in doing this was
to have an efficient method for solving disjunctive
constraints. The goal in this paper is compiling
disjunctive constraints into more efficient ones for
future solution. To this end a somewhat different
notion of contexted constraint will be used as show
in lemma 2.

Lemma 2 (Alternative-Case Form)

d1 V Py is satisfiable iff (ar — 1) A (a2 = ¢2) A
(a1 V az2) 1s satisfiable, where a; and ay are new
propositional variables.

We can see that this formulation is nearly cquiva-
lent to Maxwell and Kaplan’s by substituting p
for a; and p for a;. To make the formulation
completely equivalent, we would need to enforce
the uniquencss of a solution by conjoining @; V @,.
However, this is unnecessary since we want to per-
mit both solutions to be simultancously true. The
rcason for using the modified version of contexted
constraints in lemma 2 is that we can separate the
representation of disjunctions into a conjunction
of the values that the disjuncts can have, called
the alternatives, and the way in which the we can
choose the values, called the eases. The alterna-
tives are the conjunction (a; — ¢1) A (ag = ¢2)
and the cases are the disjunction (a1 V ay).

While we could use repeated applications of
lemma 2 to turn a disjunction of n disjuncts into
an alternative-case form, it will simplify the cxpo-
sition to have a more gencral way of doing this, as
shown in lemma 3.

Iﬁrgima 3 (N-ary Alterw}éye_—}(l‘gﬁe/\]i?r({?)

iEN is satisfiable iff €N ic€N 18
satisfioble, where each a; is a new propositional
variablpS

f\(ai = bq) \/ a;

Here ienN arc the alternatives and ‘€N
are the cases. So for example, ¢ V ¢o2 V @3 V ¢y
is satisfiable just in case (a1 — ¢1) A (a2 = ¢a) A
(a3 = ¢P3) A ((l4 — (ﬁ4) A ((1,1 Vas VasgV a4) is
satisfiable.

4 Dependent disjunctions as
contexted constraints

The usefulness of the alternative-case form only
becomes apparent when considering dependent
disjunctions. Dependent disjunctions can be rep-
resented by alternative-case forms as shown in def-
inition 1 below.

Definition 1 (Dependency Group)

A dependency group is a conjunction of dependent
disjunctions with the same name, d, where each

Ve Aw
Sien and i€V are disjunctions and conjunctions

of formulae ¢;, respectively, where each ¢ is a member
of the set of indices, N.

disjunction is an olternative-case form such that
there is one alternative for every disjunct of ev-
ery disjunction in the group, and there is one case
for each disjunct in the group which is a conjunc-
tion of the alternative variables for that disjunct
infgotauptlapetion;) |

ew N AN@od) VA

= €M jeN ANJEN icM

where each (L;’- s a new propositional variable and
N ={1,2,...,n}.

So the dependent disjunction {4 ¢, ¢, ¢y A
(a0, ', 9"} is the alternative-case form with al-
ternatives (a} — ¢) A (@) = @) A (a} — @) A
(a2 =) A (a§ - ') A (a2 — o) and cases
((a} Aa?)V (ah Aad)V (ai Aa3)). The cases euforce
that the corresponding disjuncts of every disjunct
in the group must be simultaneously satisfiable.

We can now start to sec where redundancy in
dependent disjunctions originates. Because every
disjunction in a group of dependent disjunctions
must have the same number of disjuncts, some of
those disjuncts may appear more than once. In
the above example for instance, ¢ occurs twice in
the first disjunction and 3’ occurs twice in the
second digjunction. To resolve this problem we
impose the following condition, called alternative
compactness: if a base constraint (/)3 cquals an-
other base constraint from the same disjunction,
$%, then the alternatives variables associated with
those base constraints, u,'g- and ai, are also equal.”
Doing this allows us to express the alternatives
from the example above as (a} — @) A (a) —
&) A (@2 —) A (@] — '), and the cases as
((a} A a%) V(al Aad) V (ah Aa2))® One advan-
tage of this is that the number of base constraints
that must be checked during satisfaction can po-
tentially be exponentially reduced.

The next section will show how an alternative-
case form for a group of dependent disjunciions
can be split into a conjunction of two (or more)
equivalent forms, thereby (potentially) exponen-
tially reducing the number of allernative variable
interactions that must be checked during satisfac-
tion.

5 Modularization

Consider again the example from section 2:
{4y, &', ") A (a0, 9"y, Represented as a
compact alternative-case form, the alternatives
becomes: (al — d)A(al = ¢ YA (aF = Y)A (a2 —
'), with cases: ((a] A a?) V (a} A a) V (a} A
a?) Vv (al A ¢2)). The key to determining that
the two disjunctions can be split into different

"Note that this requires being able to determine
equality of the base constraints.

81n this example, equivalent alternative variables
have been replaced by represcntatives of their equiva-~
lence class. So aj has been replaced by ol and a3 has
been replaced by a3,

451

groups then involves determining that cases can
be split into a conjunction of two smaller cases

1 1 2 2 If the cases can be split i
(ai V ad) A (af V al). If the cascs can be split in
this manner, we say the cases (and by extension
the group of dependent. disjunctions) arc indepen-
dent.

Definition 2 (Independence)

A case form is independent iff it is equivalent to
tlb(/cr)/b,("u@jction\?y' 2 07',,,1;),101"(3)\(fhm/‘ﬁu%fgj forms:
JENIEM = jEN'ieM' A jEN' ieM"

where M' and M partition M.

So in the above example, M = {1, 2} where 1 rep-
resents the first disjunction and 2 represents the
second. That makes M’ = {1} and M" = {2}.
While M' and M" are derived from M, the cle-
ments of the Ns are arbitrary. But a consequence
of definition 2 is that |N| = |N'| x |[N"]. This
will be proved in scction 6. The size of the Ns,
however, represent the number of cases. So for
instance in the above example, N might equal
{1,2,3,4} since there arc four disjuncts in the
original case form, while N’ might equal {1,2}
and N, {1,2}, since the smaller case forms each
contain two disjuncts.

The process of splitting a group of dependent
disjunctions into smaller groups is called modu-
larization. Modularizing a group of dependent
disjunctions amounts to finding a conjunction of
case forms that is equivalent to the original case
form. The modularization algorithm consists of
two main steps. The first is to take the original
case form and to construct a pair of possibly in-
dependent case forms from it. The second step is
to check if these case forms are actually indepen-
dent from each other with respect to the original
one. The modularization algorithin performs both
of these steps repeatedly until either a pair of in-
dependent case forms is found or until all possi-
ble pairs have been checked. If the later, then we
know that the original dependent, disjunction is al-
ready modular. If on the other hand we can split
the case forms into a pair of smaller, independent
case forms, then we can again try to modularize
cach of those, until all groups arc modular.

To construct a pair of potentially independent
case forms, we {irst need to partition the set of
alternative variables from the original cade form
into two sets. The first subset contains all of and
only the variables corresponding to some subset
of the original disjunctions and the second subset
of variables is the complement of the first, corre-
sponding to all of and only the other disjunctions.
IFrom these subsets of variables, we construct two
new case forms from the original using the opera-
tion of confinement, defined below.

Deﬁn'\tf'o7\3a$Conﬁnement)

conf(JENEM M)

V Ay

is the confinement of JEN €M

set of zna‘vm,/sq/lu{;
iff conf(iEN €M
where M' C M.

Constructing the confinement of a case form is
essentially just throwing out all of the alternative
variables that are not in M'. However, only doing
this might leave us with duplicate disjuncts, so
converting the result to DNF removes any such
duplicates.

To make the definition of confinement clearer,
consider the following conjunction of dependent
disjunctions:

(0 62 2,y 0,) A Lty ', 0, 0)A

{a x5 X X X X
This is equivalent to the compact alternative
form:?

(al = ¢) A (ak = ¢') A (ad = P)A

(a5 =) A (ad =) A (] = ¥,
and the following case form: case =

((al Aat Aad)V(al Aas Aaf) V (a] Aa? Aal)v

(al AaZ Aad) Vv (@l Naf Aad)V (a; Aal A ay)).
Now we can compute the confinements. Tor in-
stance,

conf (case, {1,2}) = dnf((a} Aa?)V (a] Aad)V

(a} Aa?) V (al Aad) V (ai Aa?) V (af A al)).
After removing duplicates we get:

conf (case, {1,2}) =

((al Aa?) V (al Aad) V (al Aad)V (ag A a3)).
Likewisc, for the complement of M’ with respect
to M, we get:

conf(case, {3}) = ((a}) V (a3)).

Now we just need to test whether two confined
case forms arc independent with respect to the
original. This is done with the free combination
operation, shown in definition 4.

Definition 4 (Free Combination ®)

with respect Lo a

VA

,M') = dnf(JeN €M

The free combination of twoe case forms is the dis-
Junctive normal form of their conjunction:
case’ ® case” = dnf(case’ A case”)

The two case forms, case’ and case’ | are DNF for-
mulae. To compute the free combination, we con-
join them and convert the result back into DNF.
They are independence if their free combination
is equal to the original case form, case.

For example, the free combination of the two
confinements from above,

((at Aa2)V (al Ad2)V (ak Aad) V (a} Ad3)) and

((a?) v (a))

((al/\a‘/\al)v(al/\az/\al)\/(al/\a“f/\a?)
(ar/\u,z/\a)\/(a, /\alf\a DV (al Aal Aaz)V
(ak Aa¥ Aa3) Vv (at Aas Aal))

18

1n this example, cquivalent alternative variables
have again been replaced by r('prcq(‘ntdtwcs of Lhon
equivalence class. So for instance, a3, a3 and aj are
all represented by af.

452

which is not equal to the original case form:
((af AaF Aad) vV (a: A {Lﬁ A af) V(ag Ad? Aai)Vv
(al Aad Aad)V (ak Aaf Aad) Vv (al Aa2 Aad)),
so the first two dls_]un(,t,lon.‘-. are not indepen-
dent from the third. However, the sccond dis-

junction is independent from the first and the

third since conf(case, {2}) = ((a}) V (¢})), and
conf(case, {1,3}) = ((af Aa})V(af Aai)V(al Aad)),
and their free combination is equal to the origi-
nal case form. Therefore, the original formula, is
equivalent to (¢ P, Y YA (o by by YN X, x5 XD

6 Free combination elimination

The last section showed an effective algorithm for
modularizing groups of dependent disjunctions.
However, even though this is a compile time al-
gorithm we should be concerned about its efli-
ciency since it has exponential complexity. The
main source of complexity is that we might have to
check every pair of subsets of disjunctions from the
group. In the worst case this is unavoidable (al-
though we do not expect natural language gram-
mars to exhibit such behavior). Other sources of
complexity arc computing the free combination
and testing the result against the original casce
form. Luckily it is possible to avoid both of these
operations. This can be done by noting that both
the original case formm and cach of the confined
case forms are in DNIF. Thercfore it is a nec-
cssary condition that if the free combination of
the confinements is the same as the original casce
form then the product of the number of disjuncts
in each confinement, [case’| x |ease!|, must equal
the number of disjuncts in the original case formn,
|case|. Moreover, since both confinements are de-
rived from the original case form, it is also a suf~
ficient condition. This is shown more formally in
theorem 1.

Theorem 1 (Free combination elimination)

X |case"

case = case’ ®case” <= |case| = |case’

Proof == We assume that case’®case” = case.
Since both case’ @ case” and case arc in DNF and
DN is unique, we know that |case’ @ case”|

|case|. We also know that case’ and case” have
no disjuncts in common because they have no al-
ternative variables in common, so |case’ ®Qcase”| =

lease'] x |ease'|. Thercfore, [case| = |case’| x
|case]. [
Proof <= Again since case’ and case” have

no disjunct% in common, we know that |case’ ®
case”| = I((I.S(’II X f(‘us'("’l and therefore, that
|case| = ¢"|. Tivery disjuncs in case can
be ropmsontcd as A' A A" where A is a disjunct
in case’ and A" is a disjunct in case”. So the dis-

juncts in case’ ® case’ must be every conjunction

of possible A's and A”s. So case’ ® case’ must

contain all of the disjuncts in case and it could
contain even more, but then |case’ & case'| >
lcase|. However, since |case] = |case’ & casc”|,
case’ & case’ must contain exactly the disjuncts
in case and therefore case = case’ & case’. Ol

We can see that this would have helped us in the
previous example to know that conf(case, {1,2})
could not be independent from conf(case, {3})
with respect to case because Jeonf (case, {1, 2})] ==
4 and |eonf(case, {3})] == 2 bul |ease| == 6, not
8. Converscly, since [conf (case, {1, 3})] = 3 and
|conf(case, {2})] =: 2, we know imuediately that
these case forms are independent,.

This theorem also allows us to perform other
combinatorial short cuts, such as noting that if
the number of disjuncts in the original case form
is prime then it is alrcady modular.

7 Conclusion

This paper has presented an cliicient. forin for
representing dependent disjunctions and an algo-
rithm for detecting and eliminating redundant in-
teractions within a group of dependent disjunc-
tions. This method should be useful for any sys-
tem which employs dependent, disjunctions since
it can eliminate exponential amounts of processing
during constraint satisfaction.

References

Eiscle, A. and J. Dorrve. 1990. Unification of
Disjunctive Feature Descriptions 1BM Wis-
senschaftliches Zentrun, Institute fiilr Wissens-
basicrte Systeme tech. report 124,

Gordemann, D, 1991, Parsing and Gencration
of Unification Grammars. PhD thesis, U. of
Tlinois.

Gerdemann, D, and P King 1994, The Cor-
rect and Efficient Tinplementation of Appropri-
ateness Specifications for Typed Feature Struc-
turcs In COLING 199/, pages 956960,

Griflith, J. 1995, Optimizing LFeature Structure
Unification with Dependent Disjunctions. In
Papers presented ol the Workshop on Gram-
mar Formalisin for NLP ot ESSLLI-94. U.
Tiibingen, Seminar fiir Sprachwissenschall tech.
report, 04-95.

Guiftith, J. 1996. Disjunction end Efficient Pro-
cessing of Feature Structures. PhD) thesis, Uni-
versitit Tiibingen. Tentative title.

Maxwell, J. and R. Kaplan. 1989. An Overview of
Disjunctive Constraint Satisfaction. 1o Proc. of
Int. Workshop on Parsing lechnologics, pages
18 27.

Maxwell, J. and R. Kaplan. 1991, The Interface
between Phragsal and Punctional Constraints.

453

In Constraint Propagation, Linguwislic Descerip-
tion, and Computation, Istituto Dalle Molle TD-
SIA, Lugano, Switzerland.

Meurers, D. and G. Minnen. 1995, A Compu-
tational Treatment of tprsa Lexical Rules as
Covariation in Lexical Entries. In Proc. of the
Sth Int. Workshop on Notural Language Under-
standing and Logic Programming.

Meurers, D, and G. Minnen. 1996, Off-line Con-
straint Propagation for Eflicient 1rsa Process-
ing. In Proc. of nrsa/ranLn-96.

Pollard, C. and [. Sag. 1994. Head-driven Phrase
Structure Grammar. U. of Chicago Press.

Stromback, L. 1992, Unifying Disjunctive Feature
Structures. In COLING 1992, pages 1167 1171,

