
Modularizing Contexted Constraints

John Griffith*
Seminar fiir Sprachwissenschaft

Universitgt 'Fiibingen
K1. Wilhehnstr. 113,

D-72074 Tiibingen, Germany
griflith4~)sfknphil.uni-tuebingen.de

Abstract

This paper describes a nlethod for com-
piling a constraint-based g rammar into
a potentially inore efficient form for pro-
cessing. This method takes dependent
disjunctions within a constraint formula
and factors them into non-interacting
groups whenever possibh; by determining
their independence. When a group of de-
pendent disjunctions is split into slnaller
groups, an exponential amount of redun-
dant information is reduced. At runtime,
this ineans that all exponential alnount
of processing can be saved as well. Since
the performance of an algorithm ibr pro-
cessing constraints with dependent dis-
jmmtions is highly deterxnined by its in-
put, the transformatioll presented in this
paper should prove beneficial for all such
algorithms.

1 Introduct ion

There are two facts that conspire to make tile
t rea tment of disjunction an important consider-
ation when building a natural language process-
ing (NLP) system. The first fact is that nat-
ural languages are full of ambiguities, and in
a g rammar many of these ambiguities are de-
scribed by disjunctions. The second fact is that
the introduction of disjmmtion into a g rammar
causes processing tilne to increase exponentially
in the number of disjunets. This means that a
nearly linear-time operation, such as uififieation of
Imrely conjunctive feature structures, becomes an
exponential-time problem as soon as disjunctions
are included, t Since disjunction is unlikely to dis-

* T h i s work was sponsored by Teilprojekt B4
"t~¥om Constraints to Rules: Compilation of lipS(;"
of the Sonderforsehungsbereieh 340 of the Deutsche
Forsehungsgemeinschaft. I would also like to thank
Dale Gerdemann and Guido Minnen for helpfltl com-
ments on the ideas presented here. All remaining er-
rors are of course my own.

t A s s u m i n g P # NIL

appear from natur~fl language gralnlnars, control-
ling its form (:all save exponential amounts of time.

This paper introduces all etficient normal tbrm
for processing dependent disjunctive constraints
and an operation for compilation into this normal
form. This ot)eration , modularization, can reduce
exponential alnounts of redtmdant information in
a grainmar and can consequently save correspond-
ing alnounts of processing time. While this oper-
ation is general enough to be applied to a wide
variety of constraint systems, it; was originally de-
signed to optimize processing of dependent dis-
junctions in featm'e structure-based grammars. In
particular, modular fea.tuie structures are more
eflicient R)r unification than non-Inodulm' ones.
Since ill many current NLP systems, a signiti-
cant amount of tilne is spent performing unifica-
tion, optimizing feature structures for unillcatioll
shouhl increase the tmrtbrmance of these, syst;ems.

Many algorithms for etticient mfitication of lea
tare structures with dependent disjunctions have
been propose.d (Maxwell and Kaplan, 1989; F, isele
and DSrre, 1990; Gerdemann, 1991; StrSmbSek,
1992; Griflith, 1.996). However, all of these al-
gorithms sutfer from a common problem: thc.ir
performance is highly deternfined by their inputs.
All of these algorithms will perform at their best
when their dependent disjunctions interact as lit-
tle as possible, but if all of the disjunctions inter-
act, then these algorithms may perform redundant
computations. The need for ef[icient inputs has
been noted in the literature 2 but there have been
few a t tempts to automatical ly optilnize gr;mnnars
tor disjunetiw; unification algorithms.

The modularization algorithm presented in this
paper takes existing dependent disjunctions and
splits them into independent groups by deterlnin-
ing which disjunctions really interact. Indel}en-
dent groups of disjunctions can be processed sepa-
rat;ely during unification rathe, r than having to try
every combination of one group with every com-
bination of every other group.

This pat)er is organized as follows: Section 2
gives an informal introduction to dependent dis-

~Cf. (Maxwell and Kaplan,]991) fl)r instance.

4 4 8

juncl; ions and shows how r(,ctundani; int(;raclli(lns
lml,w(;en g roups of (tisju:n(:l;ions (:mi bc r(;du(:ed.
S(;c:i;ion 3 shows how n o r m a l d is junc t ions c;m t)(;
r(;l)lac(;d t)y (:ont, cxtx;d constrainl:s. S(,(:tion 4 t;hcn
,<d~ows how t, hcs('~ cont(;xl;(',d (' ,onstraints can en-
cod(, del)(',nd(;ni, d is junct ions . S(!(:l;ion 5 1)r(!s(',nts
the mo(hl lm' iza t ion a,lgorii;hm for conlx~xi;ed (',on-.
si;ra.ini;s. Ih)wever, e, ven t hough this algor{l;hm is
t~ (;omt)ih>t,im(', ot)(;ralJ(m , i t i t se l f has (;xt)on(ni t ia l
comt)lexity, so lilil, l(ing it IllOl(', (~tli(',i(mi; s h o u l d ~Jso
1)(; a (:onc:(,rn. A i;h(~or(;m w i l l l,hc, I i])(; i)r(~s(mix;d
ill S('x'J;iOll (i t]mL t)(!rllli(;s ;I, li (',xt)olt(!tll;ial t)&rt; ()[
i,tl(; nm(hllarizal; ion algo]'il,hm I;()I)c rct)l;t(:(',(l 1 W
combina to r i a l aam.lysis.

2 D e p e n d e n t d i s j u n c t i o n s

l)(:l)enchull; disjuncl;ions are lik(']u)]ma i dis.iun(:--
d o n s cxc',c;1)t dial; (;very (lis.iun(:l;ion has a nanL(',
mid l;h(; d is juncts of disjuimti(ms wii;h tim sam(:
IlllIll(~ IllltSt; |)(; ch()s(~ll i l l SyllC. FoF (~xmnt)l('. ,
(<, g,, d/, (//') A (<t ',?, ~/)', ~//') is a (:,,ni.n,:i:io,~ ,)r i:wo
dcl)cn(hmt dis jml(:dons wi th tim s.~/lil(; lt~l,l[l(,., (/.
Wtl;l,l; this m('.;ms ix llha.l; if l,h(', s(;('oml (lisjun(:l: in
1;ho, til'sl; (tis.iul~(:tion, (//, ix (:hoscn, lJicn l;h(~ s(!(>
ond dis.jun(:t, of th(; ()th(;r disjun(:llion, '~//, Inllsl;
t)(; chos(m as well. (Not(; thai; wilful; k ind (if con-
sLrainl;s the ¢/)s a.n(I 'l/~s are ix no t iml)ortmfl; here.)
'Fh(', (',oIlll)lll;&/;iOll&l l'e;/,soll [()1 llSill{,; (h~t)(,,u(hml;
(lis.iun('.i;ions ovc, r norma,] (tisjunc'.tions ix t;hal; (h>
l)(;n(lcnl; d is jun(:dons Mlow for more (:Oral)a(;1, a.nd
(dlici(;nl; sl;tllCi;/ll(~.s. 'Fhis is l) m d c u l a r l y lain(; whcli
(h;1)cn(l(;nl; (l isjunc:l; ious arc (',lnl)(!d(hxt iusi(h; of
[ea,l, urc sl;rutJl;llr(;s. Th i s is [let',raise in l;li;tl, c.aso
(lisjlln(:l;i(ins C}l,ll lic kept hi('a,l ill it dirc;(:l;('d gl'ltlih
Sl,]'llCI;lll'(1 t;hllS s:4Villl r l:(xhut(la.nl; ['(;;tl;ure I);~l;lis.

Wc slty I;tiaA; d is juncl ; ions w i t h l;]i(; san i (; name',
arc in l;h(; sa,mc g'ro'u,p. Oltc (lisl;inguishing fea-
1;llr(~ of a, g roup of (l is jun('dons ix i;tl&l; (;~(;}1 dis-
jun(;t;ion lnusi; ha, v(~ tim stun(', numl)(',r of dis-
juncl is. Th is is (;sscnt ia l ly who!re! r (x lun (la l i t int, cr-
a(',l;ions origina, l;(',, l "or inslia,lL(m~ in (<l (l)> (lJ, (I/, qi)') A
(,1 '~1~, '~//, '~/~, '~//) (;ac:h dis jun(: t i ()n has four (tisjun(',ts,
[)111; r(;ally Oll]y l;WO values. Bul; 111()I'(~, iml)O]'-
l;;~.nl;ly, no nla.l;l;(;r whal; wahl(,, of l,h0 lirsl; (lisjun(>
l ion ix (:hos(m ((/) or ell) t;hc; sallle v~-I, lll(~S a,l(; t)(3s-.
sibh; for i;h(*, s(;(',on(1 (9 or 'l//). hi ol;hcr words ,
thos(' d i s junc t ions at(; a(: tually ind(;p(mdcnt f rom
one; anol;hcr, and Can t)0, pu t into (lifl'er(',nl; g roups :
(d' +, ¢') A (d" "/2, +') . Th is is th(: In OC(;Ss ,)t ,nod-
ulmiz~tl;ion which will b(; forina,lized in s(;c;l;ion 5.

One mi<ghl; t)c l;(mll)tc(l to l;hink thal; ul()(lulm'-
izg-t,|;ion ix llllnCCCSS~l,l'y siIl(;(~ ~I'3,IlIIlI}LI wril;(;rs ~-/,1"(~
unlikely to writ('. (h;t)endc;nt; d i s junc t ions which
(',ontain iild(~,l)cm(tcn(; par ts . Ih:)w('v(~r, gramma, r
wri ters m;~y no t b(; (;hi; only sotlr(;(! o[([(;[)(;n(l(;ifl,
disjunc:tions. Mmiy g r a j m n a r l)ro(:(;ssing sysi;(;ms
use high-level dose:tit)lions whic:h arc I;hcn t rans-
form(;d into lttOr(; cxt)lic:il; [ow(~l'-hw(;1 g r m m n a r s .
This t r imsJbrmat ioI l proc:c;ss m a y very w('.ll in-
l;rodu(;(; large' :tlllllll)(;l',<-; of dc;t)en(h;nl; d i s junc t ions

wi th (;×a(:l,ly this t)rol)(;rl,y.

()IIC ('×alnt)l(~ of who;r(; this can ha,l)l)(;n is in
the; ('xmipilm;ion o1' h;xi(:a,1 ruh',s in (Mcmr('rs and
Mimmn, 1995). In this t)apc!r, M(mr(ns mM Min
n(;n (t('s(:rib(~ a (:omt) ih , whic:h f, rmml~m;s a. s(,t of
LIPS(; h;xi(:al ruh;s a im th(;ir int(;ra, l:d()n into (h;l-
init;e r (Ja t ions usc,d 1,o cons t r a in h 'xical (~niai(~s.
In (Mem(u s and Mimmn, 199(i), th('y show how
nn oil'-lin(; COml)ila, t ion te(:hniqu(; (:a,lh~d cons t r a in t
l)roi)a,gation can I)e us(;d to inll)rov(; tim (leNnit(~
c:la,us(' (;nc:()cting produ(:(;d 1)y l;heir (:Oml)ih, t() a,1-
h)w for m()r(~ (dti(:i(~nl; t)ro(:('ssing. T im use o[(h'
iron(hint d i s junc t ions t)rovid(,.s ml a.l;tr;~(:dv(~ ~dLer-
]mlJv(~ 1;o I;tm (:olisl,rainl, t)]op;~gal;ion ~q)l)roa(:h 1) 3,
st)(;('.ifying all t;h(; i n fo rma t ion associ;~lxxl with a
h'xi(:al (;nl,ry dir(;c:dy as a singh', (h't)(;nd(;nl; f(!m
l ; l lre sI;r/I(:LIII'(; r&l;h(;r th;tn hidd(m in a set; of (h~ti-
nii;e (:la.us(;s. :~ C'onsidc.r the AheM lmh)w:

PIt()N ~ ll,d lielnu,, lleht, li,d,I }
i . d

VI,'()I(M { I)se, hse, fin I lilt}
d

.% Ull.I [-/ I

{ ~ vn,'()aM ~,.,,,

'lichen

L au(~ I '" I I

[VI,'()ILM hsE(

[11

[VI,'()I{M I!he] }
i , .]J >

)' ([(X)N'r)' ()

This comph' .x lexicM en t ry relsrcs(;nl;s the ha.so l e x
ical enlay fl)r t;ll('. G c r n m n verb lichen, "to love",
mM tim t;hree lcxical c!ntrics l;haA; (:all 1)0. der ived
f rom il; given th(! lcxi(:~d ruh;s prcsc;nl;c,xl in (Me.ur-
ers and Mimmn,]99(i). Tho difl'(;renc:es tml,wc'x;n
i;hese h~xi(:M (miaic;s arc (,nc:oded 1)y th(; (h~pc',nch;nl;
d i s junc t ions all o1" which a,rc in th(~ .~mnc gr(ml),
d. The first ([i~}llll(;l; ill c&ch (tisjun(;l,ioll (:()rr(~-
Sill)nits to l;tm b;ts(; t'Olln~ (;hi; S(;(;()II(I (:orr('st)c)n(ls
to the al)pli(:~l;ion of l;lm Compl('mc;nt F, xtracl;ic)u
l,exicM lhtl(;, t he th i rd corrc 'sl)onds to the al)pli-
ca t ion of the F in i t iv iza t ion L(;xical l tuh;, mid I;he
last COrlTo, s1)oIl(ls l;o Lhe apt) l icat ion of t)ol;h rltles. '1
Modula r i z~ t ion can l)e ilSc.(l t;o ilclak(; this t'('~tur(~
sl;ructur(; (wen m o r e (dlichuit by st)litl;ing all(; gro/ip
d into two new gt'()llpS dl a, nd (12 as showu lmlow.

aln I;he case of infinite h;xica, detinitc clauses arc.
still necc.ss;try to encode recursive informal;ion.

4q'ht',se lexical rules air(! s implit ied versions of those
presented in (Polb~rd ~md Sag,]994) .

449

PIION ~ lleben, liebt /
[dl

VFORM ~ bse, fill}
I, el

SUBJ []

f rVFORM bse]])
[lieben -]

[AaG~ 2t!]]

{ rv,,'OaMbsol }
s , , , , s , ,

d2

Another example of where modularization
might prove useful is in the t rea tment of typed
feature structures presented in (Gerdemann and
King, 1994). Their approach produces a set of
feature structures from a satisfiability algorithm
such that all of the feature structures have the
same shape but the nodes may be labeled by dif-
ferent types. They then collapse this set down to
a single feature structure where nodes are labeled
with dependent disjunctions of types. Many of the
groups of disjunctions in their feature structures
can be made more efficient via modularization.

A final example is in the compaction algo-
r i thm for feature structures, presented in (Grigith,
1995). Compaction is another operation designed
to optimize feature structures for unification. It
takes a disjunction of feature structures, trans-
forms them into a single feature structure with
dependent disjunctions, and then pushes the dis-
junctions down in the structure as far as possible.
The result is a large number of dependent dis-
junctions in the same group. Many of these can
probably be split into new independent groups.

3 Contex ted constraints

Maxwell and Kaplan (1989) showed how a dis-
junction of constraints could be replaced by
an equi-satisfiable conjunction of contexted con-
straints as in lemma 1 below. 5

Lemma 1 (Contexted Constraints)
¢1 V ¢2 is satisfialtle if] (t) -+ ¢1) A (~ --4 ¢2) is
satisfiable, where p is a new propositional variable.

Disjunctions are replaced by conjunctions of im-
plications from contexts (propositional formulae)
to the base constraints fie. ¢:t and ¢2)- The na-
ture of the base constraints is irrelevant as long
as there is a satisfaction algorithm for them. The
key insight is that solving disjunctions of the base
constraints is no longer necessary since they are
purely conjunctive.

SFor a proof see (Maxwell and Kaplan, 1989).

Maxwell and Kaplan 's goal in doing this was
to have an efficient method for solving disjunctive
constraints. The goal in this paper is compilin.q
disjunctive constraints into more efficient ones for
fllture solution. To this end a somewhat different
notion of contexted constraint will be used as show
in lemma 2.

Lemma 2 (Alternative-Case Form)
(/)1 V ¢2 is satisfiable i f f (al -4- ¢]) A (a2 ~- ¢:~) A
(al V a2) is satisfiable, where al and a2 arc new
propositional variables.

We (:an see that this formulation is nearly equiva-
lent to Maxwell and Kaplan 's by substituting p
for at and p for a2. To make the formulation
completely equivalent;, we would need to enforce
the uniqueness of a solution by conjoining al V g2.
However, this is unnecessary since we want to per-
mit both solutions to be simultaneously true. The
reason for using the modified version of contexted
constraints in lemma 2 is that we can separate the
representation of disjunctions into a conjunction
of the values that the disjuncts can have, called
the alternatives, and the way in which the we can
choose the values, called the cases. The alterna-
tives are the conjunction (al -~ ¢1) A (a2 -+ (/52)
and the cases are the disjunction (al V a2).

While we could use repeated applications of
lemma 2 to turn a disjunction of n disjuncts into
an alternative-case form, it will simplify the expo-
sition to have a more general way of doing this, as
shown in lemma 3.

v----I~l~)ma 3 (N-ary Aiternative-CaseA (ai -~ ¢i) A vFarm)ai

ieN is satisfiable iff i cN icN iS
satisfiable, where each ai is a new propositional
variablA°(ai--~ ¢i) V a{

Itere iGN are the alternatives and i cN

are the cases. So for example, ¢1 V ¢2 V Ca V ¢4
is satisfiable just in case (at -~ ¢1) A (a2 -+ ¢2) A
(a3 ~+ q~3) A (a4 -~ (~4) A (a:, V a2 V a3 V a4) is
satisfiable.

4 D e p e n d e n t disjunct ions as
c o n t e x t e d constraints

The usefulness of the alternative-case form only
becomes apparent when considering dependent
disjunctions. Dependent disjunctions can be rep-
resented by al ternative-cast forms as shown in def-
inition 1 below.

Definition 1 (Dependency Group)
A dependency group is a conjunction of dependent
disjunctions with the same name, d, where each

V* A*,
6ieN and ieN are disjunctions and conjunctions

of formulae ¢i, respectively, where each i is a member
of the set of indices, N.

450

disjunction is an alternative-case form such that
there is one alternative for every disjunct of ev-
ery disjunction in the group, and there is one case
for each disjunct in the group which is a co*one-
tion of the alternative variables for that disjunct

<.M A A(a}-~¢}) V A a}
: i 6 M j 6 N AJ6NiC-M

where each a} is a new propositional variable and
N = { L < . . . , n } .

So l;he dependent disjunction (,l ¢ , 0 , ¢ ') A
(d ¢,'~//, 0'} is the alternative-case form with al-
ternatives (a I -+ 0) A (a~ -~ 0) A (a:~ -+ 4/) A
(,4 -" ¢) A ¢ ') A "/") and eases
((a I Aa~) V (a~ Aa~) V (a~ A <)) . The cases enforce
that the corresponding disjuncts of every disjunet
in the group inust be simultaneously satisfiable.

We, can now star t to see where redundancy in
dependent disjmmtions originates. Because, every
disjunction in a group of (lepen(le, nt disjunctions
nmst have the, same nund)er of disjuncts, some, of
those disjunets may appear more, than once. In
the above exmnple t:br instance, 5 occurs twice in
the first disjunction and ~// occurs twi(:e in the
second disjunction. To resolve this problem we
impose the following condition, called alternative
compactness: if a base constraint ¢} equals an-
other base constraint from the same disjunction,
¢[,, then the alternatives variables associated with
those base constraints, (,ji and a~, are also equal. 7
Doing this allows us to express the alternatives
t;'om the example above as (d -~ ¢) A (4 -~
¢') A (~ --~ ¢) a (a~ ~ ¢ ') , an(1 the case,~ as
((at: A a~t) V (all A (t 2) V (8,12 A a2)).8 One advall-
tage of this is that the number of base constraints
that must be checked during satisfaction (:an po-
tentially be exponentially reduced.

'File nexl; section will show how an alt;ernative-
case form for a, group of det)tndent disjuncl;ions
can be split into a conjunction of two (or more)
equivalent forms, thereby (potentially) exponen-
tially reducing the munbt r of alternative varial)le
interactions that must be checked during satisfac-
l;ion,

5 M o d u l a r i z a t i o n

Consider again tile example from section 2:
(d (/5, (I), ¢ ' , (/)') A (d 0, "~t/, ~1~, %/)'). i{epresented as a
compact alternative-case form, the alternatives
becomes: (al 0)A((4 ¢')A(d
',//), with cases: ((a I A a~) V (al A a~) V (a.~ A
a~) V (a 1 A a~)). The key to determining that
the two disjunctions (:all be split into different

rNote that this requires being able to determine
equality of the base constraints.

Sin this example, equivalent alternative variables
have been replaced by representatives of theirequiva-
lence chess. So a~ has been replaced by al and a?a has
been replaced by a.~.

groups then involves determining that cases can
be split into a conjunction of two smaller cases
(a', V a~) A (a~ V a~). If the cases can be split in
this manner, we say the cases (and by extension
tilt group of dependent disjunctions) are indepen-
dent.

D e f i n i t i o n 2 (I n d e p e n d e n c e)

A case]orrn is independent iff it is equivalent to

"j~{N i 6 M ~ j (iN ' i 6M' A j c N " i 6 M "

where M' and M" partition M.

So in the above examph',, M = {1,2} where 1 rep-
r(!sents l;he first disjunel;ion and 2 represents l;he
second. Tha t makes M ' = {1} and M " = {2}.
While M ' and M " are derived Dora M, the ele-
aleuts of the Ns are arbitrary. But a consequence
of definil;ion 2 is that [N[=- IN'[x [N"[. This
will be proved in section 6. The size of the Ns,
however, represent the nmnber of cases. So for
instance in the above example, N might equal
{1,2,3,4} since there are four disjuncts in the
original ease form, while N ' might equal {1,2}
and N", {1,2}, since the smaller case forms each
contain two disjuncts.

The process of splitting a group of dependent
disjunctions into smallel" groups is called modu-
larization. Modularizing a group of dependent
disjunctions amounts to finding a conjunction of
ease forms that in equivalent; to the original ease
form. The modularization algorithm consists of
two main steps. Tile first is to take the original
case form and to construct a pair of possibly in-
dep(mdent ease forms from it:. The second step is
to check if these (:as(', forms are actually indepen-
(lent from each other with respect to the original
one. The modularizatioil algorithm performs both
of these steps repeatedly until either a pmr of in-
depe, ndent ease R)rms is found or until all possi-
ble pMrs have been checked. If tile later, then we
know that; the original dependent disjunction in al-
ready nn)(lulai'. If on the ottmr hand we can split
the case forms into a pair of smaller, independent
(;as(; forlns, then we can again try to modularize
each of those, until all groups are modular.

'[b const;ruct a pair of potentially independent
(:as(; forms, we first need to parti t ion the set of
alternative vm'iablts from the original ca,qe form
into two sets. The first, subset contains all of and
only the, variables corresponding to some subset
of the original disjunctions and tile second subset
of variables is the complement of the first, corre-
sponding to all of and only the other disjunctions.
lh'om these subsets of variables, we construct two
new cast forms Dora the original using the opera-
t ion of confinement, defined below.

D e f i n i t j o p , A 3 (C o n f i n e I n e n t)
V / \ a~

COII,f (j c N iE M , J~/It)

451

V Aa;
is the confinement o f J C N iGM with respect to a

4 V k a;
i f f co~tf(J CN i<M , M') =- dnf(J CN i~M'),
where. M' C M.

Cons t ruc t ing the eont inement of a (:as(; form is
essentially just throwing out all of the a l te rna t ive
variables tha t are not in M ' . However, only doing
this might leave us with dupl icate disjuncts, so
conver t ing the result to D N F removes any such
duplicates.

To make the definition of confinement clearer,
consider tile following conjunct ion of dependent
disjunctions:

(d ¢, 0, ¢, (/), ¢', ~//) A (d ~/% ~//, t/,, ,//, ~/o, t//)A
((~ x, x, x', x', x', x'}.

This is equivalent to tile compac t a l te rnat ive
f o r I n : 9

(a~ -', ¢ ') A (a~ --~ x) A (d + x'),
and tile following case fornl: ease. =

((el A a~/, ,*9 v (al A ~4 A a'0, V (4 A .,2 A d) v
(4 A a~ A d) v (4 A (q A ai~) V ((4 A a~ A d)) '

Now we can compute the confinements . For in-
s t a n c e 1

eonf(case , {1, 2}) = dnf((a I A a~) V (a I A a,~)V
(al A (q) v (o' A a,9 v ((4 A d) v (4 A d)) ,]

After removing duplicates we get:
.,,¢((,ase, {~, 2}) -
((4 A ab V (o * A " 9 V (4 A a~) V (4 A a,9) '1

Likewise, for the c()mtflement of M ' with respect
to M, we get:

conf(case, {3}) : ((a a) V (ai~)).
Now we jus t need to test whether two confined

case ibrms are independent with respect to the
original. This is done with the free combination
operat ion, shown in definition 4.

D e f i n i t i o n 4 (]~¥ee C o m b i n a t i o n ®)

The free combina t ion of two ease forms is the dis-
junctive 'normal form of their conjunction:

case' ® case" -- dnf(case' A case")

The two ease forms, case' and case", are I)NF for-
mulc t . ~ib compu te the free combinat ion , we con-
join t hem and convert the re.suit back into DNF.
They are independence if their free combina t ion
is equal to the original ease tbrm, case.

For example , the flee combina t ion of the two
confinements f rom above,

((a I A a, 2) V (a*, a a,~) V (a~ A a~) V (a~ A a~)) and
((d) v 0,9)

is
(ra' A a~ A 4) V (el A 4 A 4) V (a I / , a~ A d) V \]

(4 A a.~ A 4*) v (4 A ,q A d) v (4 A a~/, d)V
(a~ A d A d) v (a~ A a~ A d))

9in this examl)le , equivalent alternative variables
have again been replaced by representat, ives of their
equivalence class. So tbr instance., a~, c*~ and a~ are
all represented by al.

which is not equM t;o the original (:as(.' form:
((el A a~ A a~) V (a', A ,~,~ A 4') V (4 A d A ,,i])v
(al A a~ A all) v (d A a~ A d) v 04 A d A a q)),

so tim first two disjunctions are not indet)en-
dent from the third. However, the second dis-
jmmt ion is independe.nt front the first and the
third since, conf(case, {2}) - ((a~) V (a.~)), anti
co ,¢ (ca .~e , {1, 3}) (q , ' '~ ' ~ ' " : t ,Aa ' ,)V(%Aai ,)V(asAa! i)) ,
and their free combina t ion is equal to the oi'igi-
nal case form. Therefore , the original formula is
equivalent to (d' ~/a,*//)A (d,, ¢, ¢, ¢')A(d,, X, X', Z') .

6 F r e e c o m b i n a t i o n e l i m i n a t i o n

The last section showed all efl'ective algori t lnn for
modular iz ing groups of dependent disjunet;iolls.
However, even d lough this is a compile t ime al-
gor i thm we should be con(:erned abou t its eflio
ciency since it has ext)onential comph;xity. The
main source of complexi ty is t ha t we inight have to
check (;very pair of sul)sets of disjun(:tions fl'oin the
group. Ill the worst case this is tnmvoidable (el o
though we do not expect na tura l language grain-
mars to exhibit such behavior) . Other sources of
comi)lexity are comput ing the fl'ee co inb inadon
and test ing the result against the original (:as(;
form. l ,uckily it is possible to avoid bo th of these
operat ions . This Ceil t)e done by noting t ha t bo th
the original (:ase form aim each of the (:onfine{t
(:as(; forms are in DNF. Therefore it; is a nee-.
essary (:ondition t}tat if l;he fl'ee combina t ion of
the confinements is the same as the original case
form then the I)roduet of tile number of disjun('ts
i,, ea(:h conflneme.t, lease'l x lease"l, re,st eq , la l
the number of disjun(:ts in the original case form,
lease I. Moreover, since bo th confinements at(; de-
rived fl 'om the original ease form, it is also a s u f
ficient, condition. This is shown more forlnally in
theorem 1.

T h e o r e m 1 (l~Yee c o m b i n a t i o n e l i m i n a t i o n)

~.',~se = ~:as,/Oease" ¢=>]case] = ba~e'l × Icase"l

P r o o f =:> We assulne tha t c a s e ' ® c a s e " =- case.
Since ho th case'® e a s # ' and ease are in DNF and
DNI; is unique, we know tha t](:as('.' ® case"] =:
lease]. We also know tha t case' and case" have
no disjunets in common because they have no al-
te rna t ive variables in colnmon, so Icasc'®case"l =
Icase'l x Icasc."l. Therefore . le~s4 = Icasc'l x
kase"]. U

P r o o f < - - Again since case ' arm case" have
no disjuncts in cormnon, we know tha t leas# @
case"] =]case'] x Icase"] and therefore, tha t
l e a se I -- l e a s e ' ® c o , s t "] . E v e r y disjunct in case can
be represented as A' A A" where A' is a disjnnet
in case' and A" is a disjun(:t ill case". So the dis-
.iunets in e a se '@ case" must be every conjunct ion
of possible A's and A"s. So case' ® case" must

452

c<mtain all (>f th<', <li@mcts in ca.sc mM it. could
contain ev<m m<)re, }),it f,h<m + >

case ~ ~ case" must (:ontain cxacl;ly the disjuncl;s
ill cas(: aIld l;hcrcforc (:as(t :: (:o,,~('J (29 (:(ts(:'. E]

We can see t ha t this would have hell>ed us in th('.
p,'cvi<,us <`-x~t~,,p> t;<)k~,<,w m~t. <:<,,,/(,,<,,.~(,, {1,2})
(:(}lll(l 110|; |)('~ il,(|(,t)(!II(l(!llJ; ['1'()1[1 C()ILf(c(t,'~C,{3})
wit;h respect to c<,,,sc, t>eca.use):,,(f(ca,sc, {1,2 })!

8. ()onvcrscly, sin(:(`- Ico'/~f(ca.s'c, {[,3}) I 3 and
[conf(casc, {2})1 : 2, we, know imm(,Jia.l;ely l;hat
l;hcs('~ (:as(', forms are in(h`-t)c'nd(mt.

This the, orem also allows us to trotform other
comt)inat, orial short cuts, su<'h as not ing tha t if
t;he nunltmr of disjuncl;s in the origimtl case torm
is pr ime [;hen it; is a l ready modular .

7 C o n c l u s i o n

'['his pape r has [)r('~s<!nt(xl an (fllici(mt form for
r(',l)r(;s(ml;ing (lc, p(!ll(h;nl, dis,jun(:t;i(>ns m~(i an algo-
r i thm for d(`-I;(x;l,ing aim (;liminal;ing r(,,dmt(tmit in:
te ract ions within a group of <[(~l)(m(hmt disjmm-
l;i<ms. This mc, l;h<)<l shoul<l be useful for a.,y sys-
(;era which (mq)l<)ys <let)endent <lisjun(:tions sin<:e,
it, can (`-liminai;e exponenl;ial am(mnt;s of i)ro<:(~ssh~g
during (:onstra.inl; sadsi]mtion.

In Conslraint I'ropagatio'n , Linguistic Dcsc~ip-
tion, a'nd Computation, [s t i tu to l)alh', Molle II)-
SIA, Lugano, Switzerlan<t.

Meurers , i). and G. Minnen. 1995. A @olni)u-
t;al;ional Trcat;nmnt; of [ll'S(l I,exi<:al l{ules as
Covm'ial;ion in Lexi(:al l,;ntries. In l)r'oc, of I,h,<:
5th, Int. Workshop o'n Nal,'wrrd Lang'uo,9<~ U'ndcr-
standing a, nd Logic l~r'og'ra'mming.

M<mr(!rs, 1). ml(I G. Mimmn. 199(i. ()It'-liue Con-
sl,ra.inl; I)r<)l)agat;ion for l,;[li('i(`-zzI, III'S(I I) I ' O (; (~ S S -

ing. h[l'roc, of III'S(I/TAI,N-06.
I>ollm'd, C. mid i[. Sag. :1994. Hcad-drivc.n Phra,sc

Struct'u, rc G'rummar. U. (>t! Chi(:ago Press.

StrSml)~i(:k, L. 1992. Uni[~ging Disjun(:l;ive l"eal;ur(;
Sl;ru<:i;ures. [n COl,IN(' , [992, 1)a.ges 1:167 11171.

R e f e r e n c e s

Eiseh`-, A. and J. D6rre. 1990. Unification of
Disjunctiv<`- Fea ture De, s(:ril)tions IBM Wis-
sens<:haftli<:hcs Zcnt rnm, [nstitul;(', fiir Wiss(`-ns:
basi(;rt<: ,qysl;t'.In<`- l;(`-(;h, l'Cl)<>r[;] 2+l.

(;(;r<lemann, I). 1991. Parsing and Genc'ration
of Unification Cramma'rs, PM) thesis, U. (>f
Illinois.

(~el'<lemaml, D. and 1). King 1.(t94. The ()or-
re<:/; an<l Eilh:ient; hnt)lemealt:ation of Apl>rot>ri-
a.teness Specifications for T y p e d Fea ture Struc-
tures In C O L I N G 1994, pages 956 960.

Griflith, J. 1995. Optimizing Fcat;nre St;ru<:turc
Uniticat, ion widt l)ependent l)isjuncl;ions, in
l 'apcrs presented al, th.c W(rrkshop on (h'am-
ma,'r li'ormaliwm, fl)r N L P at E,qAT, LI:-9/I. U.
Tiibinge.n, S('minm' fiir Stn'achwisse, nscha.fl; tech.
rel)ort 04415.

Gritlith, J. 1996. Disjur~,ction and EJ]icic'n,t P'lv-
tossing of Feature Struct'u,'rcs. 1)hi) th(!sis, Uni-
versitSt T/ibingen. Tenta t ive t ide.

Maxwell, J. and I{.. Kat)lan. 1.(t89. An Overview of
l)i%iuncl;iw'. C<mstraint Sadsfact;ion. In]"me. of
lnl. Workshop on 1)a'rsi'n,g Technologies , pages
18 27.

Ma.xw<`-ll, 3. and 1{. Kaplan . 1991. Th(! lnt('xfa(:(!
1)(!l;w(',(m Phrasa l mt<l Funct;ional Consl;ra, ints.

453

