
Finite-state phrase parsing by rule sequences

Marc Vilain and David Day
T h e M I T R E Corpora t ion

202 Burlington Rd.
Bedford, M A 01720 USA

mbv@mitre.org, day@mitre.org

Abstract
We present a novel approach to parsing phrase
grammars based on Eric Brill's notion of rule
sequences. The basic framework we describe has
somewhat less power than a finite-state machine,
and yet achieves high accuracy on standard phrase
parsing tasks. The rule language is simple, which
makes it easy to write rules. Further, this simpli-
city enables the automatic acquisition of phrase-
parsing rules through an error-reduction strategy.

This paper explores an approach to syntactic analysis
that is unconventional in several respects. To begin
with, we are concerned not so much with the tradi-
tional goal of analyzing the comprehensive structure of
complete sentences, as much as with assigning partial
structure to parts of sentences. The fragment of interest
here is demonstrably a subset of the regular sets, and
while these languages are traditionally analyzed with
finite-state automata, our approach relies instead on the
rule sequence architecture defined by Eric Brill.

Why restrict ourselves to the finite-state case? Some
linguistic phenomena are easier to model with regular
sets than context-free grammars. Proper names are a
case in point, since their syntactic distribution partially
overlaps that of noun phra~ses in general; as this overlap
is only partial, name analysis within a full context-free
grammar is cumbersome, and some approaches have
taken to include finite-state name parsers as a front-end
to a principal context-free parsing stage (Jacobs et al.
I99i). Proper names are of further interest, since their
identifi cation is independently motivated as valuable to
both information retrieval and extraction (Sundheim
~996). Further, several promising recent approaches to
information extraction rely on little more than finite-
state machines to perform the entire extraction analysis
(Appelt et al. I993 , Grishman I995).

Why approach this problem with rule sequences? In
this paper we maka the case that rule sequences succeed
at this task through their simplicity and speed. Most
important, they support mixed-mode acquisition: the
rules are both easy for an engineer to write and easy to
learn automatically.

Rule sequences
As part of our work in information extraction, we have
been extensively exploring the use of rule sequences.
Our information extraction prototype, Alembic, is in
fact based on a pipeline of rule sequence processors that

run the gamut from part-of-speech tagging, to phrase
identification, to sentence parsing, to inference
(Aberdeeen et al. I995). In each case, the underlying
method is identical. Processing takes place by
sequentially relabeling the corpus under consideration.
Each sequential step is driven by a rule that attempts to
patch residual errors left in place in the preceding steps.
The patching process as a whole is itself preceded by an
initial labeling phase that provides an approximate
labeling as a starting point for rule application.

This patching architecture, illustrated in Fig. 1, was
codified by Eric Brill, who first exploited it for part-of-
speech tagging (Brill I993). In the part-of-speech appli-
cation, initial labeling is provided by lexicon lookup:
lexemes are initially tagged with the most common part
of speech assigned to them in a training corpus. This
initial labeling is refined by two sets of transformations.
Morphological transformations relabel the initial
(default) tagging of those words that failed to be found
in the lexicon. The morphological rules arc followed by
contextual transformations: these rules inspect lexica[
context to relabel lexemes that are ambiguous with
respect to part-of-speech. In effect, the morphological
transformations patch errors that were due to gaps in
the lexicon, and the contextual rules patch errors that
were due to the initial assignment of a lexeme's most
common tag.

Phrase identification: some examples
Sequencing, patching, and simplicity, the hallmarks of
Brill's part-of-speech tagger, are also characteristic of
our phrase parser. In our approach, phrases are initially
built around word sequences that meet certain lexical or
part-of-speech criteria. The sequenced phrase-finding
rules then grow the boundaries of phrases or set their
label, according to a repertory of simple lexical and
contextual tests. For example, the following rule assigns
a label of oa(; to an unlabeled phrase just in case the
phrase is ended by the word "Inc."

(def-phraser
labeJ NONE ; phrase is currently

; unlabelled
right-wd-1 lexeme "inc." ; rightmost word in the

; phrase is "inc."
labebaction ORG) ; change the phrase's label,

; but not its boundaries

Now, consider the following partially labelled string:

<none>Donald F. DeScenza</none>, analyst with
<none>Nomura Securities Inc.</none>

274

text Initial ~ (Labelled text) _ _ > C Finaltext
@nprocessed) • lexlconlabelling:lookup j~ t rans fo rmat lons :~

• morphological rules J

Figure 1: Brill's rule sequence architecture as applied to partmf-speech tagging.

)

The SGML markup delimits phrases whose boun-
daries were identified by the initial phrase-finding pass.
Of these phrases, the second successfully triggers the
example rule, yielding the following relabeled string.

<none>Donald F. PeScenza</none>, analyst with
<org>Nomura Securities Inc.</org>

The rule, which seems both as obvious as walking
and as fool-proof comes from the name-findinig
processor we developed for our participation in the 6 m
Message Understanding Conference (MtJC-6). As it
turns out, though, the rule is in fact not error-proof,
and causes both errors of omission (i.e. recall errors)
and commission (i.e. precision errors). Consider the
case of "Volkswagen of America Inc." Because the
initial phrase labeling is only approximate, the string is
broken into two sub-phr~es separated by "of".

<none>golkswagen</none> of <none>America
Inc,</none>

The example rule designates the partial phrase
"America Inc." as an out;, a precision error because of
its partiality, ,and fails to produce an otto label spanning
the entire string (a recall error).

<none>golkswagen<lnone> of <org>America Inc.</org>

This problem is patched by a subsequent name-
finding rule, namely the following.

(def-phrasee
label ORG
left-wd-1 test country?

left-ctxt-I lexeme "og'

le%-ctxt-2 phrase NONE

bounds-action MERGE
labbel-ac~ion ORG)

; this is an organization
; is the leftmost lexeme
;in the phrase on a list
; of country words?
; to the left of the
; phrase is the word "og'
; tothe left of that is an
; unlabelled phrase
; merge the entire left
; contextinto the OIZG,
; phrase and all

The first two clauses of the rule are antecedents that
look for phrases such as "America inc." The next two
clauses are further antecedents that look to the left of
the phrase for contextual patterns of form

"<non~>,. ,</none> of".

The final two clauses incorporate the left context
wholesale into the triggering phrase, yielding:

<org>golkswagen of America Inc.</org>

This rule effectively patches tile errors caused by its
predecessor in the rule sequence, and simultaneously
eliminates both a recall and a precision error.

The phrase finder
With these examples as background, we may now

turn our attention to the technical details of the phrase
finding process. As noted above, this process occurs in
two main steps, an initial labeling pass followed by the
application of a rule sequence.

Initial phrase labeling
The initial labeling process seeds the phrase-finder

with candidate phrases. These candidate phrases need
not be any more than approximations, in partictdar, it
is not necessary for these candidates to have wholly
accurate boundaries, as their left and right edges can be
adjusted later by means of patching rules. It is also not
neccssatT for these candidates to be unfragmented, as
fragments can be reassembled later, just as with "Volks-
wagen of America Inc." Further, applications that
require multiple types of phrase labels, need not choose
such a label during the initial phrase-finding pass.

What is important is that the initial phrase identifi-
cation Fred the cores of phrases reliably, even if complete
phrases arc not identified. That is, it must partially
align some kind of candidate phrase ~ for every phrase
(~ that is actually present in the input. Extending a
concept from information retrieval, this amounts to
maximizing what we might call initial recall, i.e.,

lit= I (1) I I / I (i) I,
where (IJ is the set of actual phrases in a test set, K is the
set of candidate phrases generated by the initial
phrasing passs, and cI) I is tile set of those (D < q~ that arc
partially aligned with some 1(c K.

The general strategy we have adopted for finding
initial phrase seeds is to look for either runs of lcxcmes
in a fixed word list or runs of lexemcs that have been
tagged a certain way by our part-of-speech tagger.
1)iffercnt instantiations of this general strategy for
initial phrase labeling naturally arise for different
phrase-finding tasks. For example, on the classic
"proper names" task in mixed-case text, we havc
achieved good results starting from runs of lexemes
tagged with Nm, or m'~ps, the Penn Treebank proper
noun tags. This strategy achieves the desired high
initial recall R I , as these tags are well-correlated with
bona fide proper nanles ~md are reliably produced in
mixed-case text by our part-of-speech tagger. This
strategy does not yield quite as good initial precision
(i.e., it yields false positives) for a number of rcasons,
such as the fragmentation problcms noted above, e.g.,

golkswagen/NNP of/IN America/NNP Inc./NNP

Once again, though, these initial precision errors arc
readily addressed by patching rules.

2 7 5

Clauee type Syntax Definition
Contextual tests

Phrase-internal
tests

Label test

Actions

left-ctx~-l, lef~-ctxt-2

right-ctxt~l, rig ht-ctxt-2

le%-wd-1, left-wd-2

right-wd-1, right-wd-2

wd-any

wd-span

label

label-action

bounds~action

Test one place (resp. two places) to the left of the phrase

Test one place (resp. two places) to the right of the phrase

Test f irst (resp. second) word of phrase

Test last (resp. next-to-last) word of phrase

Test each word of phrase in succession. Succeeds if any word in the
phrase passes the test.

Test entire string spanned by phrase

Test phrase's label

Sets the label of the phrase

Modify the phrase's !eft or right boundaries

Table h Repertory of unary rule clauses.

Phrase-finding rules
A phrase-finding rule in our framework is made up of
several clauses. The corc of the rule consists of clauses
that test thc lexical context around a candidatc phrase 1<
or that test lcxcmcs spanned by 1(. The repertory of
these test loci is given in "Fable 1. At any given locus, a
test may either search for a particular lcxcmc, match a
lexeme against a closed word list, match a part of
speech, or match a phrase of a given type. Most rules
also test the label of thc candidate phrase 1(.

The unary contextual tests in the table may also bc
combincd to form binary or ternary tests. For example,
combining I,EVT-C'IXW-I and i~mrr-cwxa'-z clauses yields
a rule that tests for the left bigram contcxt. This was
done in the o r e defragmentation rule described earlier.

A rule also contains at least one action clause, either
a clause that sets the label of the phrase, or one that
modifies the boundaries of the phrase. Finally, some
rule actions actually introduce new phrases that embed
the candidate mad its test context; this allows one to
build non-recursive parse trees.

Phrase rule interpreter
The phrase rule interpreter implements the rule
language in a straightforward way. Given a document
to be analyzed, it proceeds through a rule sequence one
rule r at a time, and attempts to apply r to every phrase
in every sentence in the document. The interpreter first
attempts to match the test label of r to the label of the
candidate phrase. If this test succeeds, then the
interpreter attempts to satisfy the rule's contextual tests
in the context of the candidate. If these test succeed,
then the rule's bounds and label actions are executed.

Beyond this, the only real complexity arises with
phrase-finding tasks that require one to maintain a
temporary lexicon. The clearest such example is proper
name identification. Indeed, short name forms (e.g.,
"Detroit Diesel") can sometimes only be identified
correctly once their component terms have been found
as part of the complete naxne (e.g., "Detroit Diesel
Corp."). The converse is also true, as short forms of
person names (e.g., "Mr. Olatunji") can help identify
fitll nanm forms (e.g., "Babatunde Olatunji").

The interprcter maintains a temporary lexicon on a
document -by-document basis. Every time the
interpreter changes the label of a phrase $, pairs of form
<Z, "c> are added to the lexicon, where ~ is a lcxcmc in
~, and "c is the label with which (~ is tagged. This
lexicon is then exploited to form the associations
between short and long proper name forms (through an
extension to the rule repertory defined above).

Correspondence to the regular sets
It is straightforward to prove that this approach

recognizes a subset of the regular sets, so we will only
sketch the outline of such a proof here. The proof
proceeds inductivcly by constructing a finite state
machinc bt that accepts exactly those strings which
receive a certain label in the phrase-finding process
under a given rule sequence Z. We consider each rule p
in Z in order, and correspondingly elaborate the
machine so as to reproduce the rule's effect.

To begin with, consider that the initial phrase
labeling proceeds by building phrases around lexemes
0~ 1 fz n in a designated word list or by finding runs
of certain parts of speech ~t 1 7Zm. The machine that
reproduces this initial labeling is thus

pl/rq p n/n1

pl/nm p n/nm Pl/nl p n/rq

As usual, node labeled "S" is thc start state, and any
node drawn with two circles is ,an accepting state. The
P i /~ i arc labels stand for all lcxemes in the lexicon that
may be labeled with the part of speech gJ'

The induction step in the construction procccds
from ~l.bl , the machine built to reproduce Z up l~hrough
rule l] bl in the sequence, and adds additional states and
arcs so as to reproduce Z up through ruh'. p i.

For example, say Pi tests for the presence of a lexeme
to the left of a phrase and e~tends the phrase's

lxaundaries to include)v. We extend the machine bt to

276

encode this rule by replacing ~'s current start state S
with a new one S', and adding a ~, transition from S' to
the former start state S. Thus

becomes

Pv ,U>l

@ > O - - - > 0
For a rule I~ that tests whether a phrase contains a

certain lcxcme ~'i, wc construct an "acccptor" machinc
that accepts any string with)~i in its midst.

CoCO
Noting that the regular sets are closed trader inter-

section, wc them proceed to build the machine that
"intersects" the acccptor with bli.

Other rule patterns arc handled with constructions
of a similar flavor--space considerations preclude their
description hcre. Note, howcw:r, that extending the
fl:amework with a temporary lexicon makcs it trans-
finite-state, lqnally, as with all semi-parsers, the
machines we construct in this way must actually be
interpreted as transducers, not just acceptors.

Learning rule sequences automatically
Our experience with writing rule sequences by lt,-md in
this approach has been very positive. "['he rule patterns
thcmselves are simple, and the fact that they arc
sequenced localizes their effccts mid reduccs the scope
of their interactions. These hand-engineering
advantages are also conferred upon learning programs
that attcmpt to acquire these rules atttomatica[ly.

The approach we have taken towards discovering
phrase rule sequences automatically is a maximum
error-reduction scheme for selecting the next rule in a
sequence. This approach originated with Brill's work
on part-of-speech tagging and bracketing (Brill i993).

Brill's rule learning algorithm
"['he search for a rule sequence in a given training
corpus begins hy first applying the initial labeling
function, just as would be the case in running a
complete sequence. Following this, the learning
procedurc needs to consider every rule that can possibly
apply at this juncture, which itself is a function of the
rule schema laaaguage. For each such applicable rule *;
the learner considers the possible improvement in
phrase labeling conferred by r in the current state. The
rule that most reduces the residual error in the training
data is selected as the next rule in the sequence.

This generate-and-test cycle is contimmd until a
stopping criterion is reached, which is usually taken as
the point where performance improvement falls below a
threshold, or ceases altogether. Other a[ternativcs

include setting a strict limit on the number of rules
learned, or cross-testing the performance improvement
of a rule on a corpus distinct from the training set.

The rule search space
The language of phrase rules supports a large number of
possible rules that the phrase rule learner might need to
consider at any one time. Take one of our smallcr
training sets, in which there arc ~9I sentences consisting
of 6,8IZ word tokens, with z,o77 unique word types.
(ionsidcring only lexical rules (those that look for
particular words), this means that there are as many as
I8,693 possibh', unary lexical rules (%077 x 9 rule
schemata), mad IZ,941,787 binat T lexical rules (?.,o77 z x
3 simple bigram rule schemata) in the search space.
However, by inverting the process, and tabulating only
those lexical contexts that actually appear in the
training texts, this search spacc is reduced to z,:.I 9
unal T lcxical rules and 854 binary lexical rules.

There are two substantively different kinds of rules
to acquire: rules that only change the label of a phrase,
and those that change the boundary of a phrase. The
latter prcsent a problem [:or accurately estimating the
improvement of a rule, since sometimes the boundary
realignment necessary to fix a phrase problem exceeds
the amount by which a single rule can move a
boundary--namely, two lexemcs. For thcse phrascs to
be fixed there will have to be more than one rule to
nudge the appropriate phrase botmdaries over. We
handle this through a heuristic scoring ftmction that
estimates the wtluc of moving a boundary in such cases.

Error estimation methods
A rule that fixes a problem in some cases might well
introduce errors in some other cases. This kind of over-
generalization can occur early in the learning process, as
new rules need only improve over an approximate
initial labcting. The extent to which a candidate rule is
rewarded for its specificity and penalized for its over-
generalization can have a strong effect on the final
performance of the rule sequences discovered.

We explored the use of three different types of
scoring metrics for use in selecting the "best" of the
competing rules to add to the sequence. Initially we
made use of a simple arithmetic difference metric, y - s,
wimrc y (for yield) is the number of additional correct
phrase labelings that would be introduced if a rule were
to be added to the rule sequence, and s (for sacrifice) is
the number of new mistaken labelings that would bc
introduced by the addition of the rule. '['his is Brill's
original metric, but note that it does not differentiate
between rules whose overall improvement is identical,
but whose rate of over-generalization is not. For
example, a rule whose yield is IOO and sacrifice is 7 ° is
treated as equally valuable as one whose yield is only 3 °
but which introduces uo overgeneralization at all
(sacrifice = o). This can lead to the selection of low-
precision rules, and while small numbers of precision
errors may be patched, wholesale precision problems
make subsequent improvement more difficult.

2 7 7

Scoring metric Training Test
Recall Precision P&R Recall Precision P&R

Arithmetic (y-s) 88.8 8I.z 8+8 87.2 79.0 82. 9
Log likelihood 81.9 85.7 78.4 8t.o 73.4 77.0
F measure, ~:o.8 86. 3 8z. 9 84. 5 85.0 8I. 5 83.z

Table 2: Comparative contributions of three scoring measures after 100 learning epochs.
(Training on i495 sentences from the MUc-6 named entities task).

The next measure we investigated was one
advocated by Dunning (I993) which uses a log like-
lihood measure for estimating the significance of rare
events in small populations. This measure did not
improve predsion or recall in the learned sequences.

The third scoring measure we investigated was the
F-measure (VanRijsbergen 1979), which was introduced
in information retrieval to compute a weighted combi-
nation of recall and precision. The F-measure is also
used extensively in evaluating information extraction
systems at MUG (Chinchor I995). It is defined as:

F = (32 + 1)PR
(3 2 +P)R

This measure is conservative in the sense that its
value is closer to precision, p, or recall, R, depending on
which is lower. By manipulating the ~ paraaneter one is
able to control for the relative importance of recall or
precision. Preliminary exploration shows that a ~ of 0.8
seems to boost precision with no significant loss in the
long-term recall or F-measure of the rule sequences.

Table z summariz~es the contributions of these three
error measures towards learning rule sequences for the
MUC-6 named entities task (for task details, see below).

Evaluation
We have applied this rule sequence approach to a
variety of realistic tasks. These largely arose as part of
our information extraction efforts, and have been either
directly or indirecdy evaluated in the context of two
evaluation conferences: MUC-6 and Mffl' (for Multi-
lingual Entity Tagging). In this paper, we will
primarily report on evaluation conducted in the context
of the MuC-6 named entities task (Sundheim I995). 1

The named entities task attempts to measure the
ability to identify the basic building blocks of most
newswire analysis applications, e.g., named entities such
as persons, organizations, and geographical locations.
Also measured is the identification of some numeric
expressions (money and percentiles), dates, and times.
This task has become a classic application for finite-
state pre-parsers, and indeed our work was in part
motivated by the success that has been achieved by such
systems in past information extraction evaluations.

We have applied a variety of techniques towards this
task. The easy cases of dates mid times are identified by
a separate pre-processor, leaving numeric expressions

1We have also measured performance on several syntactic
constructs, (e.g., the so-called noun group), and on semantic
subgrammars, (e.o<, person-title-organization appositions).

(also easy) and "proper names" (the interesting hard
part) to be treated by the rule sequence processor.

Hand-crafted Rules
We first approached this task as an engineering
problem, and wrote a rule sequence by hand to identify
these named entities. The rule sequence comprises I45
named-entity rules, Iz rules for expressions of money
and percentiles, and 6I rules for geographical comple-
ments (as in "Hyundai of Canada"). In addition, the
rules refer to a few morphological predicates and some
short word lists--one such list, for example lists words
designating business subsidiaries, e.g., "unit". The
initial phrase labeling for the proper name cases is
implemented by accumulating runs of NNP- and NNeS-
tagged lexemes. A similar strategy is used for number
expressions, using numeric tags.

The performance of our hand-crafted rule sequence
is summarized in Table 3, below, which gives compo-
nent scores on the Mt3c-6 blind test set. The most
interesting measures are those for the difficult proper
name cases. Our performance here is high, especially
for person names. Our lowest score is on organizational
names, but note that the system lacks any extensive
organization name list. Aside from ten hard-wired
names, all names are found from first principles. On
the easy numeric expressions, performancc is ahnost
perfect--precision appears poor for percentiles, but this
is due to an artifact of the testing procedure. 2

Machine-crafted Rules
To evaluate the performance of our learning algorithm,
we at tempted to reproduce substantially the same
environment as is used for the hand-crafted rules. The
learner had access to the same predefined word lists,
including the less-than-perfect TU'S'tmR gazetteer.
Further, we only acquired rules for the hardest cases,
namely the person, organization, and location phrases.
We cut offrule acquisition after the iooth rule.

The results for this acquired rule set are surprisingly
encouraging. As Table 3 shows, these rules achieved
higher recall on the very hardest phrase type
(organization) than their hand-crafted counterparts,
albeit at a cost in precision. Overall, however, the
machine-crafted rules still lag behind. When we
incorporated them into our information extraction

2Our performance vis-a-vis other MUC-6 participants
placed us in the top third of participating systems. Except for
the absolute highest performer, all these top-tercile systems
were statistically not distinguishable from each other.

278

Phrase type N

Organization 419
Person 34g
l,ocation m 9
Money 74
Percent ~6
All phrases zt5 o

Hand-crafted rules
Recall Precision

85 87
94 94
94 87
99 97

tO0 6 7

9 ~ 9 z
Overall t,'= 91.2

Machine-learned rules
Recall Preckion

87 79
78 79
D 68

88 83
Overall F= 85.2

Table 3: Performance on the MUC-6 named entities blind tcst.

system, the machinc-learned rules achieved an overall
named cntitics F-score of 85.2, compared to the 91.2
achieved by the hand-crafted rttlcs, it should be noted,
however, that the system loaded with these machine-
crafted rules still outpcrfimned about a third of systems
participating in the MUc-6 evaluation.

Mul t i l ingual evaluation (MH')
After the Muc-6 evahtation, the namcd entity task was
extended in various ways to make it more applicable
cross-linguistically. Predictably, this was followed by a
new round of evaluations: Mv:r. The target languages in
tltis case were Spanish, Chinese, and Japanese. We
applied our approach m all three.

The Mt{'l' cvahtation rcquircd actual system perfor-
mance resuhs to be kept strictly ,-monymotts, which
precludes our reporting here any scores as specific as we
have cited for English. What wc may legitimately
report, however, is that wc have effectively reproduced
or bettered our hand-engineered English results in the
Spanish mid Japanese t~ks, despite having no native
speakers of either language (and only the most rudi-
mentary reading sldlls in Kanji). In both cases, we were
d~le to exploit part-of-speech tagging and some existing
word lists fbr person names and locations.

For Chinese, although we had available a word
segmentcr, we had neither part-o6speech tagger, nor
word lists, nor even the elementary reading skills we
had for Japanese. As a result, we had to rely ahnost
entirely on the learning procedure to acquire any rule
sequences. 1)cspitc thcse impediments, wc cmnc dose
to reproducing our results with thc English machinc-
lcarned named entidcs rule sequcncc.

Discussion
What is most encouraging about this approach is how
well it performs on so many dimensions. We have only
reported here on nature-finding tasks, but early invcsti-
gations in other areas arc encouraging as well. With
rule sequences that parse noun groups, for instance, we
hope to reproduce the utility of other rulc-scqucnce
approaches to text chunking (Ramshaw & Marcus
I995). We are also excited by the promise of the
learning proccdure, not just because it learns good
rules, but dso because the rules it learns can be freely
intermixed with hand-cngineered rules. This mixed-
mode acquisition is unique among natural language

learning proccdurcs, mid we put it to good use in
building our multilingual name-tagging sequences.

l)espitc rcsuhs that comparc favorably to those of
more mature systems, this work is still in its infancy.
We still have much to explore, especially with the
learning procedure, lndccd, while the lcamcr induces
/'tile sequences that pcrfi~rm well in tim aggrcgatc,
individual rules clearly show their mechanical genesis.
For instm~cc, whcn the learner must break tics between
identically-scoring rule candidates, it often does so in
lhlguistically clumsy ways. At times, the learner may
acquire a good contextual pattern, but may bc unable to
extend it to closcly-related cases that would occur
naturally m a linguist.

We belicve thcsc problems arc solvable in the ncar~
term, and wc have partial solutions in place already. As
our tcclmiques mature, this validates not only ottr
particular approach Io phrase-finding, but the whole
field of language processing through rule sequences.

References
Aberdeen, J., Burger, J., Day, D., l l irsehman,].,

Robinson, P., & Vilain, M. t995. "Description of the
Alembic" system used for MIJC-6". Ill Prcdgs. of'MUC-6,
(]olumbia MD.

Appch, I). E., t tobbs, J. R., Bear, J., Israel, D., &
Tyson, M. I993. "I;AsTUS: A finite-state processor for
information extraction fi'om rcd-world text." in Prcdgs.
q ' IJCAt-93, Chantb&y, France.

Brill, E. 093. A corpus-based approach m language
learning. 1)octoral 1)issertation, Univ. of Pennsylvania.

Chinchor, N. 094 . "M uc- 5 evaluation metrics". In
Prcdgs. t~'MUC-5, Baltimore, Ml3.

Dunning, T. 0 9 3 . "Accurate methods for the
statistics of surprise and coincidence". Comput. Ling 19 .

Grishmml, R. 095- "The NVu system fin" MtJC-6, or
where's the syntax?" Ill Prcdgs. of MOO-6, Cohunbia Ml3.

Jacobs, P. S., Krupka, G., & R a u , L. 199i. "I.exico-
semantic pattern-matching as a companion m parsing".
in Prcdgs. of the Fourth DaUeA Speech and Nat. Lang.
Workshop, San Marco, CA: Morgan Kaufinan.

Ramshaw, I.. c/r Marcus, M. 095 . "Text chunking
using transformation-based learning". [n Preys. of 3rd
Wkshp on Very Large Corpora, (;ambridge, MA.

Sundhcim, B. 095. "Named entity task definition".
In Prcdgs. e~MUC-6, Columbia MD.

Van Rijsbergen, (' .J. I979. Information Retrieval.
London: Buttcrsworth.

2 7 9

