Extended Dependency Structures and their Formal Interpretation

Marc Dymetman

Max Copperman

Rank Xcrox Rescarch Centre
6, chemin de Maupertuis, Meylan 38240, France
{dymetman, copperman}@xerox. fr

Abstract

We describe two “semantically-oriented”
dependency-structure formalisms, U-forms
and S-forms. U-forms have been previously
used in machine translation as interlingual
representations, but without being provided
with a formal interpretation. S-forms, which
we introduce in this paper, are a scoped ver-
sion of U-forms, and we define a composi-
tional semantics mechanism for them. Two
types of semantic composition are basic:
complement incorporation and modifier in-
corporation. Binding of variables is done at
the titne of incorporation, permitting much
{lexibility in composition order and a simple
account of the scmantic effects of permuting
several incorporations.

1 INTRODUCTION

U-forms (Unscoped dependency form) are a represen-
tation formalism which has been used (under a differ-
ent naine) as the basis for the intermediary language in
the machine translation system CRITTER ([sabelle et
al., 1988; Dymetman, 1992, Isabelle, 1995). U-forms
account tor two central aspects of linguistic structure:
predicate-argument relations and headedncess (comple-
ments vs. modifiers), and so form a middle ground be-
tween a “semantic” and a “syntactic” representation.
‘This, combined with their formal simplicity, accounts
for much of the popularity of U-forms or related for-
malisms — such as the semantic and deep syntactic
representations used in Mel’cuk’s Meaning-Text The-
ory (Mel’¢uk, 1981) — in applications such as ma-
chine translation and text generation.

Although U-forms are strongly
“meaning-oriented”, their interpretation is never made
explicit but is left to the computational linguist’s intu-
ition. This has two consequences:

e Operations performed on U-forms and related
formalisms cannot be controlled for semantic va-

255

lidity. So, for instance, it is common practice to
define graph rewriting rules on these representa-
tions which are belicved to produce semantically
equivalent expressions. Without the check of for-
mal interpretation, these rules may work in some
cases, but produce wrong results in other cases.
So for instance, a rule rewriting (the representa-
tion of) “John’s salary is $25000 higher this year
than last year™ into “John’s salary was $25000
lower last year than this year” would seem in-
tuitively valid until one considered the case of
“John’s salacy is 50% higher this year than last
year”, where it does not work any more.

o U-forms are not directly adapted to applications
putting ecmphasis on denotational semantics and
formal reasoning, like for instance some natural
language gencration systems in well-formalized
domains (Fluang and Fiedler, 1995; Ranta, 1995;
.evine, 1990), see also (Alshawi, 1992).

A basic obstacle to providing a formal interpretation
for U-forms is the fact that these representations leave
the relative scopes of dependents implicit. The S-form
representation (Scoped dependency form), which we
introduce here, is an extension of U-form notation
which makes scope explicit, by allowing dependents
to be ordered relative to one another. Dependents
(complements or modifiers) can move freely relative
to one another in the S-form structure, under certain
binding-site constraints.

We then go on to provide a compositional interpre-
tation mechanism for S-forms. Free variables (gener-
alizations of the argy, argy, arg; annotations of stan-
dard dependency formalisms) are used to connect an
argument to its binding-site inside a predicate. Bind-
ing of variables is done at the time of incorporation,
permitting much flexibility in composition order and
a simple account of the semantic effects of permuting
several incorporations. This liberal use of free vaci-
ables is contrasted to the approach of Montague gram-
mar, where the requirement that semantic expressions
entering into a composition are closed (do not contain

free variables) leads to a certain rigidity in the order of
composition.

Two kinds ot semantic composition are basic: com-
plement incorporation. where the complement fills a
semantic role inside the head, and modifier incorpo-
ration, where the head fills a semantic role inside
the modifier. The mechanism of actually deriving
the semantic translation of the composition from the
semantic translations of its two components is han-
dled through a list of type-sensitive composition rules,
which determine the action to be taken on the basis
of the component types. The flexibility of the ap-
proach is illustrated on an example involving proper
names. quantifiecd noun phrases, adverbials and rela-
tive clauses.

2 U-FORMS

Formally. U-forms are unordered labelled n-ary trees
such as the one shown in Fig. 1, cotresponding to the
sentence: (S1) “John does not like every woman hated
by Peter™.

like
TN
) \\ ~_ .
v 2 \ \\\\
e \ S
Jjohn W})IUU}I not
det \)
// N
every hate
/
peter

Figure 1: A U-form.

The edge labels are members of the set {det, 1, 2, 3,
e -10-20 230 1}, and correspond either to determin-
ers (label “det’) or to argument positions relative to a
predicate node (other labels).

The U-form of Fig. 1 expresses three predicate-
argument relations among the nodes:

like not hate

LN LN

John Woman like peter WO
Figure 2: Predicate-argument relations in a U-form.
In order to extract the predicate-argument relations

encoded into the U-form, one needs to apply the tol-
lowing “rule”. Let’s notate (A,L.B) an edge of the

256

tree, where A is the upper vertex. B the lTower ver-
tex, and L the edge label. With each node A in the
tree, onc associates its set of predication edges, that
is the set PA 4 of edges of the form (A, +i.X) or (X.-
1.A). One then considers the predication tree 1 1 made
by forming the collection of edges (A1..X) where 1.
is positive and either (A.L,X) or (X.inverse(L).A) is
a predication edge of A. Each predication tree de-
notes a predicate-areument relation among U-form
nodes. So for instance. the tree T, is formed by
forming the edges (hate.1.peter) and (hate.2.woman),
and this corresponds to the predicate-argument rela-
tion hate(peter.woman).

WELL-FORMEDNESS CONDITIONS ON U-
FORMS In order to be well-formed. a U-form UF
has to respect the following condition. For any node
A of UT'. the predication tree T4 must be such that:

L. [No holes condition| If (A.L.B) is an edge of T,
then for any number j between I and i. Ty must
contain a node of form (Aj).C).

2. [No repetition condition) No two edges of Ty can
have the same ltabel .

MORE ON U-FORMS Negative labels are a device
which permits to reconcile the notation of predicate-
areument structure with the notation of syntactic de-
pendency. So. in the U-form considered above. while
“semantically” the ‘woman’ node is an argument of
the “hate’ node. “syntactically” the “hate’ node is a de-
pendent of the *woman’ node. Cases such as this one.
where there is a conflict between predicate-argument
directionality and dependency directionality are no-
tated in the U-form through negative labels. and cor-
respond to modifiers. Cases where the directionality is
parallel correspond to complements.

When used as interlingual representations in ma-
chine translation systems, U-forms have several ad-
vantages. ‘The first is that they neutralize certain de-
tails of syntactic structure that do not carry easily be-
tween languages. For instance. French and English ex-
press negation in syntactically different ways: “Rachel
does not like Claude™ vs. “Rachel n"aime pas Claude™:
this difference is neutralized in the U-form representa-
tion, for both negations are expressed through a single
negation predicate in the U-form.

A second advantage is that they represent a good
compromise between paraphrasing potential and se-
mantic precision. So. for instance, in the CRITTER
system. the three sentences:

John does not like every woman that Peter hates

John does not like every woman hated by Peter
Every woman whom Peter hates is not liked by John

would be assigned the U-form of Iig. 1. On the other
hand, the sentence:

Peter hates every woman that John does not like

would be assigned the U-form of Fig. 3, which is
different from the previous U-form, although the
predicate-argument relations are exactly the same in
both cases.

hate
e
I \2
e N
peter Wordn
™ .
det _2
.
every like
/N
John not

Figure 3: A different U-form.

One can take advantage of such paraphrasing poten-
tial in certain cases of syntactic divergence between
languages. For instance. French does not have a syn-
tactic equivalent 1o the dative-movement + passive
configuration ol

Rachel was given a book by Claude

so that a dircct syntactic translation is not possible.
However, at the level of U-form, this sentence is equiv-
alent to the I'rench sentence:

Claude a donné un livre a Rachel

and this equivalence can be exploited to provide a
translation ol the first sentence.

One serious problem with U-forms, however, is that
they do not have unambiguous readings in cases where
the relative scopes of constituents can result in differ-
cnt semantic interpretations. So, in the case of sen-
tence (S1). the two readings: “it is not the case that
John likes every woman hated by Peter”, and “John
disfikes every woman that Peter hates™ are not distin-
cuished by the U-form ot Fig, 1,

3 S-FORMS

INTRODUCING SCOPE
represented in Fig. 4.

The only ditference between this tree and the U-
form of I'ig. 1 is thut the nodes of our new tree are
considered ordered whereas they were considered un-
ordered in the U-form. The convention is now that
dependent sister nodes are interpreted as having dif-
ferent scopes. with narrower scope cotresponding to a
position more to the right.

The trec of Fig. 4 can be glossed in the following
wiy:

Let's consider the tree

257

like
/ e ™~ 2
pd - \\\
e .
John
ROl WO
det 2
every hate
/
peter

Figure 4 Introducing scope by ordering the nodes.

John, itis not the case that he likes every woman that Pe-

ter hates

[f we consider the six permutations of the nodes un-
der like. we can produce six different scopings. Be-
cause John refers to an individual. nota quantiticd NP,
these six permutations really correspond to only the
two interpretations given above. The tree of Fig. 4
corresponds to the first of these interpretations. which
is the preferred interpretation for sentence (S1).

Our discussion of scope being represented by node
order has been informal so far. In order to make it
formal, we need to encode our representation into a
binary-tree format on which a compositional seman-
tics can be defined. To do that. ina first step we replace
the argument numbers of I'ig. 4 by explicit areument
names; 1n a second step we encode the resulting or-
dered n-ary tree into a binary format which makes ex-
plicit the order in which dependents are incorporated
into their head.

S-IF'ORMS Consider the n-avy tree of Fig. -+ For any
node A in this tree, take the set of predication edges
associated with A, that is the set of edges (A+i.B;)
and (B;,-1,A). By renaming cach such node A into
A(Xy...X) where X ,..,X,, are fresh identifiers. and
by renaming each such label +i (resp. -i) into +X;
(resp. -X;). one obtains a new trec where argument
numbers have been replaced by argument names. For
instance the previous representation now becomes the
tree of Fig. 5.

This representation is called a scoped dependency

SJorm, or S-form.

BINARY TREE ENCODING OF S-FORMS: B-
FORMS In order to encode the ordered n-ary tree
into a binary tree. we need to apply recursively the
transformation illustrated in Fig. 6, which consists in
forming a “head-line”, projecting in a north-west di-
rection from the head H, and in “attaching” to this line
“dependent-lines™ Dy, Dy, ..., D,,, with Dy the right-

like(11,12)

+1 \ +2
-ni
Jjohn not(nl) wonan
V \hZ
every hate(hl,h2)

L +hi

peter

Figure 5: An S-form.

most dependent (narrowest scope) and D, the leftmost
dependent (widest scope) in the original tree.

| /// ‘\\\
H /“// N
PR = W ‘/\,\
In - 1 2\ ~. L1 Dn N
Py A . o N
- \ 1.2~ AN
Dn D2 DI TV
e A ,
D2 yd AN
e .
D1 H

Figure 6: The transformation between S-forms and B-
forms.

Applying this encoding to our example, we obtain
the binary tree of Fig. 7, which is called a B-form.

The B-form makes explicit the order of incorpora-
tion of dependents into the head-line. By permuting
several dependent-lines along their head-line, this in-
corporation order is changed and gives rise to different
scopings.

S-forms and B-forms are completely equivalent
representations. Clearly, the encoding, called the §-
form/B-form encoding, which has just been defined is
reversible. The S-form is more compact and makes the
dependency relations more conspicuous, whereas the
B-form makes the compositionality more explicit.

WELL-FORMEDNESS CONDITIONS ON B-
FORMS AND S-FORMS Starting from the U-form
and enriching it, we have informally introduced the
notions of S-form and B-form. Wec now define them
formally.

We start by giving a recursive definition of IBFs (in-
complete B-forms), that is, B-forms which may con-
tain unresolved free variables. We use the notation
((D,Label),H) the labelled binary tree obtained by tak-
ing H as the right subtree, D as the left subtree, and
by labelling the left edge with Label. We also use the
notation fv(IBF) for the set of the free variables in IBF.

DEFINITION OF INCOMPLETE B-FORMS

258

John

not(nl)

like(l1,12)

every

wonian

peter hate(hl,h2)

Figure 7: A B-form.

1. A node N of the form Pred(x1,..,xn) is an IBF
with the set of free variables fv(N) = {x1,..,xn};

2. If D and H are [BFs, fv(D) and fv(H) are disjoint,
and x & fv(H) then H’ =((DD,+x),H) is an IBF with
V(") = fv(D) U fv(H) \ {x};

3. If D and H are IBFs, fv(D) and fv(H) are disjoint,
and x & fv(D) then H’=((D,-x),H) is an IBF with
fv(H’) = tv(D)yU fv(H) \ {x};

4. If D and H are IBFs, and fv(D) and fv(H) are dis-
joint, then H’=((D,det),H) is an IBF with fv(H")
= fv(D) U fv(H).

DEFINITION OF B-FORMS A B-formis an IBI
with an empty set of free variables.

'The notion of S-form can now be defined through
the use of the S-form/B-form encoding.

DEFINITION OF S-FORMS A S-formis an or-
dered labelled n-ary tree which can be obtained from a
B-form through the inverse application of the S-form/B-
form encoding,.

It can be casily verified that the representation of
Fig. 7 is indeed a B-form, and, consequently, the rep-
resentation of Fig. 5 is a valid S-form. More generally,
it can be easily verified that enriching a U-form by
ordering its nodes, and then replacing argument vari-
ables by argument names always results in a valid S-
form.’

UThe converse is not true: not all S-forms can be ob-
tained in this way {rom a U-form. For instance, there exists a
S-form corresponding to the preferred reading for “Fido vis-
ited most trashcans on every strect”, which has “cvery street”

4 THE INTERPRETATION PROCESS

We now describe the interpretation process on B-forms,

Interpretation procecds by propagating semantic trans-
lations and their types bottom-up.

The first step consists in typing the leaves of the
tree, while keeping track of the types of free variables,
as in Fig. 8.

+/ 1 - .

‘_/) P
e e AN
John: e N L .
S N
nl:t N
} N

- I:
not{nl): t e

~ ™ ‘\‘\. (U, 12:e}

of .
det - N tike(I1.12): 1
- N
-~ 4z
every: (¢—sl)=+{e~t)—t o N
e AN
P .
{ AN
NN N
- N woman: -
e o {hie,h2ic}
peler: e hate(hLh2): t
Figure 8: Typing the leaves. The free variables and
their types are indicated in brackets.

The types given to the leaves of the tree are the usual
functional types formed starting with ¢ (entities) and t
(truth values). In the case where the leaf entity con-
tains free variable acguments, the types of these free
variables are indicated, and the type of the leal takes
into account the fact that these free variables have al-
ready been included in the functional torm of the leaf.
Thus hate(h1,h2), which can be glossed as: “hl hates
h2”, is given type t, while hl and h2 are constrained to
be free variables of type ¢.

VARIABLE-BINDING RULES According to the
well-formedness conditions for B-forms, a comple-
ment incorporation ((D,+x),H) is only possible when
H contains x among its free variables; the “syntac-
tic dependent” D is seen as semantically “filling” the
place that x occupies in the “syntactic head™ IL. In the
same way, a modifier incorporation ((D,-x),H) is only
possible when D contains x among its free variables;
outscoping “most trashcans”, and which is not obtained from
a U-lorm in this simple way. However, there exists & map-
ping from S-forms to U-lorms, the scope-forgetting map-
ping, which permits to define equivalence classes among S-
forms “sharing” the same U-form. This relation between S-
forms and U-~forms can be used to give a (non-deterministic)
formal interpretation to U-forms, by considering the inter-
pretations of the various S-forms associated with it (sce the
technical report companion to this paper.)

259

in this case the “syntactic” head Il is seen as seman-
tically “filling” the place that x occupies in the “syn-
tactic dependent” D. (This ditference corresponds to
the opposition which is sometimes made between syn-
tactic and semantic heads and dependents: comple-
ments are dependents both syntactically and semanti-
cally, while modificrs are syntactically dependents but
semantically heads.)

In order to make formal sense of the informal no-
tion “filling the place of x in A" (where the notation
A, means that A contains the free variable x), we in-
troduce the variable-binding rules of Fig. 9.

complement modifier

determiner

incorporation incorporation incorporation

/ \ /N\ "t"/
'/ H, / \ /
|

/\ /
I det [/
/ / \ /

. / e

Iy AxH, Ax.D, H' 84 H

Figure 9: Variable-binding rules. D’ and H’* corre-
spond to the semantic translation of the subtrees rooted
in D and H respectively.

These rules tell us how to “get rid” of the tree vari-
able being bound during complement or modifier in-
corporation, namely by forming the abstraction Ax.A
before actually performing the semantic composition
between the dependent and the head. For complete-
ness, determiner incorporation, which does not involve
variable binding, is given along with complement and
modifier incorporation.

Two things should be noted about this way of “de-
laying” variable-binding until the relevant dependent
is incorporated:

e Suppose that we had bound the variables appear-
ing in the head predicate locally, that is to say,
that, in the style of Montague grammar (Gamut,
1991), we had written Al1211.1ike(11,12) instead of
like(11,12), and so forth, in Fig. 7. Then each in-
corporation of a dependent into the *“head-line”
would have changed the type of the head; thus
‘not” would have had to combine either with a
head of type e—e—t, or e—t, or t, depending on
its scope relative to the other dependents; with
the scheme adopted here, the type of the head re-
mains invariant along the head-line;

o Under the same hypothesis, the incorporation of
the second argument first and of the first argu-
ment second would have been much simpler than

the reverse incorporation order. and some mech-
anism would have had to be found to distinguish
the two orders. Then permuting the relative order
of two dependents along the head-line — corre-
sponding to ditferent scope possibilitics — would
have had complex computational consequences.
In the scheme adopted here. these cases are han-
dled in a uniform way.

The way free variables are used in our scheme is
somewhat reminiscent of the use of svntactic variables
he,, in Montague grammar. Montague grammar has
the general requirement that only closed lambda-terms
(lambda terms containing only bound variables) are
composed together. This requirement. however. is dif-
ficult to reconcile with the flexibility needed for han-
dling quantifier scope ambiguities. Syntactic variables
are a device which permit to “quantify into” clauses
at an arbitrary time, bypassing the normal functional
compositiont of lambda-terms. which requires a strict
management of incorporation order. In our scheme,.
by contrast. this sccondary mechanism of Montaguc
erammar is graduated to a central position. Compo-
sition is always done between two lambda-terms one
of which at least contains a free vartable which gets
bound at the time of incorporation.

TYPE SENSITIVE COMPOSITION RULES If

we apply the variable-binding rules to the subtree
PH = ((peter.-h1).hate(h1.h2)) of Fig. 8. we find that
we must compose the semantic translations peter and
Ahlhatethl.h2) in “complement™ (+) mode. The first

function is of type e, while the sccond function is of

type e—t (for hate(h1,h2) is of type t. and h1 of type
c).

How do we compose two such functions? A first so-
lution. in the spirit of Lambcek calculus (Morrill. 1994)
or of lincar logic (Dalrymple et al.. 1995), would be
to define a general computational mechanism which
would be able. through a systematic discipline of type-
changing operations. to “adapt” automatically to the
types of the functions undergoing composition.

Such mechanisms arc powerful, but they tend to be
algorithmically complex, to be non-local. and also to
eive rise to spurious ambiguities (superficial variations
in the proof process which do not correspond to differ-
ent semantic readings).

Here, we will prefer to use a less general mecha-
nism. but one which has two advantages. First, it is
local, simple, and efficient. Second, it is flexible and
can be extended to handle the semantics of sentences
extracted from a real corpus of texts, which it might
be perilous to constrain too strongly from the start.

The mechanism is the following. We cstablish a
list of acceptable “type-sensitive composition rules”,
which tell us how to compose two functions according

260

to their types. Such a (provisory) list is given below:”

{Cl) composition(+, L:T->S, R:T, L(R):3)
{C2) composition{+, L:e, R:e->t, R(L):t}
(C3) composition{det, L:T->S, R:T, L(R}:
(C4) composition{-, L:T-»>S, R:T, L(R):S
{(C5) composition({-, L:e->t, R:e->t,
AX . R(X)AL(X) :e->t)

C

The entrics in this Tist have the tollowing format.
The first argument indicates the type of composition
"+ for complement incorporation. "-" for modifier in-
corporation. “det” for determiner incorporation): the
sccond arcument is of the form Left:l.eftType. where
Left is the lelt translation entering the composition,
and Leftlype is its type: similarly. the second argu-
ment Right:RightType corresponds to the right sub-
tree entering the composition: finally the third argu-
ment gives the result Result:ResultType of the compo-
sition. where the notation A(B) has been used to indi-
cate standard functional application of function A on
areument B. Uppercase letters indicate unifiable vari-
ables.

[t may be remarked that if, in these rules. we neglect
the functions themselves (Left. Right. Result) and con-
centrate on their types (LeftType. RightType. Result-
Type). then the rules can be seen as imposing con-
straints on what can count as validly typed trees: these
constraints can flow from mother to daugthers as well
as in the opposite direction. Thus. through these rules.
knowing that the head-line functions projecting front a
verbal head must be of type timposes some constraints
on what are the possible types for the dependents: this
can be useful in particular for constraining the types of
semantically ambiguous lexical elements.

If we now go back to our example. we have to com-
pose in complement mode (+) the function peter, of
type ¢. with the function Ah1.hate(h1.h2). of type e—t.
Consulting the list of composition rules. we see that
the only applicable rule is (C2). and that the result is
AhLhate(h1.h2) (peter) = hate(peter.h2), of type 1.

Now that we have the semantic translation
hate(peter.h2) for the subtree PH. we can compute the
translation for the subtree ((PH.-h2).woman). By the
variable-binding rule for modifiers. we need first to
form the abstraction Ah2.hate(peter.h2). of type e—t.
and compose it in *-" mode with woman. of type e—t.
Consulting the list of composition rules. we find that
the only applicable rule is (CS). and that the result of
this application is Ah2.woman(h2)Ahate(peter,h2) ?

“Itis a matter for further rescarch to propose principles
for producing such rules. Some of them can be seen as spe-
cial cases of general type-raising principles. others (such as
C5) arc necessary if one accepts that the type of intersective
adjectives and restrictive relative clauses has to be ¢-——L

“The rule (C5) differs from the previous rules in the list
in that it introduces the logical connective A which does not
originate in functional material already present in either of
the arguments. A possible justification {or the rule. however,

noltevervt AR wonanth2 s haterpete th2) N2 iketjohn 12 1) 1

A\
AN
e .
vy o2

e />(§\

Sirv(/\/zz.n-mnmuI:Z)/\/m/c(/w»':hZ),,\/2‘Iikc(/l.l2); /

/ 7

B //

john: ¢ l

nolint): 1

4-/2//
rd

/

s rolfeverst A 2acomanth2)nhate(petesh2) N2 ke 12)0 1

.
AN

A AL evervi N2 womanth2 ishatetpeterh2).0): (e -ty 1

//('}\

det

N

liket11.42): 1

/l / Ah2womanth2)nhatetpeterch2): e- -t
e -h2 ('5\

eVery (e f)—(e--1)- -1 / .

/

/ hatetpeterh2j t
wy' 2
e
e N

peter: e hateth . h2): ¢

Figure 10: B-form interpretation,
quanitrestriction.scope).

For ‘every'.

The process of semantic translation proceeds in this
way bottom-up on the B-form. The end resultis shown
in Fig. 10,

Acknowledgments
Thanks to Alain Lecomte and Frédérique Segond
for comments and discussions,

References

Hivan Alshawi. editor. 19920 The Core Language Fngine.
The MIT Press.

FoBarwise and R. Cooper. 1981, Generalized quantifiers
and natural language. Linguistics and Philosopliy. 1.

Mary Dalrymple. John Lamping, Femando C. No Pereira.
and Vijay Saraswat. 1995 A deductive account of quantili-
cation in LI'G. In Makoto Kanazawa, Christopher J. Piidn.,
and Henriete de Swart, editors, Quantifiers, Deduction. and
Context. Center tor the Study of Language and Information.
Stanford. California.

Mure Dymetman. 19920 Transformations de grammaires
logiques et réversibilité en Traduction Automatique. These
18 that it allows conlerring the “natural” type ¢+t 1o an (in-
tersective) adjective such as “black™, or for a relative mod-
ier such as “hated by peter”. and also that there does not
seem o exist any good reason why type composition should
be restricted o "functionally matching™ types only. Seman-
tic type coercions abound in natural fanguage. as in the case
of “glass elephant™. “short win™, ete.. and these require com-
plex composition aperations on the elements combined.

261

\\

N

wornan: e—1

we make use ol the generalized quantitier notation

d' B Université Joseph Fourier (Grenoble 1), Grenoble.
France.

Lo B Gamute 1991 Logic, Language. and Meaning. vol-
unie 2: Intensional Logic and Logical Gramnar. The Uni-
versity ol Chicago Press. Chicago.

Xiaorong Huang and Armin Fiedler, 1995, Generating mul-
tilingual proofs. In Richard Kittredge. editor. [7CAT Work-
shop on Multitingual Text Generation, pages S0 63, August.

Pierre Isabelle. Mare Dymetman. and Llliot Macklovich,
1988, CRITTLER: a translation system for agriculural mar-
ket reports. In Proceedings of the 12th International Con-

Jference on Computational Linguistics. pages 261 266, Bu-

dapest, August.

Pierre [sabelle. 1995, Un maodele linguistique calculable
pourla traduction awtomatique bidirectionnelle. Ph.D. the-
sis. Université de Monuéal.

John Levine. 1990, Pragma a flexible bidirectional dia-
logue system. In Proceedings, Eight National Conference
on Artificial Intelligence. pages 96469,

[gor A. Mcel'cuk. 1987, Dependency Synrax: Theory and
Practice. State University ol New York Press.

[eor Mel'¢uk. 1981, Mcaning-text models. Journal of An-
thropology, 10:27-62.

Glyn V. Morrill, 1994, Tvpe Logical Granmmar: Categorial
Logic of Signs. Kluwer Academic Publishers. Dordrecht.
Holland.

Aarme Ranta. 1995, Type Theoretical Grammar. Oxford
University Press.

