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A b s t r a c t  

Probabilistic models have been widely 
used for natural language processing. 
Part-of-speech tagging, which assigns 
the most likely tag to each word in a 
given sentence, is one. of tire problems 
which can be solved by statisticM ap- 
proach. Many researchers haw~ tried 
to solve the problem by hidden Marker 
model (HMM), which is well known as 
one of the statistical models. But it 
has many difficulties: integrating hetero- 
geneous information, coping with data 
sparseness prohlem, and adapting to new 
environments. In this paper, we pro- 
pose a Markov radom field (MRF) model 
based approach to the tagging problem. 
The MRF provides the base frame to 
combine various statistical information 
with maximum entropy (ME) method. 
As Gibbs distribution can be used to 
describe a posteriori probability of tag- 
ging, we use it in ma.ximum a posteri- 
ori (MAP) estimation of optimizing pro- 
cess. Besides, several tagging models are 
developed to show the effect of adding 
information. Experimental results show 
that the performance of the tagger gets 
improved as we add more statistical in- 
formation, and that Mt{F-based tagging 
model is better than ttMM based tagging 
model in data sparseness problem. 

1 I n t r o d u c t i o n  

Part-of-speech tagging is to assign the correct tag 
to each word in the context of the sentence. '['here 
are three main approaches in tagging problem: 
rule-based approach (Klein and Simmons 1%3; 
Brodda 1982; Paulussen and Martin 1992; Brill 
et al. 1990), statistical approach (Church :1988; 
Merialdo 1994; Foster 1991; Weischedel et al. 
1993; Kupiec 1992) and connectionist approach 
(Benello et al. 1989; Nakanmra et al. 1989). In 
these approaches, statistical approach has the fol- 

lowing advantages : 

• a theoretical framework is provided 

• automatic learning facility is provided 

• the probabilities provide a straightforward 
way to disambiguate 

Many information sources must be combined to 
solve tagging problem with statistical approach. 
It is a significant assumption that tire correct tag 
can generally be chosen from I.he local context. 
Not only local sequences of words and tags are 
needed to solve tagging problem, but syntax, se- 
mantic, and morphological level information is also 
required in general. Usually information sources 
such as t)igram, trigram and migra.m are used in 
the tagging systems which are based on statistical 
method. Traditionally, linear interpolation an(t its 
variants have been used to combine the informa- 
tion sources, })tit these are shown to be seriously 
deficient. 

ME (Maximum Entropy) estimation method 
provides the facility to combine several informa- 
tion sources. Each inR)rmation source gives rise 
to a set of constraints, to be imposed on the con> 
bined estimate. The function with the highest en- 
tropy within the constraints is the ME solution. 
Given consistent statistical evidence, a unique M E 
solution is guaranteed to exist and an iteratiw~" al- 
gorithm is provided. 

MRF (Marker random field) model is based on 
ME method and it; has the facility to combine 
many inlbrmation sources through feature flmc- 
tions. MRF model has the following adwmtages: 
robustness, adaptability, parallelism and the facil- 
ity of combining informatiort sources. M RF-based 
tagging model inherits these advantages. 

In this paper, we will present one of the statis- 
tical models, namely MRF-based tagging systern. 
We will show that several information sources in- 
cluding unigram, bigram and trigram, can be com- 
bined in MRF-based tagging model. Experimen- 
tal results show that the MRF-based tagger has 
very good performance especially when training 
data size is small. 

Section 2 describes the tagging problem , Sec- 
tion "l describes statistical model already known 
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a.nd ,,;ect.iou 4 t i p  rcso{~rch for contl)it~ing st.at.ist, i- 
cal  in[ 'orutal . ion.  Sect.ion 5 p rov ides  Ml{F- I )ased  
t a g g i n g  m o d e l  a t td  secl.ion 9 sho,.w's the  expcr i -  
t:twnl;al rcsult.s. Sc.ct.iou 10 (:Opal)arcs M[{ I :  wi lh 
I ] M M .  Fit(ally we conclude in scct, iott l. 

2 T h e  P r o b l e m  o f  Taggi l+g  

W h e n  scnt.ct~c(! i,'V = wt ,  w2, .,., u,,,~ is g iven,  t.lwrc 
exis t  ( 'orresl>onding (.ags 7' = / i , * 2 , . . . , t ,  of  the  
s a m e  hmgl.h. W{> call  l he pa i r  ( W , T )  an a l ign-  
lltOtll;. ~'Vo ::-;a.y that. wor(l iv: has l)('('tt a s s igned  l.}w 
l.ag t i ill t.his a l iguutcnl . .  V'v'o s u p p o s e  l.hat, a sel. 
,:)f I,ags is giv~'n. 'l 'aggittg is assigniltg ('()rr('('1. lag: 
s(!quetlCO "1'-- I t ,  t2, ..., tn I'or given word sc:qtlcnce 
H / ~- lt; t , 11:2, ..., IU++. 

3 P r o b a b i l i s t i c  
F o r m u l a t i o n  ( I I M M )  

I:% us a s sunm t,hal, we w a n t  i.o I,:ttov,, the  n~,::)st; 
likc'ly t ag  seqtt<mcc ~b(PV), given a p a r l i c t t l a r  wot:d 
Se(lUtmcc I'V. T im l .agging prol)h-nt  is do l im 'd  as 
l iuding t.lw tttosl, l ikely t.?tg s("tltlClt('(! "1' 

q~(w) :- .,':z ,t~,tx/'('/'llI,:) (t) 

z'(Wl',")/'('/') = ..,'q max (2) 
",' P ( w )  

= +,r f f  nF3xI'(VVI'l')l'(73 (:It / 

wh.cre P(7') is 1,he a priori iwohal)ilit.y of a tag 
scquom:o~ 'r ,  t , ( W I ' I  ') is t,h.c cot~dil.ioual I , 'o lmhi l  
il,y of word sc,,tu(m(-c. H/, given I.It,:~ .'-;cqucuco o1" tags 
7', at,d / ' ( W )  is l,ho tmcotMit iot led i)roba.I)ilit,y ot: 
word scqmmcc W. 'l 'hc t>rol>abilit.y I ' ( W )  in (2) is 
rc'tnovc'd I)ccause it lt~ts no ell'cot, on 0 (W) .  (:on- 
scquent.ly,  it. is su i l ic icn t  i.o find the  t ag  SC(ltmnce 
7' which sal.isiies (3). 

Wc can rcwvit,(> the pro lmld l i ly  of0ach scqttcnc(' 
as a. prodltct, of 1,he cotMil.iona.l prot>altilit.i<~s of 
each word or fag given all of the lm'viotts t, ags. 

t,(wv/') v(~r) 
, ,  { :'(.,,,:It+, .... ~,, ,,,_ ~, ..., ,,t) } 

= l l i = l  × l ' ( l i [ l i _  I, . . . , / 1 )  

T y p i c a l l y ,  otto nmkcs  t.wo s i l l lp l i fy ing  a s smt tp  
(.ions I.o (:llt. dowu  o ,  l, lt<: nttnd>er of  F, rc, l>al:,ilil.ies 
1.,.) Ive <+st.inml.ed. I,'irst., rat.her I.h;tn ;tssuttling l t ' i  
dclwnds on all IH'cviotm words and all i)rcviotts 
ta.gs, ono ;-tsstttnes w+ d,:'F, cn,:Is (:,nly , :ml i .  Sc,::oml, 
rath( ,r  i:hau aSS(lining the t ag  ti de l t ends  on the  
t'ull s(>quc:ncc of l ) rcv ious  l, ags,  w(' can a s s u m e  l.hal. 
local COltl;oxl, is sull icicnt. This  locality a s s u m e d  is 
rcfercd t,o as ;t Mm'kov imlc l ) endence  rlSStlllll)liioIl.  

Using 1.lwse ass(trutH,ion, w(> al) lwoxhtml,c  l,}to 
uqua.l.ion l,o l, ttc R)llowing 

z'(WlV') ~ II'A~z'(.,~le,) (4) 
/,(~/') ~ tl}%,z,(,~lz+_t) (:,) 

Accordingly, O(i'V) is (h'rived I) 3, applying (,I) 
, . td  (,~) to (:~). 

, / , (w)  : . . .  ,,+p+.: tI 'L,; ' ( , .+lz;)z ' (z , : l t ,_ . )  ((i) 

We can gel  each l ) robabi l i t ,  y va.hte front  the  
t.aggcd corItus which is i , rq+arcd  for l . ra ining by 
usiu:4 (7) aml (8). 

z'( . ,zlt ,)  - ( : (+< , t , )  (T) 
cT(t~) 

/'(/,:1t~_, ) c'(z~) (st  

where  ( 7 ( t : ) , C ( t i ,  Ig) is tit(" [ ' reqttency obt .a incd  
fronl  l r a i nh lg  dal.a.  

\:it;orl>i a l g o r i l h n t  ( l : o rncy73)  is the  one goner-  
a l ly  used to liw.l t.he t,a.g SO<luencc which  safisl ies 
(6)  a im I.ttis a lgor i l .hnt  gt taranl .ccs  the opl, i t t tal so-  
hit ion to I,he I)r(+bhmt. 

T h i s  mode l  has  severa l  prot>l(+tns. First,,  so(no 
wot 'ds or [,ag~ s<Xltl(~ll(W','-; 1/13.y itot, O(HHIt' ill l.ra.ili- 
htg dal .a  or Hlay occur  wi th  very low [reqttetlcy;  
ii('vt'rlh('lcs,% t,llc words  or l a g  soqtt(~ltC(~s c;/tt ;+])- 
l)ear ill t .agging l>roccss, lit th is  case,  it, u sua l l y  
causes  V(!l'y bad  result, t.o COllll)ttt.c (6), because  
the lwol)al)ility has zero wdue or very low value. 
' l 'h is  p rob lon t  is c.alh'd data s l m r , s c . c s s  i>rol)h+tn. 
To  avoid  thi+q l~roldetn, sm,)ot, h ing  of  itd'ortttat.i,:m 
tlJtts/, I:,c ttscd. Sntool,  h ing  proc( 'ss  is a h n o s t  ('s- 
scntia,] in t lMM tmcattse I I M M  has  sevet'c d:at,;t 
spa r senes s  prol>hmt. 

4 c o m b i n i n g  i n f o r m a t i o n  s o u r c e s  

4 .1  l i n e a r  i n l ; ( ' , ] r lm la t i ou  

Var ious  Mttds o[' inlol 'ntal ,  ion sf:.ttr(;(~s and  differ- 
out  knowledge  sources  must, he Colnl)incd l.O S()IV(" 
the l,a.gging prol>l(+m. T h e  gemwal  m e t h o d  used 
it( I l M M  is l inear  iul ,erl~olatiot  L which is l,he 
w(gght, ed su tnmal , ion  of  all  prol)alf i l i l :y infornlat ,  ion 
,%o11 r c(:s. 

k 

P ....... ,,.,,,,(,,'7,) -: ~ A~/'~I,,,I/,) (!)) 
/=1 

wlt~t'c 0 < Ai N I mid  }3 :  Ai = 1. 
T h i s  h i e (hod  cnn I)e used I)ol, h as a way of con> 

I t ining Mtowh:dg(" sources  a n d  snloot,  h ing  in fo rnm-  
t, iotI sou t'.::cs. 

I1MM based  l .agging m o d d  times u n i g r a m ,  t>i- 
gl'atll a, lld t.rigt'altt in[ortn;d.iott .  T h e s e  in for(mr( ion 
sources  are  l inear ly  cotnl>ined by weighl.cd Slllliliift- 
l.ion. 
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P(zg It~-~, tg_2) = A1 P(ti Iti_l, li-2) + A2P(ti Iti- 1) 
(lo) 

where A1 + A2 = 1. Tire parameter l l a n d  A2 
can be estimated by forward-backward algorithm 
(Deroua86+) (Charniak93+)( t IUANG90+) .  

Linear interpolation is so advantageous because 
it reconciles the different information sources in a 
straightforward and simple-minded way. But such 
simpliticy is also the source of its weaknesses: 

• Linearly interpolated information is generally 
inconsistent with their information sources 
because information sources are heteroge- 
neous for each other in general. 

• Linear interpolation does not make optimal 
combination of information sources. 

• Linear interpolation has over-estimation 
problem because it adjusts the model on the 
training data only and has no policy for un- 
trained data. This problem occur seriously 
when the size of the training data is not large 
enough. 

4.2 M E ( m a x l m u m  e n t r o p y )  p r i n c i p l e  

There is very powerful estimation method 
which combines information sonrces objectively. 
ME(maximum entropy) principle (,laynes57) pro- 
vides the method to combine information sources 
consistently and the ability to overcome over- 
estimation problem by maximizing entropy of the 
domain with which the training data do not pro- 
vide information. 

Let us describe ME principle briefly. For given 
x, the quantity x is capable of assuming the dis- 
crete wdues xi, (i = 1, 2, ..., n). We are not given 
the corresponding probabilities pi; all we know is 
tire expectation value of the function f,.(x), (r = 
1, 2, ..., m): 

;q  

E[fr(x)] = E p i ( x i ) f , . ( x i )  (1l) 
i=1 

On the basis of this information, how can we 
determine the probability value of the function 
pi(x)? At first glance, the problem seems insol- 
uble because the given information is insufficient 
to determine the probabilities pi(x). 

We call the function f,. (xi) a constraint function 
or fealure. Given consistent constraints, a unique 
ME soluton is guaranteed to exist and to be of the 
form: 

where the Ar's are some nnknown constants to 
be found. This formula is derived by maximizing 
the entropy of the probability distribution Pi as 
satisfying all the constraint given, qb search the 
l,. 's that make pi(x) satisfy all tile constraints, an 

external 
observation: 

OOO W[_2 Wi 1 Wi Wi+l Wi+2 ooo 

MRF: .co { ~ ~  eee 
<L.V <?L~/ ',,IL/ < d J  <L.v 

Figure 1: MRF T is defined for the neighborhood 
system with distance 2 

iterative algorithm, "Generalized Iterative Scal- 
ing" (GIS), exists, which is guaranteed to converge 
to the solution (l)arroch72+). 

(12) is similar to Gibbs distribution, which 
is the primary probability distribution of M[{F 
model. MRF model uses ME principle in combin- 
ing information sources and parameter estimation. 
We will describe MRFF model and its parameter 
estimation method later. 

5 M R F - b a s e d  t a g g i n g  m o d e l  

5.1 M R F  in tagging 
Neighborhood of given random variable is defined 
by the set of random variables that directly atfect 
the given random variable. Let N(i) denote a set 
of random variables which are neighbors of ith 
random variable. Let's define the neighborhood 
system with distance L in tagging fbr words W = 
wl, ..., w,~, and tags T = h ,  ..., t,~. 

N(i) = { i -  L , . . . , i -  1, i+  l , . . . , i+  L} (13) 

This neighborhood system has on(; dimensional 
relation and describes the one dimenstional struc- 
ture of sentence. Fig. 1 showes MP~F T which is 
defined for the neighborhood system with distance 
2. The arrows represent that the random variable 
ti is affected by the neighbors t i -  2, t i -  1, ti+ t, ~j+'~. 
It also showes that t i , t i - t  and ti,ti+l have the 
neighborhood relation connected by bigram, and 
that t i , t i - l , t i - 2  and ti,ti+l,ti+2 have ttm neigh- 
borhood relation connected by trigram. 

A clique is defined as the set of random vari- 
ables that all of the pairs of random variables are 
neighborhood in it. Let's define the clique as the 
tag sequence with size L in tagging problem. 

G = {t i -L, t i -( t , -1) ,  ...,ti} (14) 
A clique concept is used to define clique fimction 

that evaluates current state of random variables in 
clique. 

The definition of MRF is presented as following. 

Definil~ion of MI{F: Random 'variable T is 
Markov random field if T' salisfies the follow- 
ing two properties. 
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Pos i t iv i ty  : 

t)('F) > O, W' (15) 

Locality : 

S'(t~I%,Vj, j ¢ i) = P(t~I%,Vj, j ~ iV(j)) 

We a s s u m e  tha.t eve ry  prob;d>lity va lue  e l  t ag  se- 
(luenee is larger l, hml zero bee;rose ungraluiuat, ic;d 
Sellt, ellCeS (;fill ,tl)pem" in htlllHill l~tligll&ge liS~ge, 
including meaningless sequence of characters. St) 
the posi t iv i ty  of' MRt!' is satislied. This :+tSStllnp- 
t ion results in the robustness mid ada.ptabil i ty of 
the inodel, eveli though unti:a~ined events ocolir. 

The local i ty of MRF is consistent wi th the as- 
Sll i l ip t ioi i  O[ I;a.ggiilg t ) roblein in t h a t  the  tag of 
given word ca, it be deterinined by the local con- 
text. (Tonsequenl, ly, the random variable 7' is 
MRF for neighborhood systenl N(i)  its 7' satis- 
ties the positivity and the locality. 

5.2 A P o s t e r i o r i  P r o t i a t i i l l t y  

A posteriori probat)ility is needed to sea.rcb for 
the Jrlost, likely tag sequence. M II, F provides the 
i;heoretical bi~cliground about the probal)ility of 
the system (Bes~tg74) ((leiJfla, ii84+). 

H~mniersley-(]liflbrd thcorein: 7'he probability 
dish'ib'ulio'n I'(7') is (Tibbs dish'ibulion if and 
only if  'random wzriable 7' is ,,llarkov random 
field for givcn ncigborhood syslc'/n N( i ) ,  

e. ",'~,, uCr) 
P ( 7 ' )  - Z (17) 

Z = Ee-~"~ '~l(m) (:18) 

where "['HI is l;elillJel'i~tllre~ ~ is no r l na l i z i ng  COIl- 
Sl;~tllt, ca l led  p a r t i t i o n  ftlllCLioil aAld U ('[ ')  iS e t lergy 
fimct;ion. The a priori probal)ilit;y P(7') of tag se- 
quence 7 ~ is Gibbs distribution because the ran- 
dora variable 7' of tagging is MRF. 

It can be proved that  a posteriori probability 
i ) (TiW) for given word sequen(;e W is also Gil)bs 
distribution (Chun93). (7onsequent/y, a I)osteriori 
probabili ty of 7' for giwm W is 

t , u(.rlw) 1'('VlW) = - - / ~ -  ~ ( i , q  Z 

We llSe ( | 9 )  i,O ('.m'ry Ollt MAP estiui;dion in the 
tagging model . The energy function U(TJW)  is 
of  this form. 

u@'lW) = ~ w~(;t'lW) (20) 
c 

where V,, is clique function wii;h the property 
that  Vc depends only oil those randoui variable, in 
clique e. This  lllelLllS t;hat ellergy funcl, ioli (Urill be 
obliained [rOlll each clique funt ion which splits l,[ie 
set  of  ral ldOll l  v iu ' iables  to slibscLs. 

6 C l i q u e  f u n c t i o n  d e s i g n  

The more state of random variables are near to 
Llie solution, the niore the system becomes stable, 
and energy function has lower vahie. Energy flmc- 
i, ion repre, sents the degree of unstability of current 
stntc of raiidoni vl.triables in M RF. It is similar to 
the I)ehaviour o[' molecular particles in the rcM 
world. 

('~lique function is proportional to energy fun(:- 
tion, and it represents the unstability of current 
state of randoni varia.bles in clique or it has high 
value when the state of MRF is bad, low value 
when the st;~te of MI{F is nero: to solution. Clique 
fimction contributes to reduce the comi)utation of 
evahmtion function of entire MRF by clique con- 
cept that separates random v~triables to the sub- 
sets. 

(llique function V/(TJ W) is described by the. few. 
tures that represent the constraint or information 
sources of givcu prol)h;m domain. 

~5(:z'lvv) := ~ a,.j;~.('clm) ('2J) 
F 

6.1 M R F  M o d e l  1 (Bas ic  m o d e l )  

The basic information sources which arc used m 
statist ical tagging model are unigram, l)igrani nnd 
tr igrain. M I{I" nlodel I lises unigrmn, higranri and 
t, r igraln. We write the [ea£ure furict ion o[ unigraln 
;iS 

j\~,,.:,,. ..... = (t - ~'(t~I ,<))  ( ~ )  

and the feature f'illtCtioll O[ II-gralll, inchiding 
bigram, tr igram ~s 

f li, - :, • ..... = 

where  

( t  - Z'(t~ I J))  (m3) 
ioN(i) 

t ' ( t i l t i_j , t~_j+x, . . . , t~_t) ,  i I ' i  > j 
P(ti IJ) = t"(6: Iti+l, h+~,  ..., zi+j),  it" i < j 

The clique filnction of the model 1 is ttt~de as 
follows. 

/ 0 1 ' l w )  -- A, • /; , , ,~, . , , ,~ + x ~ .  f , , - : , , . ,m (~4) 

6.2 M o d e l  2 ( M o r p h o l o g i c a l  i n f o r n t a t i o n  
i n d n d e d )  

Morphok)gical level information helps tagger to 
determine the tag of the word, more. especially 
of the unknown word. The suffix of a word gives 
very useful information about the tag of the word 
in F, nglish. The (:li(ltte function of model 2 is de- 
lined as 

f.~,]:i~, = ( [ -  t ' (gi] .suf f ix(wi)))  (25) 

We used the statistical distribution of the sixty 
sl l[ l ixes thztt are IlK)st f r equen t l y  used ill Eng l i sh .  

2 3 9  



We can expand the clique flnlction of the model 
1 easily by jus t  adding Stlficix inforui~-ttion to the 
clique function of the ntodel 2. 

'~,~.(7' IW) = A~ J ; , , ,o , '  ..... +Ae.f ,+_<, .a , , ,+Aa.f .~ff~.  
(2 5) 

6.3 M o d e l  3 ( e r ro r  co r rec t i on )  

There  exist error prone words in every ta.gging sys- 
tern. We adjust  e r r o r  prone words 1)y collecting 
the. error results and adding more  inforniat ion of 
the words. The  feature function of Model 3 is for 
adjust ing errors in word level. 

= (1 - ( 2 r )  

f#vo,.2 = (;1 - P(lil'wi_2,ti_l)) (28) 
YVe used the probat)il ity d istribu tion of five hun- 

tired error proiie words ill Model 2 in oMer to re- 
duce the tltllllber 0t' paF31ileters. 

7 O p t i m i z a t i o n  

The  process of selecting the best tag sequence 
is called ms op t imiza t ion  process. We use M A P  
( M a x i m u m  A l)osteriori) est iniat ion me thod .  The  
tag sequence 7' is selected to niaximize the a pos- 
teriori probM)ility of tagging (19) by MAP. 

Simulated anneal ing is used to searcti the op- 
t imal  tag sequence as Gibbs  dis t r ibut ion provides 
simulated anneMing facility with teliiperatur(+ arid 
eileFgy ('OllCept. }go change the tag candidate  of 
one word selected to tninilnize the energy t"iinction 
in k-th step froni T (k) to j , (k+i) , a.n(l l'(+'t)e;/t this 
process until there is tlO change. The  t(?llll)(?l?a- 
ture 7 'm is s tar ted in high vahle and lower to zero 
as tile above process is doing. Then the final tag 
seqtlellce is the solution. Sininlat,ed annealing is 
US0flil in the prol)leni which has very hugo search 
sl)ace, and it is the approxiniation of MAP est.i- 
fllatioll ((]elll&iq 84 -t--). 

There  is another  a lgor i thm called Viterbi algo- 
r i thtn to lind ol)t imal solution. Viterbi  a lgori t l lm 
guarantees optinial sohltion ]tilt, it canilot bc used 
in the probleln which has very huge search space. 
SO it iS /iscd in the l)rol)leni which has Slliall sea, rch 
space 3,11(1 Ilsed ill I1M M. M RF model  Call ilSe both 
Viterbi algoril, hni and siinulated anealing, but it 
is not ](nowtl IO IlSe sinitllated allne, aling ill fIMM. 

8 p a r a m e t e r  e s t i m a t i o n  

The weighting parameter A in tile clique ['unction 
(19) Call be estiinated frOlil training data by MIg 
principle (.] ayiles57). 

Let tlS descrit)e ME princil)le and IIS algorithni 
briefly. For given x = ( X l , . . . , ; F r t ) ,  the corr(?- 
Sl)onding probal)ilities t)i(xi) is nod klloWll. All 
we know is the expecta t ion  value of the flmction 
J;+(x), (r  = 1,2, . . . ,m):  

? t  

];;[J;.(,)] = pg( .<)J; . ( .+: )  (2.<)) 
i=1 

(riven consist(mr constraints, we can find the 
prot)ability distribution p~ tha t  niakes the entrol)y 
-- ~ Pi In t)i wlhle lllaxillllllil ])y llSillg Largl:angiall 
niultipliers in the nsual way, and obtai u the result: 

pi(a?i ) = cXt)(-- ~ J,.J;.(xi)) (30) 
7" 

This forniula is alniost siinilar 1.o Gibbs distri- 
bution (17), also J]. correspoilds to the feature of 
clique function in M I{,F (20) (2l) .  Using this fact, 
we can use M 1!; in paran ie te r  es t imat ion  in M Ii.F+ 

We can derive (31) to be used in pgLralneter es- 
t inia t ion fi'om training data .  

0 
- o-A-t,+z -- (31) 

7 

z _- (32) 
i r 

'l?o solve the solution of it, a numerical analysis 
mt;thod (-~IS ((]enerlaized I tera t ive  Scaling) was 
suggested ( l )a r roch72+) .  P ie t ra  used his owu al- 
go r i thm IIS (hnt)roved l te ra t ive  Scaling) based on 
G IS to induce the features and pa rame te r s  of ran- 
dom field au tomat ica l ly  (l) ietra95) . Following is 
IIS algori thnl  

l lS(In)provcd l tera t ive  Scaling) 

t Ini t ial  da ta  
A rof'ol'ellce distr ibution 1), all initial 
model  q0 and fl), f l  .... , f n .  

• Output 
q. alld A by MI'] estiiiiation 

A lgori t h m 
(0) Set qC0) = qs) 
(1) Per each i (ihd Xi, t,il(; llnique sohlth)n 
el" 

q(X.)fi(7,)c~,lk) ~,. f,.(T) =- ~ IS(T));(7/, ) 
T 7' 

(33) 
( 2 )  k +-- k + l ,  set q~+l with new Ai 

(3) l[' qt~O tins converged, set q, = q(~') 
and tertilhiate. Otherwise go to step(i) 

where q(k) is the distribution of the iriodel in k- 
th step, alld it, corresponds to the posteriori pro}> 
abil i ty of the tagging model ([.(J). A, tile sohltion 
()f' (:/:t) (:all be ol)i,ained 1)y Newton niei.hod ((,'tlr- 
t is89+), Olie Of lilllll(~rica] analysis nietilod. 

The I'ef¢TellC(" distr ibution ]~ is the l)rol)ability 
distri l)ution which is obtaiued directly frOlll ill'aiD- 
illg data. ]) corresponds to tile posterior (listri- 
button t ' (TIW ) ill the IA/g~illg iItod(ti. ~¢Vo tlS( t the 
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Model Tagging accuracy 
11MM 96.11 

1 M H,F(l) !)6.2 
M I{,F(2) 9(i.5 
M I {F(3) .97. I 

Table 1: Measuring l, hc. a('cur;~cy of I I M M  aud 
M R,F nioch;Is. 

posterior  t ) ro l )a l f i l i ty  of l:,hc words sequence o[ win- 
{low size n (CSl>ecially 3 in this lliodel) I)y col i l l t ing 
the entry Oil t ra in ing  data. T ra i l i i i l g  data l l lewis 
tagged (:orl)us tmrc. 

9 Experiments  

The Ili;,I, i l l ol>jcctivc of' this exper in icnts is to ('Olii- 
l)a, re ttio M I{i!' l,a,gghig n lodc l  w i t h  l lic I IM M tag- 
g ing nl()(hJ. \¥C consl, lulci(xl a, ~,'11{1" /.aggcr mid a 
II M M  tagger usii lg sa.lne inl 'orl l l ; t l i ion on t.hc sail ic 
(?llVil:onlllelll;. 

li, is lle(:esSa, l:y t,o do s m o o t h i n g  tiroccss for data 
sl)arseiicss l>roblelit which is scw;l:c i[l ]1MM, while 
M R F  has tl l( ' [ac i l i ty  of sniooi,hing in it,self l ike 
neura, l-nel, . IvVc ilSCd l ine;tr  inl,erl>olat, ion ine/,hod 
(l),~rot,a.S6+) ( jcl in&Sg) and assigning &C,lUel,cy 
1 for u i lknowl l  word (Weisct ig:/+) for s l i i oo th i l i g  
in II M M. 

!t"V'(? llS(?(I l,[lC ] l rowI I  (;orlillS ill l icn l iT l 'ce Bank ,  
dcscril)cd in (Ma.rc,s93+) w i th  ,l~ dill i 'rent, tags. 
A set of t~00,000 words is colhx'tod for ('ach parl, 
Of l i row l t  ('Orl)llS ali([ llSe(I ;t,"; t. l 'ai i l i l lg (h~l;a, wh ich  
is used to 1)uihl 1,tw niodels. And a set of 30,000 
words (',()l'l)llS is used as i,c'st da.C~, which is used 
to t,esl, the qua.lil;y of Ltic models. 

' l 'a lJe 1 shows the 3~CClll;&(;y o[" each L~ggillg 
niodcl. '1't,~ average a(:(:ura.(:y of  tl l( ' I IMM-hascd 
l,a,gg(;r iS Sii n i lar i,o t Ila, t of M I {F(  1 ) l,a, gger I)c(:aiiS(~ 
l,hey iis( 1 [,he SalilO hil 'ornial, h)n. 

ld<% 7 sliows dial, l,he error tale as [,iic size 
o[ ],r;IJnhig dnla, is il lcreased. M I { F ( I )  has lower 
error rate Lha, n that  of i l M M  when l, lie size of 
t ra in ing data is slnMl. ']'hc crrol: l:~tl, e of M t{,F(2) 
is decreased CSlmcially wl lel l  t lw  size of the tr{dn- 
ing dab~t is Stl l lJl, l)c:(;a.llSC luorpho log icvd  ia['ornia.- 
don helps I,t,~ process of l l l l k i iowi i  words. F i l ia l ly ,  
MI { l " (3 )  show i tn l i roveinent  as the size of l;rain- 
ing (hfl,;~ grows I)ul; COllVel'g(is l;o l, ile ] in l i t  Oll sOl]l(? 
poinl,s. 

These e×pcrilnen~s show thai, M tt, F has I)el, l,cr 
a,d(lal)l;abilil, y w i th  snlMI I, ra i l l i l ig  data than II MM 
does, aud l,h;fl: M I { F  tagger has bss data sl)arse 
IleSS p robhmi  than I I M M  l:aggor. 

<;0 

4O 

Ht4i,l 
{e 

20 MRF ( L I 
~I}{!." [ 2 ) 

i0  

do0 41 . . . .  L000 /<: . . . . . .  13 . . . . . . . . .  ; . . . . . . .  % . . . .  t . . . . .  
Ji <~t tLaIIll[I I WL~[ I 

l " igurc  :7: Er ro r  ral,c o f  each mode l  [or g iwm size 
of t, ra in ing word 

10 Comparison of MRF with 
H M M  

We (:~[ii derive l, llc s i in ld i f ied cquat io i l  of IIMM 
only wilh bigra.m : 

l>(v'tw)= 
(35) is consid(m~d as l, he Inull, i l f l ied probal>ilt ics 

o[ a the h)cal cwml,s. The iioarer the p robab i l i l y  
vahm of local cv(mt is to zero , t, hc ,~or(' it, a[Ii;cl,s 
I,h(' l ) robahi l i l :y of the (ml, ire evenl,. Th is  prol)erty 
s t r ic t ly  reflccl;s on the cwmt.'-; which does not occur 
in l ,rainhig (lat,~L [:Jui, lid prohib i ts  even the cvcul. 
that  does l lot  OCCllr in l;rainiug datl  h al thougt l  the 
CVellt is legal. 

M I{I" can he sini l ) l i f icd t)y lhe sunnlml: ion of 
c l ique [ 'un(;t ion a s  (3{]). 

I - ~%:{ v,+v,+.. +<,,} (3(J) 
/'('/'lW)-= 2 

!'vl I{,1" uses rvalual, io ,  funcl ion I)y suunual i<). ,  
whi le I I M M  do('s I)y uml t i l ) l i c~t ion.  F, ven i f  a 
cliqm~ flmcl,ion w d . e  is very bad, o(,hcr cliqnc 
funct ion ca, n conll)ensate dequa~e ly  lmca,use the 
clique functions are coime('l,ed by s u m m a t i o u .  
' l 'here is no cr i t ical  point  of postcr ior i  l)robal)l i l ,y 
in M R I  i', whi le I I M M  has cril, ical poi,1, in zero 
value. This  property results in the rolmstness mid 
the ada, p tab i l i t y  o[ l;tl(~ l l iodol aud niakcs M t{F 
uiodcl stronger in data Sl)arscncss probhml. 

1 1  C o n c l u s i o n  

We prol)oscd a Ml:[l!'-based tagging lnodel. In- 
fo rmat ion sourccs for tagging aro combiimd hy 
M F, 1)rincil)le which is ,sod i ,  M I{F as theoret ical 
background. A I1 I)ara~liiclxu's used in the ii io(]e] are 
es lJmated from tra, ining da ta  a.ul,omatica,lly. As 
;t result,, our MRl!'-l)ascd tagging nlodcl has bet,- 
ter tmrfornla, ncc Lha, n t [ M M  tagging nio(h'l, CSl)C 
c ia l ly  when the size of" the t ra in ing dal,a is Sli iall. 
Vv'e haw~ sooii l, hat t im i)or[ 'ori i lali(:o Of l,he M HI"- 
I)ascd tagging nio(hJ can be' i inprow'd by adding 
inl'orina, i ion I,o t im niodct. 
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