A principle-based hierarchical representation of LTAGs

Marie-Héléne Candito
TALANA
Université Paris 7 Tour centrale 8¢me étage piece 801
75251 Paris cedex 05 FRANCE
e-mail : marie-helene.candito@linguist.jussieu.fr

Abstract

Lexicalized Tree Adjoining Grammars
have proved useful for NLP. However,
numerous redundancy problems face
LTAGs developers, as highlighted by Vijay-
Shanker and Schabes (92).

We present a compact hierarchical
organization of syntactic descriptions, that
is linguistically motivated and a tool that
automatically generates the tree families of
an LTAG. The tool starts from the syntactic
hierarchy and principles of well-formedness
and carries out all the relevant combinations
of linguistic phenomena.

1 Lexicalized TAGs

Lexicalized Tree Adjoining Grammar (LTAG) is
a formalism integrating lexicon and grammar (Joshi,
87; Schabes et al.,, 88). It has both linguistic
advantages (e.g elegant handling of unbounded
dependencies and idioms) and computational
advantages, particularly due to lexicalization
(Schabes et al., 88). Linguists have developed over
the years sizeable LTAG grammars, especially for
English (XTAG group, 95; Abeillé et al.,, 90) and
French (Abeillé, 91).

In this formalism, the lexical items are
associated with the syntactic structures in which
they can appear. The structures are lexicalized
elementary trees, namely containing at least one
lexical node at the frontier (called the anchor of the
tree). The elementary tree describes the maximal
projection of the anchor. So a verb-anchored tree has
a sentential root. Features structures are associated
with the trees, that are combined with substitution
and adjunction. Adjunction allows the extended
domain of locality of the formalism : all trees
anchored by a predicate contains nodes for all its
arguments.

Such a lexicalized formalism needs a practical
organization. LTAGs consist of a morphological
lexicon, a syntactic lexicon of lemmas and a set of
tree schemata, i.e. trees in which the lexical anchor is
missing. In the syntactic lexicon, lemmas select the
tree schemata they can anchor. When the grammar is
used for parsing for instance, the words of the
sentence to be parsed are associated with the
relevant tree schemata to form complete lexicalized
trees.

The set of tree schemata forms the syntactic part
of the grammar. The tree schemata selected by
predicative items are grouped into families, and

194

collectively selected. A tree family contains the
different possible trees for a given canonical
subcategorization (or predicate-argument structure).
The arguments are numbered, starting at O for the
canonical subject. Along with the "canonical” trees, a
family contains the ones that would be
transformationally related in a movement-base
approach. These are first the trees where a
“redistribution” of the syntactic function of the
arguments has occurred, for instance the passive
trees, or middle (for French) or dative shift (for
English), leading to an "actual subcategorization"
different from the canonical one. When such a
redistribution occurs, the syntactic function of the
arguments change (or the argument may not be
realized anymore, as in the agentless passive). For
instance, the subject of a passive tree is number 1,
and not 0 (figure 1). This is useful from a semantic
point of view, in the case of selectional restrictions
attached to the lexical items, or of a
syntactic/semantic interface.

Nod Vo Nl Nil Vml Vo sp

r Nod
p!\r
Figure 1. Declarative transitive tree and corresponding full
passive for French!

And secondly, a family may contain the trees
with extracted argument (or cliticized in French).
There are different types of trees for extraction. In
the English grammar for instance, there are trees for
wh-questions and trees for relative clauses (that are
adjoined to NPs). In the French grammar there are
also separate trees for cleft sentences with gaps in
the clause, while the corresponding it-clefts are
handled as relative clauses in the English grammar.

Nr s

N

NO*/T\ NOJ{ X
C Vo N1d citd Vo

L
qui
Figure 2. Two trees of the strict transitive family for French :
the relativized subject and the cliticized object.

1The French LTAG comprises trees with flat structure (no
VP node); in the passive tree, the auxiliary is substituted; the same
symbol N is used for nominal phrases and nouns, the difference
being expressed with a feature <det> (Abeillg, 91). we do not
show the feature equations for the sake of clarity. For the French
grammar, the average number of equations per tree is 12.

So a family contains all the schemata for a given
canonical subcategorization. Yet, in the syntactic
lexicon, a particular lemma may select a family only
partially. For instance a lemma might select the
transitive family, ruling out the passive trecs.

On the other hand, the features appearing in the
tree schemata are common to cvery lemma selecting
these trees. The idiosyncratic features (attached to
the anchor or upper in the tree) are introduced in the
syntactic lexicon.

2 Development and maintenance
problems with LTAGs

This extreme lexicalization cntails that a
sizeable 1.TAG comprises hundreds of elementary
trees (over 600 for the cited large grammars). And as
highlighted by Vijay-Shanker and Schabes (92),
information on syntactic structures and associated
features cquations is repeated in dozens of tree
schemata (hundreds for subject-verb agreement for
instance).

This redundancy problem is present at all levels
of grammar development. The writing of an [.TAG is
a rather fastidious task; its extension and/or
maintenance is very difficult, since maintaining the
grammar means for instance adding an equation to
hundreds of trees. Extending it means adding new
trees along with their equations, and it can also
entail the addition of new features in existing trees.
Furthermore, the amount of work may grow
exponentially with the size of the grammar, since all
combinations of phenomena must be handled.

And finally, in addition to the practical
problems of grammar writing, updating and storage,
redundancy makes it hard to get a clear vision of the
theoretical and practical choices on which the
grammar is based.

3 Existing solutions

A few solutions have been proposed for the
problems described above. Solutions to the
redundancy problem make use of two tools for
lexicon representation : inheritance networks and
lexical rules. Vijay-Shanker and Schabes (92) have
first proposed a scheme for the efficient
representation of LTAGs, more preciscly of the tree
schemata of an L.TAG. They have thought of a
monotonous inheritance network to represent the
elementary trees, using partial descriptions of trees
(Rogers and Vijay-Shanker, 92 and 94) (sec section
4.1 for further detail). They also propose to use
“lexical and syntactic rules” to derive new entries.
The core hierarchy should represent the "canonical
trees”, and the rules derive the ones with
redistribution of the functions of arguments (passive,
dative shift...) and the ones with extracted argument.

Becker (93; 95) also proposes a hybrid system
with the same dichotomy : inheritance network for
the dimension of canonical subcategorization frame
and "meta-rules” for redistribution or extraction (or
both). The language for expressing the meta-rules is
very close to the clementary tree language, except
that meta-rules use meta-variables standing for

195

subtrees. He proposes to integrate the meta-rules to
the XTAG system which would lead to an efficient
maintenance and extension tool.

(ivans et al., 95) have proposed to use DATR
to represent in a compact and efficient way an
I.TAG for English, using (default) inheritance (and
thus full trees instead of partial descriptions) and
lexical rules to link tree structures. They argue the
advantage of using already existing software. But
some information is not taken into account : the
lexical rules do not update argument index. l'or
instance the dative shifl rule for English changes the
second complement - the P’ - into a NI, which is
not semantically satisfying. The passive rules simply
discards the first complement (representing the
canonical direct objet), the other complements
moving up. But then the relation between the active
object and the passive subject is lost.

The threc cited solutions give an cfficient
representation (without redundancy) of an LTAG,
but have in our opinion two major deficiencics.

First these solutions usc inheritance networks
and lexical rules in a purely technical way. They give
no principle about the form of the hicrarchy or the
lexical rules?, whereas we believe that addressing the
practical problem of redundancy should give the
opportunity of formalizing the well-formedness of
clementary trees and of tree familics.

And second, the generative aspect of these
solutions is not developed. Certainly the lexical rules
are proposed as a tool for generation of new
schemata or new classes in a inheritance network.
But the automatic triggering, ordering and bounding,
of the lexical rules is not discussed.

4 Proposed solution : efficient
representation and semi-automatic
generation

We propose a system for the writing and/or the
updating of an LTAG. [t comprises a principled and
hicrarchical representation of lexico-syntactic
structures. Using this hierarchy and principles of
well-formedness, the tool carries out all the relevant
crossings of linguistic phenomena to generate the trec
tamilics.

This solution not only addresscs the problem of
redundancy but also gives a more principle-based
representation of an LTAG. The implementation of
the principles gives a real generative power to the
tool. So in a sense, our work can relate to (Kasper et
al., 95) that describes an algorithm to translate a
Head-driven hrase Structure Grammar (HPSG) into
an L'TAG. The inheritance hierarchy of HPSG and its
principles are "flattened” into a lexicalized formalism
such as LTAG. The idea is to benefit from a
principle-based formalism such as [{PSG and from
computational properties of an [TAG.

2Becker gives a linguistic principle for the bounding of his
meta-rules, but he has no solution for the application of this
principle.

4.1 Hierarchical representation of an
LTAG

41.1 Formal choices : a monotonic
inheritance network, without meta-rules

Like the solutions described in section 3, our
system uses a multiple inheritance network. Yet, it
does not use meta-rules. Though they could be a
further step of factorization, it seemed interesting to
"get the whole picture” of the grammar within the
hierarchy, and not only the base trees.

Further, we have chosen monotonic inheritance,
especially as far as syntactic descriptions are
concerned. Default inheritance does not seem to be
justified to represent tree schemata, from the
linguistic point of view. Default inheritance is often
necessary to deal with exceptions. One may want to
express generalizations despite a few more specific
exceptions. Now the set of tree schemata we intend
to describe hierarchically is empty of lexical
idiosyncrasies, which are in the syntactic lexicon (cf.
section 1). The set of tree schemata represents
syntactic phenomena that are all productive enough
to allow monotonicity. This resulting hierarchy will
then be more transparent and will benefit from more
declarativity.

Technically, monotonicity in syntactic
descriptions is allowed by the use of partial
descriptions of trees (Rogers and Vijay-Shanker, 92;
94), as was proposed in (Vijay-Shanker and
Schabes, 92) (see section 4.1.3).

4.1.2

Section 1 briefly described the organization of an
LTAG in families of trees. The rules for the
organization of a family, its coherence and
completeness, are flattened into the different trees.
With the approach of an automatic generation of
TAG trees, we have found necessary to explicit these
rules, which are defined using the notions of
argument and syntactic function,

Following a functional approach to
subcategorization (see for instance Lexical
Functional Grammar, (Bresnan, 82)), we clearly
separate the "redistributions” of syntactic functions
of the arguments from the different realizations of a
given syntactic function (in canonical, extracted,
cliticized... position). We intend the term
redistribution in a broad sense for manipulation of the
number and functions of arguments. It includes cases
of reduction of arguments (e.g. agentless passive),
restructuration (dative-shift for English) or even
augmentation of arguments (some causative
constructions3, introducing an agent whose function
is subject). Redistribution is represented in our
system by pairing arguments and functions, and not
in terms of movement.

So the proposed hierarchy of syntactic
descriptions (for the family anchored by a verb)
comprises the three following dimensions :

General organization of the hierarchy

3We talk about some causative constructions analysed as
complex predicates with co-anchors in French as in :
Jean a fait s'assoir les enfants. *Jean made sit the children.
(Jean made the children sit)

196

dimension 1 : the canonical subcategorization frame
This dimension defines the types of canonical
subcategorization. Its classes contain information on
the arguments of a predicate, their index, their
possible categories and their canonical syntactic
function.

dimension 2
functions

This dimension defines the types of redistribution of
functions (including the case of no redistribution at
all). The association of a canonical subcategorization
frame and a compatible redistribution gives an
actual subcategorization, namely a list of argument-
function pairs, that have to be locally realized.

: the redistribution of syntactic

dimension 3 :
functions

It expresses the way the different syntactic functions
are positioned at the phrase-structure level (in
canonical position or in cliticized or extracted
position). This last dimension is itsclf partitioned
according to two parameters : the syntactic function
and the syntactic construction.

the syntactic realizations of the

4.1.3 Monotonic inheritance and partial
descriptions of trees

The hierarchy is a strict multiple inheritance network
whose terminal classes represent the clementary trees
of the LTAG. These terminal classes are not written
by hand but automatically generated following
principles of well-formedness, either technical or
linguistic.

A partial description is a set of constraints that
characterizes a set of trees. Adding information to
the description reduces monotonically the set of
satisfying trees. The partial descriptions of Rogers
and Vijay-Shanker (94)* use three relations : left-of,
parent and dominance (represented with a dashed
line). A dominance link can be further specified as a
path of length superior or equal to zero. These links
are obviously useful to underspecify a relation
between two nodes at a general level, that will be
specified at an either lower or lateral level. Figure 3
shows a partial description representing a sentence
with a nominal subject in canonical position, giving
no other information about possible other
complements. The link between the S and V nodes is
underspecified, allowing either presence or absence
of a cliticized complement on the verb. In the case of
a clitic, the path between the S and V nodes can be
specified with the description of figute 4. Then, if we
have the information that the nodes labelled
respectively S and V of figures 3 and 4 arc the same,
the conjunction of the two descriptions is equivalent
to the description of figure 5.

4Vijay-Shanker & Schabes (92) have used the partial
descriptions introduced in (Rogers & Vijay-Shanker, 92), Eul we
have used the more recent version of (Rogers & Vijay-Shanker,
94). The difference between the two versions lies principally in
the definition of quasi-trees, first seen as partial models of trees
and later as distinguished sets of constraints.

S
s
l ///\\\
S Vr N Ve
N Vo Cl Vo Cl Vo
Figure 3 Figure 4 Figure 5

In the hicrarchy of syntactic descriptions we
propose, the partial description associated with a
class is the unification of the own description of the
class with all inherited partial descriptions. As
shown in the above example, the conjunction of two
descriptions may require statements of identity of
nodes. Rogers and Vijay-Shanker (94) foresee, in the
case of an application to TAG, the systematic
identity of lexical anchors. Further, Vijay-Shanker
and Schabes (92) make also use of a particular
function to state identity of argumental nodes. But
this is not enough as one might need to state equality
of any type of nodes (like the S nodes in the above
example). To achieve this in our system, one simply
needs to "namc” both nodes in the same way.

Remember we talk about descriptions of trees. In
these objects, nodes are referred to by constants.
Two nodes, in two conjunct descriptions, referred to
by the same constant are the same node, and two
nodes referred to by different constants can cither be
equal or different. Lquality of nodes can also be
inferred, mainly using the fact that a tree node has
only one direct parent node.

We have added atomic features associated with
each constant, such as category, index, quality (i.c.
foot, anchor or substitution node), canonical
syntactic function and actual syntactic function.
These features belong to the meta-formalism of
L'TAG hierarchical organization. We will call them
meta-features (as opposed to the features attached
to the nodes of the TAG trees). In the conjunction of
two descriptions, the identification of two nodes
known to be the same (cither by inference or because
they have the same constant) requires the unification
of such meta-features. In case of failure, the whole
conjunction fails, or rather, leads to an unsatisfiable
description.

dimension |
canonical subcat frame

dimension 2
redistribution of syntactic
functions

¢ personal full
passive

O N
strict transitive)
\ i

4 IYd N

\ VAN) J

Ul

dimension 3
realization of syntactic functions

P <y | hand-written
' g hicrarchy

par-object
wh-questioned
position

subject
. canonical position |

WOn0OVnl-pass

gencrated class

{strict transitive,
personal full passive,

par-obj wh-questioned)

Figure 6. Creation of a terminal class totally defined by its super-classes.

4.2 Automatic generation of elementary
trees

The three dimensions introduced in section 4.1.2
constitute the core hierarchy. Out of this syntactic
database and following principles of well-
formedness the generator creates elementary trees.
This is a two-steps process : it first creates some
terminal classes with inherited properties only - they
are totally defined by their list of super-classes. Then
it translates these terminal classes into the relevant
clementary tree schemata, in the XTAG? format, so
that they can be used for parsing,.

The tree schemata are generated grouped in
families. This is simply achieved by fixing a
canonical subcat frame (dimension 1), associating

SXTAG (Paroubek et al.,, 92) is a tool for writing and using
LTAGs, including among other things a tree editor and a syntactic
parser.

197

with it all relevant redistributions (dimension 2) and
relevant realizations of functions {dimension 3). At
the development stage, generation can also be donc
following other criterions. For instance, one can
generate all the passive trees, or all trees with
extracted complements...

4.2.1 Principles of well-formedness

The generation of elementary trees from more
abstract data needs the characterization of what is a
well-formed elementary tree in the framework of
LTAG. The common factor to various expressions of
linguistic principles made for LTAGs is the
argument-predicate co-occurrence principle (Kroch
and Joshi, 85; Abeillé, 91) : the trees for a predicative
item contain positions for all its arguments.

But for a given predicate, we cxpect the
canonical arguments to remain constant through
redistribution of functions. The canonical subject

(argument 0) in a passive construction, even when
unexpressed, is still an argument of the predicate. So
the principle should be a principle of predicate-
functions co-occurrence : the trees for a predicative
item contain positions for all the functions of its
actual subcategorization. In the solution we propose,
this principle is translated as :

1- subcat principle : a terminal class must inherit of
a canonical subcategorization (dimension 1) and a
compatible redistribution, including the case of no
redistribution at all (dimension 2). This pair of
super-classes defines an actual subcategorization.

2- completeness/coherence/unicity principle : the
terminal class must inherit exactly one type of
realization for each function of the actual
subcategorization®.

Well-formedness of elementary trees is also
expressed through the form of the hierarchy itself
(the content of the classes, the inheritance links, the
inheritance modes for the different slots...). This
information spread into the hierarchy is used for tree
generation following technical principles of well-
formedness. Due to a lack of space we detail only
the following principle, useful to understand next
section.

3- unification principle : the unifications of partial
descriptions and meta-equations required by
inheritance must succeed; the unification of nodes
with same constant is mandatory; moreover two
nodes with the same value for the meta-feature
"function” must unify.

Figure 6 shows an example of generation of a
terminal class, corresponding to the tree, for French,
for the full passive of a strict transitive verb, in a
wh-question on the agent (see figure 7). It can be
itlustrated by the sentence :

(Je me demande) par qui Jean sera accompagné.
By whom will Jean be accompanied?

Sr
op /\S
l/\N() ! N1l Vil Vo

par
Figure 7. Tree for French, for the full passive of a strict transitive
verb, in a wh-question on the agent.

The corresponding terminal class WOn0Vn1-
pass inherits the canonical subcat STRICT
TRANSITIVE and the redistribution PERSONAL
FULL PASSIVE. This defines the following actual
subcategorization : arg0/par-object; argl/subject.
Then the terminal class inherits the relevant
realization for each of the cited functions (SUBJECT
IN CANONICAL POSITION and PAR-OBJ-
QUESTIONED).

6Following from the functional representation of
subcategorization, this principle relates to the principles of well-
formedness of functional structures in LFC.

198

4.2.2
trees

From terminal classes to elementary

The terminal classes representing elementary
trees inherit a (constructed) partial description of
tree, with meta-equations and equations. To get
elementary trees from these classes, we need to
translate the partial descriptions into trees. This is
done by taking the least tree(s) satisfying the
description. We do not go into the details for brevity
reasons, but intuitively the minimal tree is computed
by taking the underspecified links to be path of
length zero when their ends are compatible, of length
one otherwise (figure 8). A description can leave
underspecified the order of some daughters, leading
to several minimal trees. Rogers and Vijay-Shanker
(94) give a formal mechanism to obtain trees from
descriptions.

S S
/\ =>
NP vr NP VP
’ |
i
\% \"

Figure 8. Translating a dashed line into a path of length one.

After obtaining tree(s) from the partial
description, the generator translates the node
constants into the concatenation of syntactic
category and index (if it exists).

4.2.3

Let us go back to the tree of figure 7. The next
figure shows in detail the super-classes” (introduced
at figure 6) for the class WOn0Vnl-pass representing
this tree :

A detailed example

4 4 N\
STRICT TRANSITIVE PERSONAL FULL
¢ PASSIVE
meta-equations : . -
?arg0.canonical-function = topolagy : 75
subject /\
Parg0.ind = 0
?argl.canonical-function = ?sup Vo
object I
?arglind =1 I
. _J ?inf
7 PAR-OBJECT _) ;gectilt-e:qélations :
wh-questionned position Zsup.cat =V ?inf.cat=V
topology: 75 ?infind =m ?inf.qual={

?arg0.function = par-obj
Parg ton = subji
?argl.function = subject)

a’p 75
NOMINAL SUBJECT
?parP 2quest canonical position
topology : 2
par

meta-equations :
?Sr.cat=5 ?parP.cat=P
?Srind =r ?SP.cat = SP
?quest.cat = N
?quest.function = par-obj
Lq P |

?subject sup

meta-equations :
?subject.function = subject
2subject.cat =

\ subject.cat = N)

Figure 9. Super-classes of WOnOVnl-pass.

7We only show the direct super-classes. They are given
with their slkl)ecific properties and with their inherited properties
as well. The "equations” slot is not shown. In the partial
descriptions shown, the constants naming the nodes start with ?.

The conjunction of the inherited partial
descriptions leads to the following description :

7Sy
PP ?5
?parl ?quest ?subject 2sup Vo
par ?inf

Figure 10. Inherited partial description.

The nodes with same constants have unified
(?S/7?S) and the constants with same "function”
meta-feature have also unified : ?subject/?argl and
?quest/?argl (cf. principle 3). Then the node
constants are translated and the least satisfying tree
is computed, leading to the target tree of figure 7.

5 Applications

The tool has been used to update and augment
the French LTAG developed at Paris 7. A hierarchy
has been written that gives a compact and
transparent representation of the verbal families
already existing in the grammar. The writing of the
hierarchy has been the occasion of updating
structures and equations, insuring uniform and
coherent handling of phenomena. Furthermore the
automatic generation from the hierarchy guarantees
the well-formedness of the families, with all possible
conjunctions of phenomena. Iixtra phenomena such
as nominal subject inversion, impersonal middle
constructions, some causative constructions or free
order of complements have been added.

The generative power of the tool is effective : out
of about 90 hand-written classes, the tool generates
730 trees for the 17 families for verbs without
sentential complements®, 400 of which were present
in the pre-existing grammar. The tool is currently
used to add trees for some elliptical coordinations.

We see several possible applications of the tool.
We could try to generate a grammar with weaker
constraints, useful for corpora with recurrent ill-
formed sentences. Secondly, we could obviously use
the tool to build a grammar for another language,
either from scratch or using the hierarchy designed
for French. Using this already existing hierarchy and
the implemented principles of well-formedness will
lcad to a grammar for another language "compatible”
with the French grammar. This could be an
advantage in the perspective of machine translation
for instance.

Because the principles of well-formedness
implemented are general and capture mainly the
extended domain of locality of LTAG, the generator
we have presented can very well be used to generate
a grammar with different underlying linguistic
choices (for instance the GB perspective used in the
English grammar cited).

8 By the time of conference, we will be able to give figures
for the families with sentential complements also.

199

6 Conclusion

We have presented a hierarchical and principle-
based representation of syntactic information. It
insures transparency and coherence in syntactic
descriptions and allows the generation of the
elementary trecs of an LTAG, with systematic
crossing of linguistic phenomena.

7 References

A. Abeillé, K. Bishop, Sharon Cote and Y. Schabes. 1990.
A lexicalized Tree Adjoining Grammar for Inglish.
Technical Report, University of Pennsylvania.

A. Abeillé. 1991. Une grammaire lexicalisée d’Arbres
Adjoints pour le frangais, PhD thesis, University
Paris 7.

T. Becker. 1993. T1IyTAG : a new type of Tree Adjoining
Grammars for Hybrid Syntactic Representation of
I'ree Order Languages, PhD thesis, University of
Saarbriicken.

T. Becker. 1994. Patterns in Metarules. Proceedings of the
third International Workshop on Tree Adjoining
Grammars (TAG+3), Paris.

C. Doran, D. Egedi, B.A. Hockey, B. Srinivas and M.
Zaidel. 1994, XTAG System - A wide Coverage
Grammar for English. Proceedings of COLING'Y4,
Kyoto.

R. Evans, G. Gazdar and D. Weir. 1995. Encoding
Lexicalized Tree Adjoining Grammar with a
Nonmonotonic Inheritance Hierarchy. Proceedings of
AC1.95, Boston.

A, Joshi. 1987, Introduction to Tree Adjoining Gramumnar, in
A. Manaster Ramer (ed), The Mathematics of
Language,). Benjamins, pp. §7-114.

R. Kasper, B. Kiefer, K. Netter and K. Vijay-Shanker.
1995. Compilation of IIPSG to TAG. Proceedings of
ACL'95, Boston.

A. Kroch and A. Joshi. 1985. The linguistic relevance of
Tree Adjoining Grammars. Technical report,
University of Pennsylvania.

P. Paroubek, Y. Schabes and A. Joshi. 1992, XTAG - A
graphical Workbench for developing Tree Adjoining
Grammars. Proceedings of 3-ANLP, Trento.

J. Rogers and K. Vijay-Shanker. 1992. Reasoning with
descriptions of trees. Proceedings ACL'92, pp. 72-80.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees
from their descriptions : an application to Tree-
Adjoining Grammars. Computational Intelligence,
vol. 10, N° 4, pp. 401-421.

Y. Schabes, A. Abeillé and A. Joshi. 1988. Parsing
strategies with lexicalized grammars : Tree
Adjoining Grammars. Proceedings of COLING'SS,
Budapest, vol. 2, pp. 578-583.

K. Vijay-Shanker and Y. Schabes. 1992. Structure
Sharing in Lexicalized Tree Adjoining Grammar.
Proceedings of COLING92, Nantes, pp. 205-211.

XTAG research group. 1995. A lexicalized Tree Adjoining
Grammar for English, Technical Report IRCS 95-03,
University of Pennsylvania.

