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Abstract

This paper presents a pruning tech-
nique which can be used to reduce the
number of paths scarched in rule-based
hag geuneralors of the type proposed by
(Poznanski et al., 1995) and (Popowich,
1995). Pruning the search space in these
generators 1s important given the com-
putational cost of bag generation. 'L'he
technique relies on a connectivity con-
straint between the semantic indices as-
sociated with cach lexical sign in a bag.
Testing the algorithm on a range of sen-
tences shows reductions i the genera-
tion time and the number of edges con-
structed.

1 Introduction

Bag generation is a forin of natural language gen-
cration in which the input is a bag (also known as
a multiset: a sct in which repeated elements are
significant) of lexical clerents and the output is a
grammalical sentence or a statistically most prob-
able permutation with respect to some language
model.

Bag generation has been considered within the
statistical and rule-based paradigms of computa-
tional linguistics, and each has handled this prob-
lem differently (Chen and Lee, 1994; Whitelock,
1994; Popowich, 1995; Trujillo, 1995). "This pa-
per only considers rule based approaches to this
problem.

Bag gencration has received particular atten-
tion in lexicalist approaches to M, as cxempli-
fied by Shake-and-Bake generation (Beaven, 1992;
Whitclock, 1994). One can also envisage applica-
tions of bag generation to generation from mini-
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mmally recursive semantic representations (Copes-
take et al., 1995) and other semantic frameworks
which separate scoping from content information
(Reyle, 1995). In these frameworks, the unordered
nature of predicate or relation sets makes the ap-
plication ol bag generation techniques attractive.

A notational convention used in the paper is
thal items such as ‘dog,’ stand for simplified lex-
ical signs of the forin (Shieber, 1986):

[cm‘: N ]
s — | RELN =dog
SEM = [Am,;l =1 E’]

[n such signs, the semantic argument will be re-
ferred 1o as an ‘index’ and will be shown as a
subsceript to a lexeme; in the above example, the
index has been given the unique type 1.

The term index is borrowed from HPSG (Pol-
fard and Sag, 1994) where indices are used as ar-
guments to relations; however these indices may
also be equated with discourse relerents in DRI
(Kamp and Reyle, 1993). As with most lexical-
ist gencrators, semantic variables must be distin-
guished in order to disallow translationally incor-
recl permutations of the target bag. We distin-
guish variables by uniquely typing themn.

T'wo assumptions arc made regarding lexical-
semantic indexing.

Assumption 1 All lexical signs must be indezed,
including functional and nonpredicative elements

(Calder ¢t al., 1989).

Assumption 2 All lexical signs must be con-
neeled to each other. Two lexical signs are con-
nected if they are directly connected; furthermore,
the connectivity relation is transilive.

Definition 1 Two signs, A, B, are directly con-
necled if there exist at least two paths, PathA,
PathB, such that A:PathA is token identical with
B:Pathl.

The indices involved in determining connec-
Livity arc specified as parameters for a par-
ticular formalism, HPSG,

For example, in



play a major role in preventing the generation of
incorrect translations.

1 CAT =S caT=NP CAT=VP
D | sem o] = sem:arG1 ={1] SEM:@[ARG2 1]

5 [cAr=NP car=Det cAT=N1

) lsem=lo] | = |sumancl SEM :@[Anal ]
3 car=N1 [car=A car=N1
3) seM=[0] | =7 |sem:aral SEM :@[ ARG :m]
4) |CAr=N1 car=N1 car=PI

) som={0] | = | sEM: ARG SEM [ARGl ]
Ky | CAT=N1 car=N
5) | sum =q] | = |sem=[0]
6y |car=PP [car=1 car=NP

) | sem= = | SEM :@[ ARG3 ] SEM:ARGL
» [csr=VP [CAT=Vitrn car=NP

) | sem =0} | = | sem ={0] [ ARG3 ] SEM:ARG1

Figure 1: Simple unification grammar.

It will be shown that it is possible to exploit
the connectivity Assumption 2 above in order to
achieve a reduction in the number of redundant
wifss constructed by both types of generator de-
scribed in scction 2.

3.1 Using Connectivity for Pruning

Take the following bag:

Ex. 2 {dog,theci,browny ,big:}

(corresponding to ‘the big brown dog’). Assume
that the next wiss to be constructed by the gen-
erator is the NP ‘the dog’. Given the grammar
in igure 1, it is possible to deduce that ‘brown’
can never be part of a complete NP constructed
from such a substring. This can be determined
as follows. If this adjective were part of such a
sentence, ‘brown’ would have to appear as a leaf
in some constituent that combines with ‘the dog’
or with a constituent containing ‘the dog’. ¥rom
the grammar, the only constituents that can com-
bine with ‘dog’ are VP, Vtra and P. However,
none of these constituents can have ‘brown;’ as
a leaf: in the casec of P and Vtra this is trivial,
since they are both categorics of a different lexi-
cal type. In the case of the VP, ‘brown;’ cannot
appear as a leaf either because expansions of the
VP are restricted to NI complements with 2 as
their semantic index, which in turn would also re-
quire adjectives within them to have this index.
Iurthermore, ‘brown;’ cannot occur as a leaf in
a deeper coustituent in the VP because such an
occurrence would be associated with a different
index. In such cases ‘brown’ would modily a dif-
ferent noun with a different index:

Ex. 8 {ther,dogy,withy 2, thes,browns, collura}
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A naive implementation of this deduction would
attempt to expand the VP depth-first, left to
right, in order to accommodate ‘brown’ in a com-
plete derivation. Since this would not be possible,
the NP ‘the dog’ would be discarded. This ap-
proach is grossly inefficient however. What is re-
quired i1s a more tractable algorithm which, given
a wiss and its associated sign, will be able to deter-
mine whether all remaining lexical elements can
ever form part of a complete sentence which in-
cludes that wfss.

Note that deciding whether a lexical sign can
appear outside a phrase is determined purely by
the grammar, and not by whether the lexical cle-
ments share the same index or not. Thus, a more
complex grammar would allow ‘the man’ from the
bag

Ex. 4 {thei,many,shavese,1,1,himselfi}

even though ‘himself’ has the same index as ‘the
man’.

3.2 Quter Domains

The approach introduced here compiles the rel-
evant information offline from the grammar and
uses it to check for connectivity during bag gener-
ation. The compilation process results in a set of
(Sign,Lex,Bindings) triples called outer domains.
This set is based on a unification-based phrase
stracture grammar defined as follows:

Definition 2 A grammar is a tuple (N,1,P,5),
where P 1s a sel of productions o« = B, « 15 a
stgn, 3 is a list of signs, N is the sel of all «, T
15 the set of all signs appearing as elements of 3
which unify with lexical entries, and S is the start
sign.

Outer domains are defined as follow:

Definition 3 { (Sign,Lex, Binds) | Sign € N U
T, Lex € T and there ewisis a derivalion
a = B Sign'BaLed By or o = By Le! BaSign' Ba,
and Sign' a unifier for Sign, Led « unifier
for Lex, and Binds the set of all path pairs
< StgnPath, LexPath> such that Sign’:SignPath is
token identical with Led :LexPath}

Intuitively, the outer domains indicate that
preterminal category Lex can appear in a com-
plete sentence with subconstituent Sign, such that
Lex is not a leaf of Sign. Using ideas from data
{tow analysis (Kcennedy, 1981), predictive parser
constructions (Aho et al., 1986) and feature gram-
mar compilation (‘Trujillo, 1994) it is possible to
construct such a set of triples. Quter domains
thus represent elements which may lie outside a
subtree of category Sign in a complete sentential



they would be indicated through paths such as
SYNSEM:LOCAL:CONTENT:INDEX.

"To ensure that only connecled lexical signs arc
generated and analysed, the following assumption
must also be made:

Assumption 3 A grammar will only generate or
analyse connecled lezical signs.

2 Bag Generation Algorithms

‘I'wo main types of rule-based bag generators have
been proposed. 'The first type consists of a parser
suitably relaxed to take into account the un-
ordered character of the input (Whitelock, 1994;
Popowich, 1995; Trujillo, 1995). For example, in
generators based on a chart parser, the fundamen-
tal rule is applied only when the edges to be com-
bined share no lexical leaves, in contrast to re-
quiring that the two edges have source and target
nodes in common. The other type of generator ap-
plies a greedy algorithm to an initial solution in
order to find a grammatical sentence (Poznanski
et al., 1995).

2.1 Redundancy in Bag Generation

One disadvantage with the above generators is
thal they construct a number of structures which
nced not have been computed at all. In build-
ing these structures, the generator is effectively
scarching branches of the scarch space which never
lead to a complete sentence. Consider the the fol-
lowing input bag:

{dog,barked, the,brown, big}

Previous rescarchers (Brew, 1992; Phillips, 1993)
have noted that from such a bag, the following
strings are generated but nonc can form part of
a complete sentence (note that indices are omit-
ted when there is no possibility of confusion; #
indicates that the substring will never be part of
a complete senlence):
Ex. 1 # the doy

# the dog barked

# the brown doy
I'or simple cases in chart based generators such
unnceessary strings do not create many problems,
but for longer sentences, cach additional substring
implies a [urther branch in the scarch tree to be
considercd.

Since the computational cowplexity of the
greedy bag generator (Poznanski et al., 1995) is
polynomial (i.c. @(n")), the effect of redundant
substructures is not as detrunental as for parser
based generators. Nevertheless, a certain amount
of unnccessary work 1s perforimed. 'lo show ihis,
consider bhe lest-rewrite sequence for Iixample 1
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Test: dog barked the brown big

Roewrite: __ barked the dog brown big
Test: barked (the dog) brown big
Rewrite: _ (the dog) barked brown big
Test: ((the dog) barked) brown big
Rewrite: the brown dog barked __ big
Test: ((the (brown dog)) barked) big
Rewrite: the big (brown dog) barked _.
Test: ((the (big (brown dog))) barked) (ter-
minale)

In this sequence double underscore (..) indi-
cates the starting position of a moved constituent;
the moved constituent itsell is given in bold face;
the bracketing indicates analysed constituents (for
expository purposes the algorithm has been over-
simplified, but the general idea remains the same).

Now consider the step where ‘brown’ is inserted
between ‘the’” and ‘dog’. This action causes the
complete structure for ‘the dog barked’ to be dis-
carded and replaced with that for ‘the brown dog
barked’, which in turn 1s discarded and replaced
by ‘the big brown dog barked’.

2.2 Previous Work

A number of pruning techniques have been sug-
gested to reduce the amount of redundancy in bag
generators.  Brew (1992) proposed a constraint
propagation technique which climinates branches
during bag generation by considering the nee-
essary funclor-argument relationships that exist
between the component basic signs of categorial
signs. These relationships form a graph indicat-
ing the necessary conditions for a lexical ilein to
form part of a complete seutence. Such graphs can
be used to elininate the subsirings in ixample 1.
Unlortunately the techmique exploits specilic as-
pects of categorial grammars and it 1s not clear
how they may be used with other formalisins.

Trujillo (1995) adapts some of Brew’s ideas
to phrase structure grammars by compiling Iol-
low functions and constructing adjacency graphs.
While this approach reduces the size of the scarch
space, 11 does not prune it sulliciently {for certain
clagses of modifiers.

Phillips (1993) proposes handling inefficiency at
the expense of completencess. s idea 1s to main-
Lain & queae of modifiable coustituents (e.g. Nls)
i order to delay their combination with olher
constituents until modifiers (e.g. PPs) have been
analysed. While practical, this approach can lead
to allernative valid sentences not being generated.

3 Connectivity Restrictions

In searching for a mechanisin that eliminates an
nccessary wiss, it will be possible to use indices in
lexical signs. As mentioned carlier, these indices



derivation. The following definition specifies how
outer domains are used:

Definition 4 A lexical sign Ler is in the
outer domain of Sign' iff there is a triple
(Stgn,Lez, Binds) in outer domains such that Sign
and Lez unify with Sign’ and Lex’ respectively, and
there is al least one pair < PathS,PathL> € Binds
such that Sign’:PathS unifies with Lex : Pathl,.

In compiling outer domains, inner domains are

used to facilitate computation. Inner domains are
defined as follows:
Definition 5 { (Sign,Lez,Binds) | Sign € NUT,
Lex € 1" and there cxisls a derivalion o =>
B Led Ba, with Sign’ a unifier for Sign, Lex’ a uni-
fier for Lex, and Dinds the set of all path pairs
<SignPath, LexPath> such that Sign':SignPath is
token identical with Led :LexPath}

The inner domains thus express all the possible
terminal categories which may be derived from
cach nonterminal in the grammar.

To be able to exploit connectivity during gen-
eration, inner and outer domains contain only
triples in which Binds has at least one clement.
[n this way, only those lexical categories which are
directly connected to the sign are taken into ac-
count; the implication of this will become clearer
later.

As an example, the outer domain of NP as de-
rived from the above grammar 1s:

(NP[sem:argl:X],Vira[sem:arg2:Y],
{<sem:argl,sem:arg2>})

{(NP[sem:argl:X],Vira[sem:arg3:Y],
{<sem:argl,sem:argd>})

(NP[sem:argl:X],P[scm:arg3: Y],
{<sem:argl,sem:argd3>})

This set indicates that for any NP, the only ter-
minal categories not contained in the subtree with
root NP, and with which the NP shares a seman-
tic index, are Vtra and P. For instance, the first
triple arises from the following tree:

S

///\

NP[sem:argl:X] VP[sem:arg2:X]

T

Vitra[sem:arg2:X] NP

3.3 Pruning through Outer Domains and
Connectivity

The pruning technique developed here operates
on grammars whose analyses result in connected
leaves.

Consider some wiss W constructed from a bag B
and with category C; this category, in the form of
a sign, will include syntactic and lexical-semantic
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information. Such a wfss will have been con-
structed during the bag generation process. Now,
cither W includes all the input elements as leaves,
in which case W constitutes a complete sentence,
or there are elements in the input bag which are
not part of W. In the latter case, for bags obeying
Assumption 2, the following condition holds for

any W that can form part of a complete sentence:

Condition 1 Let I be the set of leaves appearing
in W, let G be the graph (V,F), where V = {C}
UB—L and E={ {2y} | 2,y € Vand y isin
the outer domain of z}. Then G is connected.

To show that this condition indeed holds, con-
sider a grammatical ordering of some input bag
B, represented as the string W:

o, vh..w

By Assumption 2, the lexical clements in the bag,
and therefore in any grammatical ordering of it,
are connected. Now consider reducing this string
using the production rule:

D= ~6
to give the string W'
a.D.w

In this case, the signs in W’ will also be connected.
This can be shown by contradiction:

Proof 1 Assume that there is some sign ¢ in W
to which D is not conneciled. Then grammar G
would allow disconnected strings lo be generated,
contrary to Assumption 8. This is because D
would not be able to rewrite v18; in such a way
that both daughters were connected to (, leading
to a disconnected string.

The situation in string W' is analogous to that
in Condition 1. By identifying signs which are
directly connected in E, it is possible to determine
whether I is connected and consequently whether
C can form part of a complete derivation. Instead
of simply comparing the value of index paths, it is
more restrictive to use outer domains since they
give us precisely those elements which are directly
connected to a sign and are in its outer domain.

3.4 Example

Consider Example 2. Io climinate the wfss
‘the dog’ from further consideration, a connected
graph of lexical signs is constructed before gen-
eration is started (Figure 2). This graph is built
by using the outer domain of cach lexical element
to decide which of the remaining clements could
possibly share an index with it in a complete sen-
tence.



dog thes

Y,

bi
81 brown;

Figure 2: Initial connected graph.

When a new wiss is constructed during genera-
tion, say by application of the modified fundamen-
tal rule or during the rewrite phasc in a greedy al-
gorithm, this initial graph is updated and tested
for connectivity. If the updated graph is not con-
nected then the proposed wiss cannot form part of
a complete sentence. Updating the graph involves
three steps. IMirstly every node in the graph which
is a leal of the new wiss is deleted, together with
its associated arcs. Sccondly, a new node corre-
spounding to the new wiss is added to the graph.
Pinally, a new arc is added to the graph between
the new node and every other node lying in its
outer domain. The updated (disconnected) graph
that cnsues after constructing ‘the dog’ is shown
in Figare 3; this NP is therefore rejected.

‘the dog’y

big1  — —» browny

Figure 3: Updated disconnected graph after the
wfss ‘the dog’ 1s constructed.

4 Compiling Connectivity
Domains

For reasons of space, the computation of outer do-
mains cannot be described fully here. The broad
outline, however, is as follows. First, the inner
domains of the grammar are calculated. This in-
volves the calculation of the fixed point of set
equations, analogous to those used in the con-
struction of First sets for predictive parsers (Aho
et al., 1986; Trujillo, 1994). Given the inuer do-
mains of cach category in the grammar, the con-
struction of the outer domains involves the com-
putation of the fixed point of set equations relat-
ing the outer domain of a category to the inner
domain of its sisters and to the outer domain of
its mother, in a manncr analogous to the compu-
tation of Follow sets.
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During computation, the set of Binds is mono-
tonically increased as different ways of directly
connecting sign and lexeme are found.

5 Results

The above pruning technique has been tested on
bags of different sizes including different combina-
tions of modifiers. Sentences were generated using
two versions of a modified chart parser. In one,
every nactive edge constructed was added to the
chart. To the other, cvery inactive edge was tested
to sce if 1t led to a disconnected graph; if it did,
then the edge was discarded. 'The results of the
experitient are shown in Table 1. 'The implemen-
tation was in Prolog on a Sun SparcStation 10; the
generation timings do not include garbage collec-
tion time. The gramnar used for the experiment
consisted of simplified, feature-based versions of
the [D rules in GPSGj; there were 18 rules and
50 lexical entrnies. Compilation of the outer do-
mains for these rules took approximately 37 min-
utes, and the resulting set occupies 40K of mem-
ory. In the gencral case, however, the size of the
outer domains is @(n?), where n is the number
of distinct signs; this number can be controlled
by employing equivalence classes of different lev-
els of specificity for pre-terminal and non-terminal
SIENS.

Chart Gen. + Pruning
Bag size  Time  Fdges Time  Fdges
2 0.1 15 0.1 15
4 0.3 37 0.4 36
7 1.5 103 2.0 99
7 0.9 72 1.0 67
11 5.1 213 3.9 138
12 2.6 133 3.4 123
15 9.0 294 7.2 186
15 17.6 448 11.1 253
17 2.3 126 2.6 105

‘Table 1: Effect of pruning (times in sces).

Only one rcading was generated for cach bag,
corresponding to one attachment site for PPs.
T'he table shows that the technique can yield ve-
ductions in the number of edges (both active and
inactive) and time taken, especially for longer sen-
tences, while retaining the overheads at an accept-
able level.

6 Conclusion

A technique for pruning the search space of a bag
generator has been implemented and its usefulness
shown in the generation of different types of con-
structions. 'T'he technique relics on a connectivity
constraint imposed on the semantic relationships



expressed in the input bag. In order to apply the
algorithm, outer domains needed to be compiled
from the grammar; these are used to discard wfss
by ensuring lexical signs outside a wfss can indeed
appear outside that string.

Exploratory work employing adjacency con-
straints during generation has yielded further im-
provements in execution time when applied in con-
junction with the pruner. If extended appropri-
ately, these constraints could prune the search
space even further. This work will be reported
at a later date.
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