
Arabic Fini te-State Morphological Analysis and Generat ion

K e n n e t h R . B e e s l e y

R a n k X e r o x R e s e a r c h C e n t r e

G r e n o b l e L a b o r a t o r y

Le Q u a r t z

6, c h e m i n de M a u p e r t u i s

3824O M E Y L A N

F r a n c e

ken. beesley@xerox, fr

Abstract
This paper describes a large-scale sys-
tem that performs morphological anal-
ysis and generation of on-line Arabic
words represented in the standard or-
thography, whether fully voweled, par-
tially voweled or unw)weled. Analyses
display the root, pattern and all other
affixes together with feature tags in-
dicating part of speech, person, num-
ber, mood, voice, aspect, etc. The
system is based on lexicons and rules
from an earlier KIMMO-style two-level
morphological system, reworked exten-
sively using Xerox Finite-State Morphol-
ogy tools. The result is an Arabic Finite-
State Lexical Transducer that is applied
with the same runtime code used for
English, French, German, Spanish, Por-
tuguese, Dutch and Italian lexical t ran~
ducers.

1 I n t r o d u c t i o n

1.1 C h a l l e n g e s o f A r a b i c M o r p h o l o g y

Semitic languages like Arabic present unusual
challenges to automatic morphological analysis
and generation. The first challenge is morpho-
tactic: whereas most languages construct words
out of morphemes which are just concatenated
one after another, as in un-t-fail+ing-t-ly, an Arabic
s t e m like daras (&,3.~) 1 is traditionally analyzed

as consisting of a three-consonant r o o t , transliter-
ated as drs (0~ .~ ~), which is interdigitated with

a p a t t e r n CaCaC, where C represents a slot for a
root consonant, sometimes termed a rad ica l ; var-
ious prefixes and suffixes can then concatenate to
the stem in the familiar way. See Figure 1.

Similarly, the root klb (~,. c.~ "-J) interdigitates

with the same pattern to form katab (. ~ ; and

1The Arabic examples in this paper were produced
using the ArabTeX package for TEX and ~:I'EX by
:Professor Klaus Lagally.

Abstract lexical level:

C a C a C
w a + + a t

d r s

Abstract intersected level:

w a + d a r a s + a t

Figure 1: Abstract wa-l-daras-l-at ("and she
learned/studied")

the root brj (.~ j ~.) iuterdigitates with the pat-

tern taCaC-aC to form the stein tabar-aj (~.~.:).
There are perhaps 5000 Arabic roots in common
usage, and about 400 phonologically distinct pat-
terns, most of which are ambiguous. Each root
can legally combine with only a small subset of
the phonologically distinct patterns, an average
of about seventeen or eighteen, and this decid-
edly derivational process must be controlled by
old-fashioned lexicography.

The second challenge is that standard Arabic
surface orthography seldom represents short vow-
els, distinctive consonant length, and other po-
tentially helpful details. The wa+daras+at exam-
pie could conceivably be written fully roweled as
wadarasal (~.aSJ~) , but it is much more likely to

appear ms tile unvoweled wdrst (,~.., p_~). The re-

suiting incompleteness of the surface orthography
makes written text unusually ambiguous, with an
average of ahnost five valid morphological anal-
yses per word. Finally, Arabic orthography dis-
plays an idiosyncratic mix of deep morphophono-
logical elements carried to the surface, resulting
in silent letters, and more surfacy representations
of epenthesis, deletion and assimilation.

1.2 C h M l e n g e s o f A r a b i c Lex ica l L o o k u p

Standard Arabic dictionaries like the Wehr-Cohen
are organized by root headwords like drs (&, j ~)

and ktb (~. ~ a). In fact the roots by themselves

89

are not valid words, nor are they even pronounce-
able until they are combined with a pattern. Be-
cause in orthographical words these root conso-
nants or radicals are usually surrounded, and even
split up, by other consonant letters, and because
the radicals themselves may be modified by assim-
ilation or even deleted entirely in a written word,
root identification and dictionary lookup are sig-
nificant challenges for learners and native speakers
alike.

2 Goals

To be interesting in our applications, the Ara-
bic morphology system had to have the following
qualities:

1. It had to deal with real Arabic surface orthog-
raphy, as represented on-line in standards
such as ASMO 449 or the Macintosh Arabic
code page (ISO8859-6). While it is possible to
devise strict roman transliterations of Arabic
orthography that are unambiguously convert-
ible back and forth into real Arabic orthogra-
phy, most existing romanizations are in fact
transcriptions that contain more or less in-
formation than the original and so represent
different orthographical systems.

2. It had to be able to analyze Arabic words
as they appear in real texts. This means
timt input words may be fully voweled or
diacriticized (i.e. supplied with full diacrit-
ical markings, a style of writing found only
in religious texts, poetry, and writings in-
tended for children and other learners), par-
tially diacriticized or undiacriticized, which is
the normal case. A single system had to han-
dle undiacriticized words and yet be able to
take advantage of any diacritics that might
be present.

3. To facilitate lookup of words in printed and
on-line dictionaries, and for pedagogical pur-
poses, the system had to return the root as an
easily distinguished part of the analysis. An
easier to build, but less useful, system would
simply deal with complete stems rather than
roots and patterns.

4. The system had to be large and open-ended,
with each root coded to restrict the patterns
with which it can in fact co-occur.

5. It had to be efficient and accurate, suc-
cessfully analyzing hundreds or thousands
of words per second on commonly available
workstations and higher-end PCs.

6. It had to perform efficient and accurate gen-
eration of valid surface forms when supplied
with the component root and relevant fea-
ture tags. Analysis and generation had to
be straightforward inverse operations.

Forest of Lexicon "Letter Trees"

Trees are connected by "continuation classesY
A letter path through the trees is an abstract word.

Rules hand-compiled into FSTs

The intersection of the rules is simulated in code.

Rules allow and control the discrepancies between the
abstract words in the lexicon and the surface words being
analyzed.

Figure 2: Traditional Kimmo-Style System Archi-
tecture

3 H i s t o r y

In 1989 and 1990, with colleagues at ALPNET
(Beesley, 1989; Beesley, Buckwalter and New-
toil, 1989; Buckwalter, 1990; Beesley, 1990), I
built a large two-level morphological analyzer for
Arabic using a slightly enhanced implementation
of KIMMO-style two-level morphology (Kosken-
niemi, 1983, 1984; Gajek, 1983; Karttunen, 1983).
Traditional two-level morphology (see Figure 2),
as in the publicly available PC-KIMMO imple-
mentation (Antworth, 1990), allows only concate-
nation of morphemes in the morphotacties. Lex-
icons are stored and manipulated at runtime as
a forest of letter trees, with each trec typically
containing a single class of morphemes, with the
leaves connected to subsequent morpheme trees
via a system of "continuation classes". A letter
path through the lexieal trees from a legal start-
ing state to a final leaf defines an abstract or "lexi-
cal" string. The various two-level rules, which had
to be hand-compiled into finite-state transducers,
were run in parallel by code that simulated their
intersection. The rules allowed and controlled the
variations between the lexical strings and the sur-
face strings being analyzed: thus the Arabic sur-
face word wdrsl (~5,~ja ~) could be matched with

the lexical string wa+daras+al, among others, via
appropriate rules.

In the ALPNET Arabic system, roots and pat=
terns were stored in separate trees in the lexical
forest, and an algorithm, called Detouring, per-
formed the interdigitation of semitic roots and
patterns into stems at runtime. The other chal-

9 0

lenges of Arabic morphological w~riation and or-
thography, including varying amounts of diacriti-
cal marking, all succmnbed to rather complex but
conq)letely traditional two-level rules. Whih" the
resulting system was successfidly sold and is also
currently being used as the morphological engine
of an Arabic project at the University of Mary-
land, it suffers from many well-known limitations
of traditional two-level morphology.

1. As there was no automatic rulc compiler
available to us, the rules had to bc compiled
into tinite-state transducers t)y hand, a te-
dious task that often influences the linguist
to simplify the rules by postulating a rather
surfacy lexical level. Hand-compilation of a
complex rule, which can easily take hours, is
a real disincentive to change and experimen-
tation.

2. Because there was no algorithm to intersect
the rule transduccrs, over 100 of them in
the ALPNET system, thcy are stored sepa-
rately and must each be consulted separately
at each step of the analysis. As the time nec-
essary to move a rule transduccr to a new
state is usually independent of its size, mov-
ing 100 transducers at runtimc cat, be 100
times slower than moving a single intersected
transducer.

3. Because the lexical letter trccs in a tra-
ditional Kimmo-style system are dccoratcd
with glosses, features and other miscellaneous
information on the leaves, they are not purc
finite-state machines, cannot bc combined
into a single fsm, cannot be composed with
the rules, and have to be storcd and run as
separate data structures.

4. Various diacritical fcatures inscrted into the
lexical strings to insurc proper analyses made
this and other KIMMO-stylc systems awk-
ward or in,practical for generation.

5. Finally, in the enhanced ALPNI,;T implemen-
tation, the storage of almost 5000 roots and
hundreds of patterns it, separate sul)lcxicons
saved memory space, but the l)etouring op-
eration that interdigitatcd them in rcaltime
was inherently inelficient, building and then
throwing away many superficially plausible
sterns that were not sahctioned by the lexi-
con codings. (Any Arabic root (:at, combine
legally with only a small subset of the possi-
ble patterns.) With building phantom stems
and the unavoidable backtracking caused by
the overall deficiency and ambiguity of writ-
ten Arabic words, the resulting system was
rather slow, analyzing about 2 words per sec-
ond on a small IBM mainframe.

Abstract lcxical level:

[drs & CaCaC]

Abstract intersected Icvcl:

daras

Figure 3: Intersection of Lexically Consecutive
Root and Pattcrn

Abstract Icxical lcvcl:

[drs & CVCVC & aa]

Abstract intcrscctcd level:

daras

Figure 4: Intersection of Lexically Consecutive
Root, CV-Template, and Voweling

4 R e i m p l e m e n t a t i o n

Work began in 1995 to convert the analysis to thc
Xerox fst format. The ALPNET lexicons were
first converted into the format of lexc, the lexi-
con c()mpiler (Kart tnnen and Beesley, 1992). Al-
thongil lexc by itself is largely limited to concatc-
native morphotactics, just like traditional two-
level morphology, it was noted that the interdig-
itation of semitic roots and patterns is nothing
more or less than their intersection, an operation
supported in the Xerox finite-state calculus. Thus
if ? represents any letter, and C represents any
radical (consonant), the root drs (tY' -) ~) can be

interpreted as ?*d?*r?*s?* .
The intersection of this root with the pattern

CaCaC yields the stem daras (ty,55). See Figure

3.
In s()mc analyses (e.g. McCarthy, 1981), the

voweling of the pattern is also abstracted out,
leaving pattern templatcs like C V C V C and a vo-
calic element that cat, bc formalized as ?*a?*a?*.
If V represents a vowel, then the intersection of
the root, ten,plate and vocalic elements yields the
same result. See Figure 4.

Using standard Ol)crations availablc through
the lexc compiler and other finite-state tools, the
analysis can be constructed according to the taste
and necds of the linguists.

Because the upper-side string is returned as the
result of an anMysis, it is often more helpful to
define the upper-side string as a baseform (here
a root) folh,wed by a set of symbol tags designed
to represent relevant morphosyntactic features of
the attalysis. For examph', daras (O,)~) happens

to be the Form 1 perfect active stem based on the
root drs (t Y) a, with C V C V C being the Form

9 1

Abstract lexical level:

drs+FormI+Perfect+Active

Abstract intermediate level:

drs+CVCVC+aa

Abstract intersected level:

daras

Figure 5: Root drs with CVCVC Template and
Active Voweling

Abstract lexical level:

drs+Forml+Perfect+Passive

Abstract intermediate level:

drs+CVCVC+ui

Abstract intersected level:

duris

Figure 6: Root drs with CVCVC Template and
Passive Voweling

I pattern and the vocal element aa representing
active voice. The stem duris (~.r,9.~), using the

passive voweling ui is the parallel passive example.
If +FormI, +Perfect, +Active and +Passive are
defined as single symbols, and if +FormI+Perfect
maps to CVCVC, and if +Active maps to aa and
+Passive to ui, the analyses can be constructed as
in Figures 5 and 6.

After composition of the relevant transducers,
the intermediate levels disappear, resulting in a
direct mapping between the upper and lower levels
shown. The resulting single transducer is called
the lexicon transducer.

All valid stems, currently about 85,000 of them,
are automatically intersected, at compile time, at
one level of the analysis. Suitable prefixes and
suffixes are also present in the lexicon transducer,
added in the normal concatenative ways.

Stems like davas (t.r,33) and duris (tg4~),

and especially those like banay (~. ') based on

"weak" roots, are still quite abstract and idealized
compared to their ultimate surface realizations.
Finite-state rules rules map the idealized strings
into surface strings, handling all kinds of epenthe-
ses, deletions and assimilations. The twolc rule
compiler (Karttunen and Beesley, 1992) is able
not only to recompile the rules automatically but
to intersect them into a single rule fst. This rule
fst is then composed on the bottom of the lexi-

Lexicon F S T

*O.

Rule FST

Lexical Transducer

Figure 7: Composition of Lexicon and Rule FSTs
into a Single Lexical Transducer

Lexical level:

drs+FormI+Perfect+Active+3P+Fem+Sg

Surface level:

drst

Figure 8: Typical Transduction from Lexical
String to Unvoweled Surface String c.,~_)~

con fst, yielding a single Lexical Transducer. The
symbol .o. in Figure 7 indicates composition.

Another transducer is also composed on top of
the lexicon fst to map various rule-triggering fea-
tures, no longer needed, into epsilon and to enforce
various long-distance morphotactic restrictions.
All intermediate levels disappear in the compo-
sitions, and one is left with a single two-level lexi-
cal transducer that contains surface strings on tim
bottom and lexical strings, including roots and
tags, on the top. A typical transduction is shown
in Figure 8, where the final t (~) is the surface

realization of the third-person feminine singular
suffix -at. Fully voweled, the surface string for
this reading would be darasat (-,~a33). Because

short vowels are seldom written in surface words,
dvst is also analyzed as the Form I perfect pas-
sive third-person singular, which would be fully
roweled as dnrisat (" , ~ ~.~), and as several other

forms.
At runtime, strings being analyzed are simply

matched along paths on the bottom side of the lex-
ical transducer, and the solution strings are read
off of the matching top side. Like all finite-state
transducers, it also generates as easily as it ana-
lyzes, literally by running the transducer "back-

92

Lexical Cleanup

Transducer

oO*

Lexicon Transducer

.o.

Rules that Generate

Fuily-Voweled Forms

oO.

Rules Generating from

Fully Voweled Forms to

All Surface Variations

Figure 9: Full System with Two Levels of R,ules

w a r d s ~ .

The Arabic system runs in exactly the same
way, using the same runtime code, a~ the lcxi-
cal transducers for other languages like English,
French and Spanish. The Arabic system is, how-
ever, substantially slower than the. other lan-
guages, t)ecause the ambiguity of the surface
words forces many dead-end analysis paths to be
explored and because more valid solutions have
to be found and returned. The mismatch between
the concatenated root and pattern on the lexical
side and the intersected stem on the lower side
also creates an Arabic system that is substantially
larger than the other languages.

5 G e n e r a t i o n

A single underlying Arabic word may be spelled
many ways on the surface, depending on how coin-
plctely the writer specilies the diacritics. Because
the system described above recognizes all possible
written forms of a word, with varying degrees of
diacritical marking, it also generates all the possi-
ble surface forms of a word, which may be less
than useful in many applications, q'yi)ically, a
user wants to see only the fidly vowcled form dur-
ing generation.

The Arabic rules have now been modilied to
work in two steps, lirst to generate the fully vow-
eled form, and then to generate the various par-
tially roweled forms and the unvoweled form.

Where desired, the lexicon fst can be composed
with only the upper set of rules to make a lexical

transducer that gencratcs (and recognizes) only
fully-roweled surface forms, l,'or general recogni-
tion, both sets of rules, a.s shown in Figure 9, are
composed. The result is equivalent to the original
lexical transducer described in Figure 7.

6 C o n c l u s i o n

Arabic morphology, though considerably more dif-
ficult than the morphology found in the commonly
studied European languages, is fully susceptible
to finitc-state analysis techniques, either in an en-
hanced two-level morphology or in the mathemat-
ically equiwdent but much more cornputationally
efficient Xerox finite-state format. We hope to ex-
tend our tinite-state techniques to cover Ilebrew
and <)ther languages with exotic morphology.

R e f e r e n c e s

Antworth, Evan L. 1990. PC-KIMMO: A Two-
level Processor for Morphological Analysis. Occa-
sional Publications in Academic Computing No.
16. Dallas: Summer Institute of Linguistics.

Beesley, Kenneth R. 1989. Computer Analy-
sis of Arabic Morphology: A Two-Level Approach
with Detours. Read at the Third Annual Sympo-
sium on Arabic I,inguistics, University of Utah,
Salt Lake City, Utah, 3-4 March 1989. Published
in Bernard Comrie and Mushira Eid (eds.), Per-
spectives on Arabic Linguistics 111: l'apers from
the Third Anuual Symposium on Arabic Linguis-
tics, Amsterdam: John Benjamins, pp. 155-172.

Beesley, Kcnneth R.; Buckwalter, Tim; and
Newton, Stuart N. 1989. Two-Level Finite-State
Analysis of Arabic Morphology. In Proceedings
of the Seminar on Bilingual Computing in Arabic
and English, Cambridge, England, 6-7 Sept 1989.
No pagination.

Beesley, Kenneth R.. 1990. Finite-State De-
scription of Arabic Morphology. In Proceedings
of the Second Cambridge Conference on Bilingual
Computing in Arabic and English, 5-7 Sept 1990.
No pagination.

Beeston, A.F.L. 1968. Written Arabic: an ap-
proach to the basic structures. Cambridge: Cam-
bridge University Press.

Buckwalter, Timothy A. 1990. Lexicographic
Notation of Arabic Noun Pattern Morphemes and
Their Inflectional Features. In Proceedings of the
Second Cambridge Conference on Bilingual Com-
puting in Arabic and English, 5-7 Sept 1990. No
pagination.

Gajek, Oliver el al. 1983. LISP lmplcmenta-
tion. Texas Linguistic Forum 22 ed. by 1)alrym-
pie et al. Austin: Linguistics Department. Uni-
versity of Texas, pp. 187-202

Kaplan, Ronald M. and Kay, Martin. 1981.
l)honological rules and linite-state transducers
[Abstract]. Linguistic Society of America Meeting

93

Handbook. Fifty-Sixth Annual Meeting, Decem-
ber 27-30, 1981. New York.

Kaplan, Ronald M. and Kay, Martin. 1994.
Regular Models of Phonological Rule Systems.
Computational Linguistics. 20:3, pp. 331-378.

Karttunen, Lauri. 1983. A General Morpholog-
ical Processor. Texas Linguistic Forum 22 ed. by
Dalrumple et al. Austin: Linguistics Department,
University of Texas, pp. 165-186.

Karttunen, Lauri. 1991. Finite-State Con-
straints. In the Proceedings of the International
Conference on Current Issues in Computational
Linguistics. June 10-14, 1991. Penang:Universiti
Sains Malaysia.

Karttunen, Lauri; Kaplan, Ronald M.; and Za-
enen, Annie. 1992. Two-Level Morphology with
Composition. COLING 92, pp. 141-148.

Karttunen, Lauri. 1993. Finite-State Lexicon
Compiler. Technical Report. ISTL-NLTT-1993-
04-02. Xerox Palo Alto Research Center. Palo
Alto, California.

Koskenniemi, Kimmo. 1983. Two-Level Mor-
phology: A General Computational Model for
Word-Form Recognition and Production. Publi-
cation No. 11. Helsinki: Department of General
Linguistics, University of Helsinki.

Koskenniemi, Kimmo. 1984. A General Com-
putational Model for Word-Form Recognition and
Production. COLING 84, pp. 178-181.

Karttunen, Lauri and Beesley, Kenneth R.
1992. Two-Level Rule Compiler. Technical Re-
port. ISTL-1992-2. Xerox Palo Alto Research
Center. Palo Alto, California.

McCarthy, J. 1981. A Prosodic Theory of Non-
concatenative Morphology. Linguistic Inquiry,
12(3), pp. 373-418.

Wehr, Hans. 1976. A Dictionary of Modern
Written Arabic. Third edition, ed. by J. Milton
Cowan. Ithaca, N.Y.:Spoken Language Services,
Inc.

94

