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Abstract

We arc going to describe the design
and implementation of a cominunica-
tion system for large Al projects, ca-
pable of supporting various software
components in a heterogencous hard-
ware and programming-language cnvi-
ronment. The system is based on a mod-
ification of the channcl approach intro-
duced by Hoare (1978). It is a threc-
layered approach with a de facto stan-
dard network layer (PVM), core rou-
tines, and interfaces to five different pro-
gramming languages together with sup-
port for the transparent exchange of
complex data types. A special compo-
nent takes over name service functions.
It also records the actual configuration
of the modules present in the application
and the created channels.

We describe the integration of this com-
munication facility in two versions of
a speech-to-speech  translation system,
which differ with regard to quality and
quantity of data distributed within the
applications and with regard to the de-
gree of interactivity involved in process-
ing.

1 Introduction

Currently, there 1s a trend of building large Al-
systems in a distributed, agent-oriented manncr.
"The complex tasks performed e.g. by systems with
multimodal user interfaces or by systems tackling
the processing of spontancous speech often require
more than one computer in order to run accept-
ably fast. If purc speed i1s not the primary moti-
vation, the incorporation of several modules, each

*¥his rescarch was funded by the lederal Min-
istry of liducation, Science, Rescarch and 'l'echnol-
ogy (BMBF) in the framework of the VERBMOBIL
Project under Grants 01 IV 101 A/O and 01 1V 101
G.
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of them possibly being realized in a different pro-
gramming language or even a different program-
ming paradigm, demands complex interfaces be-
tween these modules. Furthermore, only modular-
ization makes 1t possible to develop applications
i a truly distributed manner without the need to
copy and install versions repeatedly over.

The actual realization of the interfaces should
ground on a sound theoretical framework, and it
should be as independent as possible from the
module implementations. Typically, when an in-
terface between two subcomponents of a system
1s needed, at first very simple means - - e.g. file
interfaces or simple pipes — - are considered. This
does not only lead to a variety of diflerent proto-
cols between components which is natural to
a certain degree duc to the different tasks per-
formed by the components and the purpose of the
interface data — but also to a number of different
implementation strategies for interfaces,

In this paper, we present ICI), the Intarc
Communication [/nvironment (Amtrup, 1995),
an implementation of a channel-oriented, multi-
architecture, multi-language communication mod-
ule for large Al-systems, which is particularly use-
ful for systerus integrating speech and language
processing,.

A chanucl-oriented model for interaction re-
lations between software modules seemed to be
the most suitable system for our needs.  We
adopted the CSP-approach (Hoare, 1978) and
its actual realization in the transputer hardwarc
(Graham and King, 1990). This core functional
model was slightly modified to satisly the needs
cierging [rom experiences with actual systems.
We decided not to implement all communica-
tion functions [rom scratch, but instead we use
PVM, the Parallel Virtual Machine (Geist ct al.,
1994), a widespread process-communication soft-
ware, which turned out to be extremely reliable.

We will desribe how the communication sys-
tem has been integrated within Verbimobil, a large
rescarch project for automatic speech-to-speech
translation (Wahlster, 19938). ICE is used for the
various protolypes of the interpretation system.



We describe experiences and results of the work
on the first demonstrator. Purthermore, we show
that ICE is flexible enough to be used in archi-
tectural experiments and we are going to report
some of the experiences made with them.

2 Application acrchitecture

Verbmobil, the primary application for which ICIS
was built, aims at developing an automatic inter-
preting device for a special type of negotiation be-
tween business people. The dialogue situation is
as follows: Two business persons, speaking differ-
ent languages, arc involved in a face-to-face dia-
logue trying to schedule an appointment. 'L'hey
both have at least some knowledge of English and
use Linglish as a common language. In case one
of the dialogue partners runs into problems, he or
she activates the interpretation system by pressing
a button and switches back to his or her mother-
tongue. 'T'he system interprets the respective ut-
terances into Iinglish. Therefore, it interprets the
dialogue on demand in certain situations.

T'he Verbmobil system consists of a large num-
ber of components, each of them designed to cope
with specific aspects of the interpretation pro-
cess. Among them are a recorder for speech sig-
nals, a HMM-based word recognizer, modules for
prosodic, syntactic and semantic analysis, dia-
logue processing, semantic evaluation as well as
components for both german and english synthe-
gis. There are several interfaces between the in-
dividual parts of the application which are used
to forward results or to realize question-answering
hehavior.

The interchanged data between components (a
component normally corresponds to a unique soft-
ware module) is very heterogeneous with regard
to both type and quantity: Speech information as
it is sent from the recorder to the speech recog-
nizer consists of a strcam of short integer values
which may amount to several megabytes. The ob-
jects exchanged between semantics construction
and transfer are relatively small, but highly struc-
tured: Semantic representations with several em-
bedded layers.

3 ICE: Design and structrue

As briefly noted above, we arc using a chan-
nel abstraction to model cornmunication between
components. The model is largely oriented at
the approach of CSP ( Communicating Sequential
Processes, Iloare (1978)), mainly for two reasons:

o We decided to use a message-passing ap-
proach to communication. ‘The two other
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kinds of process communication largely avail-
able, namely shared memory and remote
procedurc calls are disadvantegous for our
purposes: The employment of shared mem-
ory may lead to memory or bus contention
when several processors are simultancously
attached to the same physical memory seg-
ment.  Furthermore, multiple concurrent
write attempts have to be synchronized. Re-
mote procedure calls did not scem to be the
right choice cither since their use implies
a rendez-vous-synchronization which slows
down a system due to network latencies!.

e Making the objects involved in communica-
tion explicit, offers several ways to manipu-
late them. Without too much cffort, we were
able to introduce split channels in order to in-
corporate visualization tools or introduce dif-
ferent modes of communication depending on
the type of data to be exchanged.

The low level basis of 1CI5 is realized by PVM
(Gelst et al., 1994), which is a message passing
system for multiple hardware architectures. It
has been developed and exiended for almost seven
years now and is very reliable. It allows a net of
Unix workstations to bchave like a single large
parallel computer. PVM supplies each message
with a tag which simplificd the introduction of
channels to a large extent (roughly, a message is
tagged uniquely to identify the channel it is sent
on. This enables a rceciving component to select
messages on individual channels).

3.1 System structurc

T'he architecture of a system using ICE as commu-
nication framework is depicted in Fig. 1. Before
describing in detail the structurc of a component,
we will point out the overall layout of an applica-
tion.

We assume that an application consists of a
number of components. We could have adopted
the notion of agents cooperating to a certain de-
gree while carrying out a certain task coopera-
tively, but this would have meant to mix up dif-
ferent conceptual levels of a systern: 'I'he com-
munication facilities we arc describing here estab-
lish the means by which picces of software may
communicate with each other. They do not pre-
scribe the engincering approaches used to imple-
ment the individual software components them-
selves. We do not state that agent architectures

'The channels of CSP and Occam both use rendez-
vous-synchronization. In this respect we deviated
from the original modecl.
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Figure 1: Principle component layout

(c.g. Cohen et al. {(1994)) can not be realized with
our mechanism?, but the range of cases where ICI
can be applied is broader than this.

All communication is done by the means of
channels, as set out above. We distingnish two
types of channels:

e DBase channels arc the primary facilities of
communication. 'They are configured in a
way guaranteeing that cach component is
able to interact with cach other component
it wishes to, regardless of programming lan-
guages, hardware architectures, or system
softwarc being used. This is achieved by
using the standard communication mode of
PVM, which supports XDR?. Message pass-
ing is done asynchronously.

o Additional channcls were added in order to
satisfy some necds that frequently arise dur-
ing the design and implementation of large
Al-systerus with heavy use of communication.
They can be used to separate data streamns
from control messages or may be conligured
in various ways, ¢.g. by switching off the XDR
encoding to speed up message passing.

3.2 Split channels

Both types of channels can be conligured in an ad-
ditional way. Beyond being bidirectional commu-
nication devices between two components, other

2Indeed, distributed blackboards as used in
Cohen et al. (1994) can easily be modclled using a
channel-based approach.
*¢ X ternal
Data Representation, sce Corbin (1990), an encoding
schema for data objects independent of the current
programming environment,
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modules can be attached to listen to data trans-
ported on a channel or to inject messages. These
split channels are achieved by dividing a channcl
into two endpoints, one at cach side of the chan-
nel.

Both ends are described using a configuration
file that is read by the ILS (see below) upon
startup. In this file, for cach endpoint a list of
rcal channels is defined, cach of which points Lo a
component and is cquipped with a name, configu-
ration llags and its purpose (which can be sending
or receiviug). Any number of real channels may
be marked sending or receiving. The behavior of
the components affected by split channels does not
have to be changed, since splitting ocenrs trans-
parently for themn.

Consider Fig. 2 as an example for what purposc
split channels were used.

Compo

UL_A

Figure 2: Split channel configuration

‘Two components, A and B, are connected us-
ing a channel which is depicted by a dashed line.
‘I'he channel endpoints are split up to allow visual-
ization of message data sent by either component.
‘I'he visnalization is performed by two additional
components labelled UILA and UI_B. Purther-
more, the data sent by component A must un-
dergo some modification while being trausported
to component B. Thus, another component C is
configured capable of transforming the data. 1t
is spliced into the data path between A and B.
Note that data sent by component B arrives at A
unaffected from modification by component C.

3.3 ILS: Information Service

Channels can be established by any component.
There is no need for synchronization between
components during the configuration of the com-
munication systemn. ‘Lo support this schema, a
dedicated component named LS (Intarc License
Server) was introduced. 1t stores information
about the actual structure of the application sys-
tem. This information includes names and loca-
tions of all components participating in the sys-



tem as well as an overview about all channels cur-
rently established between components. The ac-
tions performed by the ILS include:

e Altachment and Detachment of components.
A component desiring to take part in the
communication activities of the application
has to identify and register itself at the ILS.
This is done by sending a message containing
the name of the component to the ILS. Analo-
gously, a component should detach itself from
the ILS by sending an appropriate message
before leaving the application. In case of a
program failure resulting in the inability of
a component to detach the ILS 1s capable of
handling the detachment autonomously.

e Configuration of channels. Fach creation and
destruction of a channel is done by interact-
ing with the ILS in order to notify the ILS
of the request and to get back information
about thc necessary data structures. The
creation of a channel is done in two phases:
First, any of the endpoint components sends a
channel creation request to the ILS. The ILS
updatcs its internal configuration map taking
care that split channel definitions arc taken
into account; it then answers to the request-
ing component the individual tag used for
this channel and the process identity of the
target component?. If the target component
has not yet registered within the application,
this fact 1s acknowledged to the source com-
ponent. The only point at which this matters
is the time of the first message sending at-
tempt which will be blocked until the target
component registers at the ILS. In that case,
the TLS notifies the source component of the
event and communication can take place nor-
mally.

The second phase handles the notification of
the target component. As just described, this
component need not be present by the time
of the channel creation request. In this casc
the notification is simply delayed. The no-
tification consists of the necessary data to
create the intended channel within the com-
ponent.
those configuration messages, the communi-
cation layer handles this transparently. Fur-

The implementor need not track

*PVM addresses components -— which are identi-
cal to processes for it - by a task id that is assigned
by the pvin daemon. The ILS maintains a mapping
from component names to those task ids. This map-
ping need not be bijective, since we allow multiple
components within one process (see below).
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thermore, concurring channel requests do not
interfer.

3.4 Component structurc

The interior structure of a component (see Fig. 1)
is laycred as far as the communication parts of the
software are concerned.
cation routines are provided by PVM (see above).
Next, a software layer defines the functions of ICE.
This is comprised of the basic functionality of ICE
itself and a set of interface functions for different
programming languages. We currently support C,
C++, Lisp (Allegro Common Lisp, Lucid Com-
mon Lisp and CLISP), Prolog (Quintus Prolog
and Sicstus Prolog) and Tel/Tk.

These software layers suffice to communicate
basic data types like numbers and strings. Addi-
tionally, a scparate layer (TDL) is present to allow
the exchange of more compex data types. Onec
may specify routines to encode and decode user-
defined data types which can then be transmitted
Just as the predefined scalar types. At the mo-
ment, this schema is used for a few dedicated data
structures, c.g. for speech data or arbitrary prolog
terms, which may be even cyclic.

The low level communi-

4 Experiences with the application

Verbmobil is built up by two sorts of components.
The “core” components are used to transform the
input data into the output data (e.g. recording,
speech recognizer etc.). These NLI-components
are embedded in the so called “testbed” that
serves as an application framework. The testbed
is designed as an experimental environment that
provides all the features required to test the core
components and to study the operation of the
whole application. The testbed consists mainly
of the following parts:

o The graphical user interface (GUT) provides a
comfortable frontend to the application. Us-
ing the GUI the user can watch the operation
of the whole system, control the behavior of
the components and monitor the dataflow be-
tween the componcents.

o The testbed manager (TBM) is used to start
up the whole application and to distribute the
processes of the application to the hosts of
the network. Further, the testbed manager
collects data about the operation of the com-
ponents and visualizes this information using

the GUIL.

o The visualisation manager (VIM) collects all
the data transferred between any of the com-
ponents using ICIE channels.



If one wants to study only some parts of the
system, it is possible to start the application con-
taiming only a subset of the existing components
{(e.g. only the speech recording module and some
speech recognizers). The testbed provides the fa-
cility to choose in an offline process the compo-
nents that are desired to be executed. This config-
uration is done by simply cditing a configuration
file and selecting the keywords “yes” or “no” for
cach component. All the components not sclected
are antomatically replaced by “stub-modules,” so
there is no need to change source code and re-
compile the components, cven if data is sent to a
not-existent component. On the other side it is
possible to configure the usage of alternative com-
ponents (e.g. two german speech recognizers). In
this case both components are started and we are
able to select from the GUIL which of both compo-
nents we actually want to use.

Currently there are 32 existing components that
contribute to roughly 650 MB3 disk space (the ex-
ecutables, libraries and data liles required at run-
time usc up 380 MB). Some of the components are
structured uvsing subcomponents that are imple-
mented in different programming languages and
are executed 1n own processes. The 32 main com-
ponents are implemented using the following pro-
gramming languages: C (10 components), Lisp
(7 components), Prolog (5 components), C++ (5
components}, Fortran (4 components), ‘T'el/ 1'% (1
component).

Starbing a heavy weight system containing all
the currently existing components, we get about
95 UNIX processes requiring 520 M3 memory. In
this configuration we arce using 52 base channels
and 24 additional channels (76 TCH channels in
tolal). Six of these 24 additional channels are con-
figured not to use the XDR coding, because they
arc used to transfer high volume data (c.g. audio
data).

Because the communication is buill up by
strictly using the features of 1CE and the under-
laying PVM, the application can run on a single
host as well as distributed to the hosts of an local
area network. The decision which component will
ran on which host of the network is configurable.
lach component can be assigned to a specilic host,
or we can leave the assignment of an adequate host
to PVM.

e

Experiences with an
architectural experiment
It addition to the employment within the Verbmo-

bil prototype, we used 1CIG as communication de-
o )
vice for some experiments in the (ramework ol the
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Figure 3: The experimental system architecture.

architectural branch of the project. The approach
here 1s to develop a speech translation system
obeying design principles that have their origin in
the goal of constructing a system reflecting some
of the assuined propertics of human speech pro-
cessing, namely working incrementally from left
to right and exploring the effects of interaction
between different levels of speech recognition and
understanding. T'hese two principles have scrious
implications for the design of individual compo-
nents and the complete system. To give a con-
crete example, consider the interface between a
speech recognizer and a syntactic parser. The rece-
oguizer produces a connccted graph where cach
edge denotes a word hypothesis. Due to the in-
ability to remove paths in advance that can not be
pursued further at a later stage of operation, the
mput to the syntactic parser grows enormously.
We noticed that wordgraphs produced incremen-
tally may be ten times larger than conventionally
constructed graphs (resulting in over 2000 word
hypotheses for an utterance of 4.7 seconds).

The experimiental system architecture is shown
in IMig. 3. I consists of several modules inter-
connected by a main data path that delivers re-
sults according to the “standard” linguistic hier-
archy, viz. from word recognition to syntax, sc-
manbics and finally trawsfer®. Besides shis inain-
stream data path we set up several interaction
facilities that are used to propagate information

[ T . . - .
“I'he transfer componend ist not shown in g, 3.



backwards, which may consist of binary judge-
ments about the applicability of a hypothesis, a
ranking among different possible analyses or even
predictions about what might be expected in the
future.

These methods were for example examined at
the crucial interface between a HMM-based speech
recognition device and a syntactic parser (Hauen-
stein and Weber, 1994). A tight interaction be-
tween these two components was created which
was used to model a synchronmization point at cv-
cry frame in the speech input (i.c. every 10 ms).
At each of these points a set of word hypotheses
is sent to the parser. The parser then tries to in-
tegrate the new hypotheses into existing partial
analyses constructed so far. The feedback loop
to the speech recognizer consists of information
about the syntactic ranking of the parse each word
is integrated into. If a word can not be used in
any way, it is simply rejected. In the case of in-
tegration of a word into a parse a ranking is pro-
duced which incorporates values from a statistical
n-gram language model and a stochastic unifica-
tion grammar which models the probability of a
syntactic derivation.

To realize a prediction mode in this interaction,
a different schema was used: At each frame the
parscr computes a set of possible continuations
for each word, 1.e. it restricts the language model
to pairs of words (in case of a bigram model)
which are syntacticallly plausible and could be in-
tegrated into a currently existing syntactic deriva-
tion. By doing so, the search space of the speech
recognizer is restricted.

6 Conclusion

We have presented the concepts and implementa-~
tion of a communication system designed for use
in large Al systems which nowadays are typically
built to operate in a distributed manner within lo-
cal networks of workstations. We argued that the
adaptation of sound theoretical concepts which
for example can be found in Hoare (1978) lead
to solutions that have considerably more power
that ad-hoc communication devices implemented
as the need to communicate arises. 'The channel
model was shightly modified and realized on top of
PVM, a de facto standard for communication in
distributed systems. The system structure reflects
a set of components that communicate bilaterally
without the involvement of a central mechanism
or data structure that participates in every com-
munication event. Instead, once the identity of
the communication partners 1s established, com-
munication between them is strictly local.
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We introduced a central name scrver in order to
store the components acting in an application and
to be able to service requests for the creation of
channels and such. Channels come in two flavors
what on the one hand guarantees succesful com-
munication between any two partners and on the
other hand leaves room for tailoring properties of
message channels to certain preferences. TFurther-
more, split channcls allow for the easy configura-
tion of a system with respect to interchangeablc
parts of the system and attached visualization.

We showed that the communication system
realized using this methods is advantegeous in
several situations and system contexts, ranging
from strictly sequential systems over intermediary
forms to highly interactive systems.
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