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ABSTRACT

A description is an entity that can be inter-
preted as true or false of an object, and us-
ing feature structures as descriptions accrues
scveral computational benefits. Tn this paper,
I create an explicit interpretation of a typed
feature structure used as a description, define
the notion of a satisfiable feature structure,
and create a simple and eflective algorithm to
decide il a feature structure is satisfiable.

1. INTRODUCTION

Describing objects is one of several purposes
for which linguists usc feature structurcs. A
description is an entity that can be interpreted
as true or false of an object. lor example, the
conventional interpretation of the description
‘it 1s black’ is truc of a soot particle, but false
of a snowflake. Therefore, any use of a feature
structure to describe au object demands that
the feature structure can be interpreted as true
or false of the object. In this paper, 1 tailor
the semantics of [King 1989] to suit the typed
feature structures of [CARPENTER 1992], and
so create an explicit interpretation of a typed
feature structure used as a description. I then
use this interpretation to define the notion of
a satisftable feature structure.

Though no feature structure algebra provides
descriptions as expressive as those provided
by a feature logic, using fealure structures to
describe objects profits from a large stock of
available computational techuiques to repre-
sent, test and process feature structures. In
this paper, I demonstrate the computational
benefits of marrying a tractable syntax and
an explicit semantics by creating a simple and
effective algorithm to decide the satisfiability
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of a feature structure. Gerdemann and Gotz’s
Troll type resolution system implements both
the semantics and an eflicient refinement of
the satisliability algorithm I present here (see
[GoTz 1993], [GErDEMANN AND KING 1994]
and [GERDEMANN (FC)}).

2. A FEATURE STRUCTURE
SEMANTICS

A signature provides the symbols from which
to construct typed feature structures, and an
interpretation gives those symbols meaning.
Definition 1. ¥ is a signature iff

¥ is a sextuple (, %, <, 6,2, ),

£ Is a set,

(T, <) is a partial order,

~ _ ~ |for cach 7 € %,
GH{UEI ifcrjrthcna:r}'
2 is a sel,

3 Is a partial function from the Cartesian
proditet of ¥ and A to ¥, and
for cach € ¥, each 7" € T and each « € U,
if §(r, ) is defined and 7 < 7'
then F(7/, «) is defined, and
F(r o) X3, ).
Henceforth, T tacitly work with a signature
(0,%,%,6,%%F. Icall members of 9 states,
members of ¥ types, < subsumption, members
of & species, members of U attributes, and §
appropriateness.
Definition 2. 7 is an interpretation iff
I is a triple (U, S, A),
U is a set,
S is a total function from U to &
A Is a total function from 2 to the set of
partial functions from U to U,
for each o € A and each u € U,
iff A(w)(u) is defined
then F(S(u), «) is defined, and
F(S(u), @) =< S(A(e)(w)), and
for ecach o« € 2 and each v € U,
if §(S(u), ) is defined
then A{w)(u) is defined.
Suppose that I is an interpretation (U, S, 4).
I call cach member of U an object in 1.



Each type denotes a set of objects in [. The
denotations of the species partition U, and
S assigns cach object in 1 the unique species
whose denotation contains the object: object
w is in the denotation of species o if o = S(u).
Subsumption encodes a relationship between
the denotations of species and types: object
w is in the deuotation of type 7 Ul ¥ < S(u).
So, if 71 < 7y then the denotation of type 7
contains the denotation of type .

Each attribute denotes a partial (unction
from the objects 1u I to the objects in I, and
A assigns each attribute the partial function it
denotes. Appropriateness encodes a relation-
ship between the denotations of species and
attributes: if F(o, ov) is defined then the deno-
tation of attribute « acts upon cach object in
the denotation of species o to yield an object
in the denotation of type §{ea, o), but if F{e, «)
is undefined then the denotation of attribute

v acts upon no object m the denotation of

species o, So, il §{r, a} is deflined then the de-
notation of attribute ¢ acts upon cach ohject
in the denotation of type 7 to yield an object.
in the denotation of type {7, o).
I call a finite sequence of attributes a path,
and write P lor the set of paths,
Definition 3. P is the path interpretation
function under I ifl
I is an interpretation ({7,5, A),
I is a total function [rom P to the set of
partial functions from U/ to U/, aud
for each {wvy, ..., w,) €8,
Ploy, ..., 0,) s the functional
composition of Alwy),. .., Alv,).
I write Py for the path interpretation function

'

under /.
Definition 4. I' iy a feature structure il
I is a quadruple (0,4, 8,0},
@ 1s a finite subset of 1},
qeq,
& 1s a finile partial function from the
Cartesian product of (@ and A to @),
0 is a total lunction from € to T, and
for cach ¢' € Q,
for some ™ € B, m runs to ¢’ in I,
where {«, ..., n) runs to ' in 10Ul
ety ) €9,
¢ €@, and
for some {qo,.. ., qn} C Q,
q = qo,
for cach 1 < n,
8(qi, iy 1s delined, and
8qi, ciq1) = iy, and
n = ¢,
Fach feature structure is a connected Moore

machine (sece [Moorwk 1956]) with finitely
mauy states, input alphabet 2, and output
alphabet %,
Definition 5. F is truc of v under I jif
I is a feature structure (Q), ¢, 6,0),
I is an interpretation (U, S, A),
w is an ohject in I, and
lor each my € P, each wp € P and cach
qeqQ,
if wy runs to ¢’ in I', and
wy runs bo ¢’ in I
then Pp(my)(v) is defined,
Pr(my)(w) is defined,
Pr(m)(u) = Pr(ma)(w), and
0(q") = S(Pr(m)(w)).
Definition 6. [ is a satisfiable feature struc-
ture it
I is a feature structure, and
for some interpretation I and some object u
in I, I is true of w under [.

3. MORPHS

The abundance of interpretations scewns to
preclude an effective algorithin to decide if a
feature structure is satisfiable. Ilowever, T in-
sert morphs between feature structures and
objects to yield an mterpretation free charac-
terisation of a satisfiable feature structuve.
Definition 7. M is a semi-morph iff
M is atriple (AT, A),
A Is a nonempty subset of P,
' iy an equivalence relation over A,
for each o € U, cach m, € P and cach
Ty € ‘43:
fmaee A and (m,m) €l
then {myc, mpue) € 1,
A Is a total function from A to &,
for each w\ € P and cach xy € P,
if (wy, mp) € 1 then A(m) = A(my), and
for cach oo € 2 and cach m € P,
ifree € A
then w € A, F(A(7), «) is defined, and
J(A(m), ) < A(mer).
Definition 8. M is a morph ifl
M is a semri-morph (A, 1, A), and
for cach « € A and cach 7 € P,
ifm e A and F(A(r), @) 1s defined
then mov € A.
Fach morph is the Moshier abstraction (sce
[Mosuier 1988]) of a connected and totally
well-typed (sce [CarrenTrr 1992]) Moore
machine with possibly infinitely many states,
impul alphabet 2, and ontput alphabet &.
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Definition 9. M abstracts v under [ iff
M is a morph (A, T, A},
I is an interpretation (U, S, A),
u is an object in I,
for cach 71 € P and each wy € P,
<7['1, 71'2) er
iff Pr(my)(w) is defined,
Pr(mq)(u) is defined, and
Pr(m)(w) = Pr(m2)(u), and
for each 0 € G and cach m €,
(r,e) €A
iff Pr(w)(u) is defined, and
o = S(Pr(m)(w).
Proposition 10. For each interpretation [
and cach object u in I,
some unique morph abstracts u under I.
I thus write of the abstraction of w under I.
Definition 11. wu is a standard object if
u Is a quadruple (A, 1, A, E),
(A L A) is a morph, and
E is an equivalence class under 1'.
[ write U for the set of standard objects, write
S for the total function from U to &, where
for each o € & and cach (A, A,E) € U,
S(AT,AE) =0
iff for some 7 € E, A(7) = o,
and write A for the total function from 2 to
the set of partial functions from U to (7, where
for cach e € 2, each (A, T, A E) € U and
cach (A", T, A", K'Y € U,
/T((x)(A, [, A E) is defined, and
A(a)(A, 1,4 E) = (A, T/, A1)
ff (AT, A) = (A, T, A'), and
for some v € [§, 7ee € I,
Lemma 12. (l},g, Z) is an interpretation,
[ write T for ((7, S, /T)
Lemma 13. For cach (A, 1", A1) € U, cach
(AT A ED € U and each w € P,
PHm){(A, T, A, T) is defined, and
PHm)(A, T, A E) = (A7, A E')
HF{A,T,A) = (A, T, '), and
for some 7' ¢ B, v'r € B\
Proof. By induction on the length of 7. w
Lemma 14. For cach (A1, A E) € U,
if 5 Is the equivalence class of the empty
path under I’
then the abstraction of (A, T, A, E) under 7
is (A, T, A).
Proposition 15. For cach morph M,
for some interpretation I and some object u
in I,
M is the abstraction of v under 1.

Definition 16. " approximates M iff
I' is a feature structure (@}, q,6,0),
M is a morph (A, ', A}, and
for each m1 € P, each w1y € P and each
¢ €Q,
i wy runs to ¢’ in F', and
mo runs to ¢’ in I
then (ry,my) € T, and
0(a') < A(m).

A feature structure approximates a morph iff

the Moshier abstraction of the feature struc-

ture abstractly subsumes (sec [CARPENTER

1992]) the morph.

Proposition 17. For each interpretation I,

each object w in I and each feature structure

r,

I is true of v under [
il I approximates the abstraction of u
under I.

Theorem 18. For each feature structure I,
I 1s satisfiable Ifl I' approximates some
morph,

Proof. From propositions 15 and 17. m

4. RESOLVED FEATURE
STRUCTURES

Though theorem 18 gives an interpretation
free characterisation of a satisfiable feature
structure, the characterisation still scems to
admit of no eflective algorithm to decide if a
feature structure is satisfiable. However, I use
theorem 18 and resolved feature structures to
yield a less general interpretation free charac-
terisation of a satisfiable feature structure that
admits of such an algorithm.
Definition 19. R is a resolved feature struc-
ture if

R is a feature structure (@), q, 6, p},

p is a total function from @ to &, and

for cach o € U and each ¢’ € Q,

if 6(¢’, @) is defined
then F(p(q'), @) is defined, and
Bp(a'), @) = p(8(q", @)).

Each resolved feature structure is a well-typed
(sce [CARPENTER 1992]) feature structure
with output alphabet &.
Definition 20. R is a resolvant of I' iff

R is a resolved feature structure (Q, ¢, 6, p),

I' is a feature structure {Q), q, 8,0}, and

for each ¢' € @, 0(q") < p(¢’).
Proposition 21. For each interpretation I,
each object w in I and each feature structure
r,

¥ 1s true of w under [

iff some resolvant of I is true of u under I.



Definition 22. (Q,%,<,6,,3) is rational
iff for each o € & and each « € U,

if §(o, ) Is deflined

then for some o’ € 6, F(o, ) < o',
Proposition 23. If (Q,%,X,6,2,3) is ra-
tional then for cach resolved feature structure
R, R is satisfiable.
Proof. Suppose that 12 = (@, ¢,6,p) and fis
a bijection from ordinal ¢ to &. Let

Ay = {7r for some ¢’ € Q, },
for some ¢' € @,

7 runs to ¢’ in 1}
T'o = ¢ (m,my) | m1 runs o ¢/ in R, and 3,
my Tuns to ¢’ in 2

and
for some ¢' € @),
Ao ={ (r, )| 7 runs to ¢ in 1, and
o= pq')
For each n € IN, let
An—}-] =
o €U
AU ra|r e Ay, and ,
F(An(m), ) is defined
1‘71+] =

o e,

My € An+l»
mov € Apy, and
<7r]y7r2> Gy,

I'py U (mion, mone) . and

An-}-l =
o €U,
w e ATL!
T € Ay \ Ay, and
£ is the least ordinal

i ¢ such that

S(An(m), ) 2 B(E)
For cach n € IN, (A, 1, A,,) is a seri-inorpli.
Let

A=J{A, |neN},

I'= [ J{I's | n € IN}, and

A=J{A, |ne N}
(A, T, A) is a morph that 2 approximates. By
theorem 18, R is satisfiable. m
Theorem 24, II' (9, %, <, &, 2, F) is rational
then for each feature structure I,

I s satisfiable il ' has a resolvant.
Proof. From propositions 21 and 23. m

AU ¢ (o, B(E))

5. A SATISFIABILITY
ALGORITHM

In this section, I use theorem 24 to show how
- given a rational signature that meets reason-
able computational conditions -~ 1o construct
an effective algorithm to decide if a feature
structure 1s satisfiable.

Definition 25.
putable il
Q, T and U are countable,
& 1s finite,
for sonie effective function SUB,
for each 71 € ¥ and cach y € %,
ifry <7y
then SUB(1y, 79) = ‘true’
otherwise SUB(y, 1) = ‘false’, and

(2,%,%,6,%,3F) 1s com-

lor some elfective function APP,
for cach 7 € T and cach o € %,
i §(r, @) is defined
then APP(r, ) = §(r, &)
otherwise APP(1, &) = ‘undefined’.
Proposition 26, IM{(Q,%, <, 6,2, §) is com-
putable then for some eflective function RES,
for each feature structure I,

RES(F") = a list of the resolvauts of I,
Proof. Since (Q,%, <, G, U, F) is computable,
for some eflective function GEN,

for cach linite @ C 1,

GEN((Q) = a list of the total functions

from Q to &,
for some effective function TEST,,

for cach finite set ), each fiuite partial
function 6 from the Cartesian product of @
and A to (), aud cach total function ¢ from
Q) to %,
if for cach (¢, @) in the domain of §,
3(0(q), @) is defined, and
3(0(q), o) < 0(8(q, )

then TEST(6,0) = ‘true’

otherwise TEST(6, 0) = ‘false’,
and for some effective function TESTy,

for cach finite set @), cach total function 0,
from € to T and each total function 04
from @ to T,

il for cach ¢ € Q, 01(q) < 02(q)

then TESTy(01, 02) = ‘true’

otherwise TEST2(0;, 0,) = ‘false’.
Construct RES as follows:

for each feature structure (@, q, 46, 0),

set X, = GEN(Q) and Xoye = ()

while X, = (g, p1, ..., pi) 1s not ecmpty

do set Xiy = {p1, ..., pi)

if TEST (6, p) = ‘truc’,
TESTy(0, p) = ‘true’, and
-L‘oul. = </‘I]1 ey f’;)

then set Loy = (o, 04, .+ -, p;)

if You, = (Pl, e /)n)

then output ({QQ,¢,8, p1),...,{Q, ¢,8, pu)).
RES is an effective algorithm, and

for cach feature strueture /7,

RES(/') = a list of the resolvants of I,

| ]
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Theorem 27. If (Q,%, %, 6,2, ) is rational
and computable then for some effective func-
tion SAT,
for each feature structure I',

if IV is satisfiable

then SAT(F') = ‘true

otherwise SAT(F) = ‘false’.
Proof. From theorem 24 and proposition 26.
|
Gerdemann and Gotz’s ‘Troll system (sce
[GoTz 1993], [GERDEMANN AND KiNG 1994]
and [GERDEMANN (rc)]) employs an efficient
refinement of RES to test the satisfiability of
feature structures. In fact, Troll represents
cach feature structure as a disjunction of the
resolvants of the feature structurc. Loosely
speaking, the resolvants of a feature structure
have the same underlying finite state antoma-
ton as the feature structure, and differ only
in their output function. 'Troll exploits this
property to represent each feature structure
as a finite statc automaton and a set of output
functions. The Troll unifier is closed on these
representations. Thus, though RES is compu-
tationally expensive, Troll uses RES only dur-
ing compilation, never during run time.
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