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Introduction

This paper is concerned with the treatment of dis-
continuous constituency within Categorial Grammanr,
In particular, T address the problem of providing an
adequate formalisation of categorial connectives pro-
posed by Moortgat (1988), which are useful for han-
dling certain forms of discontinuous constituency. De-
spite some interesting proposals, a satisfactory logic
for these connectives has so [ar remained clusive. |
will provide such a logic, using an approach that falls
within the general framework of labelled deductive sys-
tems (Gabbay, 1991), employing novel methods for
rcasoning about linear order in resource usage. The
approach is illustrated by linguistic applications for
extraction, picd-piping and quantification.

The Lambek calculus

Our general framework is the associative Lambek cal-
culus (L: Lambek, 1958), a system which falls within
the clags of formalisms known as Categorial Gram-
mars. “The set of types s freely generated from a
seb of primitive (atomic) types (e.g. {s, np, ...}), us-
ing binary infix operators \, /, ». The ‘mecaning’ of
these connectives in L is fixed by a semantics for the
logic, based on a (semigroup) algebra of strings (£,-),
f.e. where - is an assoclalive, non-commutative bi-
nary operator, with two-sided identity €, and £ is the
set of non-empty (3 €) strings over some vocabulary.
An interpretation function {[ assigns some subset of
L to each type, satislying the conditions below for
complex types and type sequences. A type combi-
nation X,,...,Xp => Xy holds in a model ((£,"), [[]]),
il ﬂXl,...,X,,BgﬂXOH, and is walid if it is true in all
models. There are several formulations of T, that all
realise this same meaning for the conncctives.?!

[XeY] = {zycLlwelXl avelyD)

HX/Y]J {zel}Vyc [yl.awe [IX]J}

INXD = {2 ¢ £ vy e [Y]. v c [X])

[[X],..‘,/"H = {wyrawn CL |21 € HX]H A Az € [IX,IH}

i
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VIhe alternative formulations include e.g. sequent (Lambek
1958), proof net (Roorda 1991), and natural deduction systems
(Morrill et al. 1990, Barry et of. 1991). Alternative formula-
tions carry difllerent advantages, e.g. natural deduction is well
suited for linguistic presentalion, whereas proof nets have ben-
efits for automated theoremn proving.

Discontinuous type constructors

The Lambek caleulus is a purcly concatenative system:
where any two types are combined, the string of the
result is arrived at by concatenating the strings of the
types combined. This point is illustrated graphically
in (la,b), for the Lambek functors, where (follow-
ing Moortgat, 1991) cach triangle represents a result
string, and unshaded and shaded arcas represent fune-
tor and argument slrings, respectively.

(1) (a) X/Y (1) Y\X

X X

(¢) X1Y  (d) XJY

X

Y

Prefixation  Suffixation Extraction Infixation

Various linguistic phenomena, however, suggest the
existence of discontinous constituency, i.e. situations
the result string from combining two constituents is
not produced by concatenating the component strings.
(See e.g. Bach, 1981.) Moortgat (1988) suggests aug-
menting L with two discontinuous type constructors.
An extraction lunctor X1Y is onc whose argument cor-
responds 1o a non-peripheral (or more precisely, not-
necessarily peripheral) substring of the result of comn-
bination, as in (le). An infixation functor X|Y itself
corresponds to a non-peripheral substring of the re-
sult of combination, as in (1d). Given these intuitive
characterisations, two options arise for the meaning of
cach conucctive as o whether the point of insertion
of one sbring into the other is free (universal) for fixed
(existential). In this paper, T will focus on the exis-
tential variants of the connectives, which appear to be
the most lingnistically useful, and whose interpretive
conditions are as follows:

l[XIY“ =A{a|dx,vn. 2 =209 AVY € HYH x1ymg € [[XH}
[[XWH = {x|Vy G[[Yﬂ.ﬂym/z- Y= Y1y Ay E[[X]J}

Previous proposals

Fach connective shiould have two inference rules: arule
of proof (showing how Lo derive a type containing the
councetive), and a rule of use (showing how to employ
such a type). This indicates a possible eight infer-
enee rules that we might hope to state (i.c. proof/use
x universal fexistential x infixation/extraction), Vari-
ous attempls have been made to provide a logic for the
discoutinnous type constructors, but all have proved
unsuccessil or unsatisfactory in some way or another.
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Moortgat (1988), for example, uses an ordercd se-
quent calculus framework, which allows only two of the
possible cight rules to be stated: a rule of proof for ex-
istential 1, and a rule of use for universal |. Moortgat
(1991) uses a proof method in which types are not or-
dered in proof representations, where lincar order con-
straints and consequences are instead handled using a
system of string labelling, i.c. types are associated
with string terms, which arc explicitly manipulated
by inference rules. This approach allows two further
rules to be stated, but the four expressible rules are
distributed one per connective, i.e. a complete logic is
not given for even any one connective, As Versmissen
(1991) notes, Moortgat’s string label system does not
allow the recording of a specific position for inscrting
one string into another, as would seem to be required.

Morrill & Solias (1993) avoid this latter problem by
augmenting the string labelling algebra with a non-
associative pairing operator {.,.), allowing labels such
as (s1, s2), indicating an insertion point in between sy
and s;5. This system allows versions of T and | oper-
ators Lo be specified, but ones whose interpretive del-
initions differ from Moortgat’s. "I'he non-associativity
of pairing gives rise to limited flexibility for the system
in terms of the type combinations that can be derived,
and even the types that can be constructed, e.g. no
functor (X1Y)/%, where a T argument is not the first
sought, is allowed.

Labelled deduction & Lambek calculus

I next develop a formulation of L which can be ex-
tended to allow for the (existential) discontinuity con-
nectives. Qur starting point is a lambda term se-
mantics for implicational I due to Buszkowski (1987),
based on the well known Curry-Howard interpretation
of proofs (Howard, 1969).2 This uses a bidircctional
variant of the lambda calculus whose basic terms are
dircctionally typed variables. If ¢ is a term of type
Y\X (resp. X/Y), and u one of type Y, then (ut)
(resp. (tu)") is a term of type X. If v is a variable of
type Y, and t a term of type X, then Nuv.t (resp. Xv.t)
is a term of type Y\X (resp. X/Y). A semantics for
implicational L is given by the class of terms which

2Under the Curry-Howard interpretation (Howard, 1969),
logical formulas are regarded as types of expressions in typed
lambda calculus, with atomic formulas corresponding to basic
types, and a formula A—B to the type of functions from A to B.
It is demonstrable that the sct of formulas for which there exists
some correspondingly typed lambda term is preciscly the theo-
rems of the implicational fragment of intuitionistic logic. Thus,
typed lambda calculus provides a semantics for implicational in-
tuitionistic logic, i.e. an independent characterisation of ‘valid
deduction’, just as the algebraic semantics of L provides an inde-
pendent characterisation of validity for that system. Semantics
for various other logics can be given in terms of classes of typed
lambda terms, i.e. subsetls of the typed lambda terms which
salisly certain stated criteria. van Benthem (1983) provides a
lamhda semantics for the system LT, a commutative variant
of L. Wansing (1990) provides lambda semantics for a range of
sublogics of intuitionistic logic. The Curry-Howard interpreta-
tion so permeates categorial work that the terms “formula” and
“type” have become almost interchangeable. Note that I have
slightly modified Buszkowski's notation.
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satisfy the conditions: (I31) each subterm contains a
free variable, (B2) no subterm contains > 1 free occur-
rence of any variable, (B3) cach ¥ (resp. X') binds the
leftmost (resp. rightmost) free variable in its scope.

"This semantics can be used in formulating (implica-
tional) L as a labelled deductive system (LDS: Gabbay,
1991).% Labels are terms of the directional lambda sys-
tem, and propagation of labels is via application and
abstraction in the standard manner. Natural deduc-
tion rules labelled in this way are as follows:

(2) A/B:a B:b [B:4]
—/B
At (ab)” Aa /1
A/B:Nv.a

B:b B\A:a [B:]

A (ba)t \e N Aa \I
B\A: Nva

We can ensure that only deductions appropriate to
(implicational) I arc made by requiring that the la-
bel that results with any inference is a term satisfy-
ing Buszkowski’s three conditions. To facilitate test-
ing this requircment, I use a function ¥, which maps
from label terms to the string of their frec variables
occurring in the left-right order that follows from type
directionality (giving what I call a marker term). A
notion of ‘string cquivalence’ (=) for marker terms is
defined by the axioms:

(=1) =z(yz)=(zy)=z

(=.2) z=¢ez

(=.3) z==we
¥ is recursively specified by the following clauses (where
IV returns the set of free variables in a term), but
it is defined for all and only those terms that satisfy
Buszkowski’s three conditions. Thus, we can ensure
correct deduction by requiring of the label that results
with cach infercnce that there exists some marker term
m such that ¥(a) = m.

(=.1)  X(w) =

(2.2)  T((ab)) = S(a)-S(h)
where FV(a) NTV(b) = §

where v € Vars

(53)  S((@)) = Ha)X(0)
where FV(a) N ¥V (b) = @
(£.4) Y(Nva) =8

where FV(Xv.a) # 0, B(e)=v-p
(25)  Y(Nv.a) =
where FV(Xv.a) £ 0, E(a)=pv

The following proofs illustrate this LDS {using tHm

3In labelled deduction, cach formula is associated with a la-
bel, which records information of the use of resources (i.e. as-
sumptions) in proving that formula. Inference rules indicate
how labels are propagated, and may have side conditions which
refer to labels, using the information recorded to ensure cor-
rect inferencing. Evidently, the Moortgat (1991) and Morrill &
Solias (1993) formalisms are LDSs.

4Condition B2 is enforced by the requirement on the ap-
plication cases of . Conditions B1 and B3 are enforced by
the first and second requirement on the abstraction cases of &,
respectively.



as shorthand for %(t) =
marker equivalence):

m, to indicate a significant

XYz Y/Z:iy [4:2]
it
Y (yz)"
Xi@)) ey

X/7: Xz (z(yz)T)"

HYJNY)) e [4:2] [2\Y 9] .
Y (zy)! /II RIS y

V)X
X:(z My (2)')" . R

X/ N2z /\"y.(zy)')r

This system can be extended to cover product using
the inference rules (3), and the additional ¥ clanses
shown following (with the obvious implicit extensions
ol the dircctional lambda system, and of Buszkowski’s
semantics), Labelling of [e]] inferences is via pairing,
and that of [e]]] inferences uses an operator adapted
from Benton el al. (1992), where a term [b/vew).a
implicitly represents the substitution of b for vw in

This rule is used in (4).

(3) [B:v) [C:w]
Aia

Aie Db

.. o]
BeC:b AeB < {a,b)

oIS
A:[b/vew].a

(2.6)  N({a, b)) = ¥{a)-X(b)
where V() NEV(h) = @8
(7)) 2([bfvew].a) = F1-2(b) P

where FV(a) N TV() =
Yi(a) = prvawPy

(1) z(ﬁ//,z [7: 2] F[Y:g/] oY rw
XY () s
X: ((22)"y)" By

b
= T

X :i[w/zey].((x2)"y)"
X/ (ZoY): Xw. ([w/zey).((z2

"))
Labelled deduction & discontinuity

I'his approach can be extended to allow for existential
T and |. ‘These connectives have standard implica-
tional inference rules, using additional distinguished
operators for labelling (with superscript e for extrac-
tion and 7 for infixation):

(5) AlB:a B:b [13: 9]
e 1 Ao
A (ad)® I
ATB: Xuv.a
AjBie  DB:b [B:v]
| .
A (ab) Aa

- 1
AlB: Nva

firstly how ) must be extended for the
abstraction cases of

Consider
the new introduction rules. For
a [I1] term such as Xu.a, the relevant 25 case allows
v to appear non-peripherally in the marker term of

a. For a [[1] term such as Xv.q, v is allowed to be
discontinuous in the marker of a (we shall see shortly
how this is possible), but requires its components to
appear peripherally.

(z.8) EL(Xv.a) =p1-f
where FV(Xv.a) #£ 0, Y(a)=p1v-5y
(2.9)  X(¥va) =7

where FV(Xv.a) # @
Y(a)=pr1yBa, Prfa=v

To allow for the new application operators, the marker
system must be extended. Recall that the linear order
information implicit in labels is projected onto the left-
right dimension in markers. With T and |, however,
the possibility exists that cither functor or argument is
discontinuous in the result of their combination. For
strings = € HX'[YH and y € HYH, for example, we
know there is some way of wrapping z around y to
give a result in X, but we do not in general know how
the division of @ should be made. This problem of un-
certainty is handled by nusing operators L and R, where
I(m) and R(m) represent indefinite but complemen-
tary left and right subcomponents of the marker term
m. (I, and R are not projection functions.) “This idea
of the significance of I. and R is given content via the
additional axiom (= .4), which allows that if the com-
plementary left and right subcomponents of a marker
appear in appropriate left-right juxtaposition, then the
marker’s resources may be treated as continuous.®

(=.4) L{z)R(x) =
"The remaining clauses lor X then are:
N((ab)?) = L(2(a))-5(b) R(X(a))
where PV (a) NPV (L) =0
(

$((adY) = TO(6))-33(a) R(E())
where FPV(a) N FV(H) =0

Some example derivations follow:

(©.10)

(&.11)

X/Y:z [Y:y]
mmme—— ) |
X :(a:y)r
Y|
XY Xy (zy)”

—)(—/Y’L [Y:y]
X (ay)”
- I
XY Ny (zy)”

on
— @y

(KLY :x]

it

(zy)”
Q(/Y)]Z::u [ 2]
il
X :&Tz)cy)"w

i1
X% Xz ((zz)ey)”

(X172)/Y : NyX* :.ﬁ((.'uz)cyr)r

XIXTY): N XUXIY) - Xa ()i

Y]

4

ke Li(z)zR(z)y
& I{z) R{z)y = =y

iom may be seen as stating the limit of what can he
said concerning ‘uncertainly divided’ resources, i.e. only where
the uncertainty is eliminated by juxtaposition can the 1, oper-
ators be removed, making some otherwise ‘hidden’ resource vis-
ible. Iurther reasouable axioms (uot in practice required here)
are L) Z:e and RR(¢) =e¢, i.e. the only possible left and right
subcomponents of an ‘empty’ marker arve likewise empty.
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X/Y:z [Y1Z:9)
Y:(y2)*®
X (2(y2)e)”

X172 Xz (=(y2)®)"

(X12)/(Y12): NyXez.(x(yz)®)”

[Z:2) -

9

&

zL(y)-2R(y)

Ty

Tw Im

Word order and NL semantics

Labels encode both the functional structure and lin-
car order information of proofs, and hence are used
in identifying both the NI semantic and word order
consequences of combinations. Label terms, however,
encode distinctions not needed for NI, semantics, but
can easily be simplified to terms involving only a single
abstractor (1) and with application notated by simple
left-right juxtaposition, c.g.
XzXa(z(yz) ) ~  Azda((y2)z).

To determine the linear order consequences of a
proof with label ¢, we might scek a marker m consist-
ing only of concatenated variables, where L(a) =m.
These variables would be the labels of the proof’s undis-
charged assumptions, and their order in m would pro-
vide an order for the types combined under the proof.
Alternatively, for linguistic derivations, we might sub-
stitute lexical string atoms in place of variables, and
sceker a marker consisting only of concatenated string
atoms, i.c. a word string. This method is adequate
for basic L, but problems potentially arise in relation
to the discontinuity connectives.

Consider the transformation X/Y = X1Y. The con-
nective of the result type docs not record all the lin-
car order import of the input type’s connective, and
neither consequently will the application label opera-
tor for a subsequent [{E]. However, B-normalisation
yields a simpler label term whose operators record the
linear order information originally encoded in the con-
neetives of the types combined. For example, the fol-
lowing proof includes a subderivation of X/Y =% X1Y.
The overall proof term does not simply order the proof’s
assumptions under ¥ (giving marker L{z)-y R(x)), but
its f-normal form (xy)" does (giving z-y).

X/Y:z ([Y:v] Yy
——— et ]4‘
Xi(zo)T
XY v (zv)"

X((Xv.(zv)) v)©

9

Of course, normalisation can only bring out ordering
information that ¢s implicitin the types combined. I'or
example, the combination X1Y :2,Y 1y = X:(2y)® is
a theorem, but the label (zy)¢ does not simply or-
der z and y. However, if we require that lexical sub-
categorisation is stated only using the standard Lam-
bek connectives, then adequate ordering information
will always be encoded in labels to allow simple order-
ing for linguistic derivations. Alternatively, we could
allow discontinuity connectives to be used in stating
lexical subcategorisation, and further allow that lex-
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ical types be associated with complez string lerms,
constructed using label operators, which encode the
requisite ordering information, For example, a word
w with lexical type XTY might have a string term
Xv.(wv)", which does encode the relative ordering of
w and its argument. A more radical idea is that de-
duction be made over lexical types together with their
(possibly complex) lexical string terms, and that the
testing of side conditions on inferences be done on
the f-normal form of the end label, so that the im-
plicit ordering information of the lexical string term
is ‘brought out’, extending proof possibilities. Then,
the lexical nnits of the approach are in effect partial
proofs or derivations.® Such a change would greatly
extend the power of the approach. (We shall meet a
linguistic usage for this extension shortly.)

Linguistic applications

We shall next briefly consider some linguistic uses of
the discontinuity connectives in the new approach. The
most obvious role for | is in handling extraction (hence
its name). Adapting a standard approach, a rela-
tive pronoun might have type rel/(stnp), i.e. giving
a relative clanse (rel) if combined with sTnp (a ‘sen-
tence missing a NI* somewhere’). Note that standard
L allows only types rel/(s/np) and rel/(np\s), which
are appropriate for extraction {rom, respectively, right
and left peripheral positions only. For example, whom
Mary considers __ foolish can be derived under the
following prool. The atom string (6a) results via
substitution of lexical string terms in the proof label,
and X. Substitution of lexical semantics and deletion
of divectional distinctions gives (6b).

(whom)  (mary) (considers) (foolish)
rel/(sInp):w np:a ((np\s)/adj)/np:y [up:u) adj:z
(np\s}/adj: (yu)" '
A A, JE

s () 2)”
sila(omyra)
i X))
el s (w X (w((yu)" 2)" )"

3
1

(6)  a. whom-mary-considers-foolish
b. whom' (Au.considers’ u [oolish’ mary’)

Moortgat (1991) suggests that a (for example) sen-
tentially scoped NP quantifier could be typed s](sfnp),
if inflixation and extraction could be linked so that
infixation was to the position of the ‘missing np’ of
sInp.” Such linkage does not follow from the defini-
tions of the connectives but can be implemented in the

87This idea invites comparisons to formalisms such as lexi-
calised tree adjoining grammar (see Joshi et al, 1991), where
the basic lexical and derivational units are partial phrase struc-
ture trees associated with lexical items.

"In the approach of Morrill & Solias (1993) such linkage fol-
lows automatically given the interpretive definitions of their con-
nectives, Moorgat (1990,1991) proposes special purpose quan-
tification Lype constructors.



present approach by assigning a complex lexical string

term, as in the lexical entry (<TYPE,STRING,SEM>):
<s|(sTnp), Au.u bCsomeone, someone’>

Such a string term would result under a ‘type raising’

transformation such as: np = s|(s{np). ‘The example

John gave someone money can be derived as follows,

with string and semantic results in (7).

(someone)  (johm) (gave) (moncy)
si(stnp):q np:z ((np\s)/np)/np:y [np:v] iz
(np\s)/np: (yv)"
/B
np\s: ((yv)72)" \n
s:(z((yv)"2)")!

sTnp: Xu.(z((yv)"2)")
ot (1 Xt () )

lE

(7)  a. john-gave-somcone-moncy
I, someone’ (Av.gave’ v money’ john’)

I'here 1s a sense in which this view of quantifiers
seems very natural. Quantifiers behave distribution-
ally like simple NP’s, but scmantically arc of a higher
type. Raising the string component under the trans-
formation np => s|(sTnp) resolves this incompatibility
without imposing additional word order constraints.

This account as stated does not allow for multi-
ple quantification,® but would if lexical string terms
were treated as partial proofs used in assembling larger
derivations, as suggested in the previous scetion.

In interesting test case, combining both movement
and scope issues, arises with pied piping constructions,
where a wh-item moving to c¢lause initial position is
accompanied by (or ‘pied pipes’) some larger phrase
that contains it, as in e.g. the relative clause o whom
John spoke, where the PP to whom is fronted. Fol-
lowing Morrill & Solias (1993), and ultimately Mor-
rill (1992), a treatment of pied piping can be given
using 1 and |. Again, linkage of infixation and ex-
traction is achieved via complex lexical string assign-
nent. A PP pied-piping relative pronoun might be
(rel/(sTpp)) i (ppTnp) allowing it to infix to a NP po-
sition within a PP, giving a lunctor rel/(sTpp), l.c.
which prefixes to a ‘sentence missing PP’ to give a
relative clause, Hence, for example, fo whom would
have type rel/(sTpp), and so {o whom John spoke is
a relative clause. The lexical seinantics of whom will
ensure that the resulting meaning is equivalent, to the
non-pied piping variant whom John spoke to.
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