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Abstract

"This paper presents the treatment of quantification as
it was implemented in a prototype of a natural lan-
guage relational database interface for Dutch!. Tt is
shown how the theoretical ‘generalized quantifier” ap-
paratus introduced in formal semantics by Barwise
and Cooper can be tuned to implementational feasi-
bility. Compared to the traditional treatiment of quan-
tification, the alternative presented here offers greater
expressive power, greater similarity to natural lan-
guage and, as a consequence, the possibility of a more
straightforward translation from natural language to
formal representation.

1 INTRODUCTION

In the prototype at hand, as in many database inter-
faces, the natural language input is translated to a con-
ventional formal query language, viz. SQL, the most
widely used and supported of these languages. The re-
sulting SQL queries can then be passed to an already
existing SQI. interpreter.

The translation procedure from Dutch to SQIL
is split up in two consccutive major steps, using
a logic-based intermediate sermantic representation
called General Semantic Representation (GSR)2. The
functionality of the whole database interface, includ-
ing the SQI, interpreter, was scen as a straightforward
implementation of the formal scmantic Montague-style
(Montague,1973) mechanism ol indirect interpretation
of natural language (see Iig. 1).
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INigure 1: Major processing steps in the DB interface

‘Gralting’ formal semantic processing steps upon an
NI, database interface architecture has been propa-

1 this paper the actual implementation is not in focus (see
Speelman, 1992).

2Within a framework of niachine translation, we can say that
GiSR. is a kind of logic-based interlingua.

gated and (succesfully) worked out before in a some-
what comparable project carried out at the university
of Fssex (sce De Roeck, Fox, Lowden, Turner & Walls,
1991). 'The main concern in that project was to clearly
separate domain (== database) dependent semantic in-
formation from domain independent semantic informa-
tion. In the project presented here a similar but more
general objective was to maximize the separation of
the NLIP data and functionality of the system from its
purely database oriented data and functionality, GSR,
being the interface structure.
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I'igure 2: General architecture of the program

The main topic of this paper, treated in section 3,
1s the application of ‘generalized quantifier theory’ in
GSR. Having become classical in mathematical and
some theoretical linguistic studics on quantification
(sce resp. Mostowski, 1957 and Barwise & Cooper,
1981}, the theory is now beginning to be appreciated
in Al (and NLP) for its richness and flexibility. Proba-
bly the best illustration of this upcoming interest is the
incorporation of ‘generalized quantificrs’ in the popu-
lar Conceptual Graph knowledge representation for-
malism (see ¢.g. Sowa, 1991). A somewhat differently
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oriented Al-application also using ‘generalized quanti-
fiers’ can be found in (Kaan, Kas & Puhland, 1990).
These applications concentrate on the expressive and
inferential power of ‘genceralized quantifier theory’ re-
spectively. The program presented here additionally
illustrates how the use of (a variant of) the theory re-
duces the complexity of implementing the translation
from natural to formal and artificial language.

2 GSR: GENERAL OUTLINE

The gquestion what GSR should look like was to a large
extent tackled in a very pragmatical way. As far as
the linguistic module of the program is concerned, the
following criteria were formulated. GSR had to be a
formal representation

(i) with suflicient expressive power so that every possibly uscful
query can be formulated in it in a not too complex fashion,

(ii) that is relatively easy to reach computationally, starting off
from natural language.

A genceral observation is that, considering the kind
of NI sentences one can expect as input to the system,
GSR incvitably had to differ from logical formalisms
such as the ones used in formal semantics (focussing
on propositions). In view of the general decision to
work with intermediate semantic expressions the de-
notation of which is the answer to the NL questions,
the basic types of complete expressions listed in Fig. 3
were found uscful. In this figure ¢ stands for an ar-
bitrary proposition in some logical langnage L. The
extension of L created by introducing these new types
will be called 1’

(i) propositions (format: ), to be used when people ask yes-or-no
questions
(ii) sct expressions (format: {w [ }), to be used when people ask
non-numerical identity questions
(iii) mathematical expressions (format: #({z | ¢})), to be used
when people ask for numerical information

Figure 3: GSR: types of expressions

3 FROM DUTCH TO GSR

3.1 T and V: problems

The traditional .way of coping with quantification in
NI. database intcrfaces is by using 3 and V, the clas-
sical first order predicate logic (PL) instruments (scc
e.g. Warren & Pereira, 1982). This approach, however,
does not meet the criteria set out above. 'To illustrate
this, we basically rely on two observations Barwise &
Cooper (1981) made to show a fundamental difference
in the natures of NI, and PL. Their observations will be
‘transposed’ to the computational application at hand.

The first observation is illustrated in figure 4, which
contains some Dutch questions and their most natural
PL’ counterparts. Whereas the Dutch sentences have
the same syntactic structure, their PL’ counterparts
have different formats. These and many other cxam-
ples suggests that there is no trivially compositional
way of translating NL expressions to their nearest PL’
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equivalents. ''he problem is that the quantificational
information, which in NL has a fixed location, is spread
over the PL’ expression in a scemingly arbitrary way.
It may be concluded that criterium (ii) for a good GSR,
is violated.

1 | Zyn alle werknemers gehuwd 7

‘Are all employees married?’

~ | Vz(employee(s) — married(z))

Zin beide werknemers gehuwd?

‘Are both employces married?’

~ | 3w (Fwp((wr # w2)A

employee(zy) A employee(ay)A
Vy(employee(y) — ((y = #1) V (y = 22)))A
married(a1) A married(z3)))

3 | %ijn precies drie werknemers gehuwd?

‘Are exactly three employees married?’

~ | Bz (Fap(Faa(

(21 # w2) A (w1 £ @3) A (wg # #3)A
employee(wy) A crnployee(zy) A employee(y)
AVy((married(y) A employee(y)) —

((y=21) V(g =22)V(y = 23))A
married(@y) A married(zy) A married(zs))))
4 | Zijn meer dan de helft van de

werknemers gehuwd?

‘Ave more than half of the employces married?’

~r -—

X

Iigure 4: ‘Iranslation of quantification from Dutch to
PL’

A second, more serions reason for the inadequacy of
F and V is that some forms of NI quantification can
only be expressed in a very complex way (e.g. Fig. 4,
examples 2 and 3) or simply cannot be expressed at
all (e.g. IFig. 4, example 4). Here criterium (i) is not
satisfied.

A third problem, mentioned in Kaan, Kas & Puh-
land (1990), is that in practice, e.g. in implementa-
tions, one is tempted to make rough translations, and
to neglect nuances or strong conversational implica-
tures in natural language, when onc is limited to 3
and V. So, for instance, in Warren & Pereira (1982)
‘a’, ‘some’ and ‘the’ all are simply interpreted as 3.

3.2 L(GQ)’: a solution

I'here are many ways to try and get around the short-
comings of the traditional approach. To score better
on criterium (1), 1.c. to increase expressive power, one
could consider the introduction of numbers in the log-
ical formalism. Only, one can imagine that, if made in
an ad hoc way, this extension could result in a hybrid
formalism (with respect to quantification) showing an
cven greater syntactical mismatceh with NL (decreasing
the score on criterium ii).

A solution for these problems was first explored by
Montague (1973), and later thoroughly worked out by
Barwise & Cooper (1981) in a formalism called L(GQ).
In contrast to traditional PT,, which only has 3 and V,
the language of generalized quantifiers L(GQ) specifies
no limitation of the number of primitives to cxpress
quantification. All kinds of determiners can be used.
"The translation of the examples of Fig. 41 to L(GQ)’
is given in Fig. 5. Some speclal notational conven-
tions Barwise & Cooper introduced, are left out. IMie-



thermore a relational perspective (see Zwarts, 1983) is
used.

[T T Zijn alle werknemers gehuwd 7

~ | all{z | employee(x)}, {= | married(z)})
([ 2 | 7Zijn berde worknemers gehuwd?

~ | the2({z | employee(x)} {& | marricd(a)})

3| Zijn precies drie werknemers gehuwd?
~ exactly 3
({2 | employce(2)), {& | marricd(s)})
A |74 meer dan de helft van de
werknemers gehuwd?
~r more.than_a.2_th

({w | employee(z)}, { | married(x)})

Pigure 5: Translation ol quantification from Dutch to

L(GQ)’

The denotation of L(GQ) determiners is defined at
a meta-level, Some exarples are given in (1) to (4). In
these examples I stands for an interpretation function
mapping an expression on its denotation.

I(aliCe, X)) = II:7(111L\1[ E:L;xl((lf\')x.\()l(k)) =9 €3]
ety Sl HI D

True (f #lonx)=mn) (3)

[ezactly n(@,X)) = pypye (otherwise)

I{more.than_an_th(e, x)) =
True (i $(1(p) 0 T(x)) > #(I(w))/n) (1

False  (otherwise)

In Fig. 5 the structural similarity of the NI expres-
sions Is reflected in that of the L{GQ) expressions.
IFurthermore, all N1, examples can be expressed almost
cqually casily in L(GQ)’. By consequence, the formal-
ism does not force people to be satislied with rough
translations. In short, the problems of traditional log-
ical quaniification arc overcome.

3.3 L(GQ)’: complications

Unfortunately, there are two reasons for not consider-
ing L(GQ) an ideal solution. The first problem ac-
tually is not typical of L{GGQ), but of the fact that
Barwise & Cooper take over the Montagovian way of
coping with possible ambiguity due to phenomena of
quantifier scope. In these cases one reading is gener-
ated in a straighiforward way by Barwise & Cooper.
"T'o allow for alternative readings, they introduce extra
machinery (called the ‘quantification rule’).

The latter mechanism, however convenient from a
theoretical point of view, is rather implementation-
unfriendly. It operates on complete struetural de-
scriptions (=non-trivial trees), and gencrates complete
structural descriptions. Allowing for such a rule dras-
tically changes the profile of the parser that is needed.

T'he second problem is that it is undesirable for GSR,
being an interface language with a non-NLI> module,
to coutain the set of (NL inspired) determiners that
L(GQ) contains. It would probably be better if GSR
had fewer primitives, preferably of a type not com-
pletely uncustomary in traditional DBMSs.

3.4 GSR: an L(GQ)’ derivative

As asolution for these problems L(GQ)’ gets two new
neighbours in the translation process, as shown in
Iig. 6.

NI, —-

» SR L{GQ)*

- GSI

Figure 6: Major processing steps in the NLP subsys-
tem

[n order to avoid the application of the ‘quantifi-
cation rule’; the choice has been to first gencrate an
expression that is neutral with respect to the scope of
its quantifiers (SR1), and then solve the scope prob-
lem in a sccond step, hereby gencrating an L(GQ)’ ex-
pression. ‘The trick of first gencrating a scope-necutral
expression is not new. For instance, it is used in the
LOQUT system (see Gailly, Ribbens & Binot, 1990).
"The origmality lics rather in the effort to respect well-
formeduness in the scope-neutral expressions.

Informally speaking, SR 1s a predicate-logical for-
malist in which the arguments of the predicates are in-
ternally structured as the N arguments of verbs. The
most important conscquence is that determiners are lo-
cated within the predicate-arguments. To give an ex-
ample, ‘Werken alle werknemers aan twee projckten?’
(Do all employees work on two projects?) would be
represented as (5).
tions the formats in Iig. 3 arc made superfluous by
the pscudo-determiners WL and CARD. For instance,
the question ‘Welke werknemers werken aan twee pro-
jekten?” (Which employces work on two projects?) is
translated to (6).

For identity and cardinality ques-

work(all({x | employee(x)}), 2({a | project(z)})) (5)

work(W I ({a | employee(2)}), 2({x | project(2)})) (6)

The translation of NI, to SR1I is a straightforward
commpositional process, comparable to the Barwise &
Cooper processing of readings for which no ‘quantifi-
cation rule’ is needed. 'The algorithm for going {from
SR to L(GQ) is given in Fig, 7.

I an SR1 expression contains a pscudo-determiner
WII or CARD, the schema in Fig. 7 1s adapted as fol-
lows. In the first step the arguments with real deter-

miners are replaced by variables vy up to v, and the
argument WIL(Sp) or CARD(Sh) is replaced by a spe-
cial variable vo. lurther, the result ¢ of the normal
second step is turned into a set expression or a numer-
1cal expression ({oy | So A} or #({vo | So Ael})). The
third step, which is @-internal, remains unchanged.
T'he essential part in Fig. 7 is the procedure that de-
termines the possible scope-configurations. In the pro-
grarn only one, the most probable scope-configuration
T'he algorithm states that the carhier
some quantifier occurs in the NL expression, the larger
its scope should be in the L(GQ)” expression. In the

is generated.
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P(D1(S51), D2(82), .., Dn(Sn))

Bvery argument D;(5;) isr replaced by a new, unique
variable v; (2 € {1,...,n})
!

L P(v, v, vR) .

An independent procedure is run to determine the probable or

possible scope of the determiners. The determincrs are wrapped

around the initial proposition according to this scope. Formally

the scope-determining procedure generates for every probable or
possible reading a permutation f of {1,...,n}.

1
Dy (o Dy Dy P(01,, 0 0a) ) ) )
3

The remaining lacunes are filled up by adding, as shown, to
every determiner I); its original domain-sct §;, and the
variable v; that was introduced before to replace
Di(5:) (e {1,...,n})

1
D,1y(Sp1y (v g1y | PpeaySpeay vy |-
DA I A B SIS | L 00

Figure 7: Schema for translation from SR1 to L{GQ)’

NI, fragment that was tested cxtensively with the pro-
gram, this procedure proved to be amazingly accurate
(sce Speelman, 1992, 85-98). The future goal, how-
cver, is that instcad of one most probable reading a
list of all possible rcadings, tagged with a degree of
probability, is generated. Since the procedure is a sep-
arate module, any extension or alteration of can be
made without affecting the rest of the program.

What remains to be overcome, is the fact that intro-
ducing a large set of determiners in GSR, would burden
the interpreters used in the database subsystem with
an extra, NLP-type rccognition task. This problem
is solved by giving L(GQ)’ a righthand neigbour (sce
Fig. 6 in which the determiners are replaced by what
was originally the meta-level definition of their seman-
tics (sec (1)-(4)). In the resulting L(GQ)’ derivative,
called GSR, the number of primitives (sct, set inter-
section, set difference, sct cardinality, ...) is drastically
reduced. TFurthermore, the new primitives are much
closer to, and even at the heart of, the procedural and
semantic building blocks of traditional computer sci-
ence in general, and of relational DBMSs in particular.

An example of the complete procedure, going from
SR1 to L(GQ)’ to GSR, is given in (7) up to (9). 'The
question is ‘Zijn alle werknemers gehuwd?’ (Arc all
employces marricd?).

married(all({z | employec(x)}) (7)
all({zy | employee(z1)}, {z1 | married(a1)}) (8)
{z1 | employee(x1)} \ {1 | married(xy)} =@ (9)

4 FROM GSR TO SQL

As the NP subsystem, the database subsystem is fully
implemented. However, we shall restrict ourselves to
a very brief sketch of its functionality here. As can be
seen in Flg. 2, a GSR expression is first translated to a
formalism called DBSR.. This was done for reasons of
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modularity, primarily for facilitating the extension of
the system to different target languages.

DBSR, which stands for DataBase specific Seman-
tic Representation, is a declarative relational database
query language that is both close to GSR and cas-
ily translatable to any of the commercialized RDBMS
query languages. Apart from the treatment of quantifi-
cation the formalism is very similar to relational calen-
lus. The major effort in the step from GSR to DBSR
lies in adapting GSR-terminology to concrete names
of tabels and columns of a database. This 1s done us-
ing a DB-lexicon, which can be scen as an augmented
ER-model of a database.

The last step, from DBSR to SQI, is extremely
straightforward. Sets and cardinality expressions arce
translated to (sub)querics. Relations between sets or
cardinality cxpressions are translated to conditions for
(sub)queries.

I'or completencss, an example of the database sub-
system output is given. IT'or the last example of the
foregoing section a DBSRK, expression and an SQL query
are given in (10) and (11) respectively. Y £S contains
only ‘Yes’.

{z1 | employee(s1)} \ {w1 | zy.married = "T"} = @ (10}

SELECT *

FROM YES

WILERE NOT EXISTS

( SELECT X1.* an
FROM EMPLOYEL X1
WIIERE NOT (X1.MARRIED = 1))

5 IMPLEMENTATION

The system is written in Common Lisp (according to
the de facto standard Steele,90) and generates stan-
dard SQL queries (ISO). 1t has proved to be a perfectly
portable product. Originally written on a Macintosgh
SI5/30, it has afterwards been tested on several Sym-
bolics, Macintosh and PC platforms.

The major modules of the linguistic component, are
a ‘letter tree’ tool for efficient communication with the
lexicon, a transition network based morphological anal-
ysis tool, and an augmented chart parser for syntactic
and scmantic analysis.

6 CONCLUSION

In some subficlds of formal semantics the traditional
logical apparatus for quantification, i.e. the use of
3 and V, is being abandoned in favor of ‘generalized
quantificrs’, because the latter are both closer to nat-
ural language and richer in cxpressive power. In this
text it has been shown how this theory can be put
to use in a natural language database interface, an-
other field in which 3 and V had become traditional.
Some modifications had to be made in order to ren-
der the theorctical ‘generalized quantifier’ approach



morc implementation-friendly.  The major modifica-
tions were the introduction of a separate module 1o
replace the ‘quantification rule’, and the shift from
meta-level to logical representation of some settheo-
retical primitives.
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