
Anytime Algorithms fl)r Speech Parsing?*

Gfinl;her (]6rz M a r c u s Kessc l e r

Univors i t ;y of l, 'zlange|>Niirnberg, I M M D V I I I

goerz@inf ormat ik. uni-erl angen, d e

TOPICAI , PAI']~I/

K e y w o r d s : a n y t i m e M g o r i t h m s , p;~rsing, s p e e c h ana ly s i s

Abstract

This paper discusses to which extent the concept of
"anytime algorithms" can be applied to parsing algo-
rithms with feature unification. We first try to give a
more precise definition of what an anytinm algorithm
is. We arque that parsing algorithms have to be clas-
sified as contract algorithms as opposed to (truly) it>
terruptible algorithms. With the restriction that the
transaction being active at the time an inl,errupt, is is-
sued has to be COml)leted before the interrupt cart be
executed, it is possible to provide a parser with linritcd
anytime t)ehavior, which is in fact t)dng realized in our
re.search l)rototype.

1 Introduct ion

The idea of '%nylime algorithms", which has been
around in the tieht of plmming for some time 1, has
recently been suggested for application in natural lan-
guage and speech l)rocessing (NL/SP) 2. An anytime
algorithm is an algorit.hm "whose quality of results
(legrades graceflflly a~s computation time decreases"
([Russell attd Zilt)erstein 1991], p. 212). In the follow-
ing we will first give a more specilic definition of which
properties allow an algorithm to be implemented and
used as an anytime algorithm. We then apply this
knowledge to a specitic aspect of NL/SP, namely pars-
ing algorithms in a speech understanding system. In
the Appendix we present the A I)C protocol which sup-
ports anytime computations.

We will discuss these matters in the framework of
the Verbmobil joint research project a, where we are
working on the implementation of an incremental chart
parser 4. The conception of this I)arser has been derived
from earlier work by the llrst author 5.

lef. e.g. [llussell mM Zilbers te in 1991]
P'so [Wahls ter 1992] in his invi ted ta lk at CO1,[N(I-92
a ~lThe Verbmnbi l jo int r esea rch pro jec t has been defined in the

d o c u m e n t [Verbmobil t l .eport 1991]
4 the Verl)mol , i l /15 pa r se r , of. [Weber 1!)!)'2]
Sthe G u L P parser , of. [Gi~rz 1988].

2 Ai ,y t ime A lgor i thms

[1)etm and Boddy 1988] give the fi)llowing characteri~
zation of anytime algorithms:

1.

2.

3.

they lend themselves to preemptive scheduling
techniques (i.e., they cart bc suspended and re-
sumed with negligible overhead),

they can be terminated at any time and will return
SOl[le a n s w e r ~ a n d

the attswers reI, urned iml)rove in some welt-
behaved maturer as a function of time.

Unforl,unately this characterization does not make
a clear distinction between the intplementation of an
algorithm and tile algorithm as such.

Point (1) is true of a great many Mgorithms imple-
mented on preenq)tive operatirLg systems.

Poin~ (2) can be made true for any algorithm by
adding all explicit Resu l t slot, that is I)reset by a wdue.
denoting a w)id result. I,et us call the implementation
of an anyl;inm algorithm an anytime producer. Accord-
ingly we ttanle the entity interested in the result of such
an anytime computation the anytime consumer. Fig-
urc 1 shows two such processes in a tightly coupled
synchronization loop. Figure 2 shows the same com-
municating processes decoupled by the introduction of
the Resu l t slot. Note that synrhronisation is much
cheaper in terms of perceived complexity R)r the pro-
gramrne.r and runtime synehronisation overhead (just
the time to cheek and eventually traverse the mutual
exclusion barrier). In such an architecture producer
and consumer work under a regime that allows the
consmner to interrupt the producer at any lime and
dentand a result. The risk that the consumer incurs by
such flexibility is a eertMn non-zero probability that
this result is void ~ or mtchanged since the last result
retrievah

6 T h e faihn'e to p rov ide an answer wi th in a g iven a n m u n t of
t ime nlay ill itself I)e an in te res t ing and meaningfla l resul t for the
ally Linle consumet ' .

997

9

-""

............. %)
Result

Anytime Anytime
Consumer Producer

Figure 1: Tightly coupled processes with complex syn-
chronization internals.

Result Slot Mutex
(preset with Barrier
"VOID") ~', / \

' \ , /

& ~ .~.....~ ? "X /+
- f t /

M . / ' 7 , ; 7 d , - , . _ - / M . /
Anytime Anytime
Consumer Producer

Figure 2: Processes decoupled by using a result slot
protected by a simple mutual exclusion barrier.

Point (3) is surely a much too strong restriction,
since it is not always possible to define what exactly
an improvement is for any given algorithm. In NL/SP,
where we are often dealing with scored hypotheses, it
is difficult, if not impossible, to devise algorithms that
supply answers that improve monotonically as a flmc-
tion of invested computational resources (time or pro-
cessing units in a parallel architecture).

We propose the following characterization of any-
time algorithms:

An algorithm is fit to be used as an anytime
producer if its implementation yields a pro-
gram that has a Result Production Granular-
ity (RPG) that is cmnpatible with the time
constraints of the consumer.

The notion of RPG is based on the following obser-
vation: Computations being performed on fni te state
machines do not proceed directly from goal state to
goal state. Instead they go through arbitrarily large
sequences of states that yield no extractable or intelli-
gible data to an outside observer. To interrupt a pro-
ducer on any of these intermediate states is fruitless,
since the result obtained could at best, according to
the observation made on point (2) above, be the result
that was available in the last goal state of the producer.
From the point of view of the consumer the transitions
from goal state to goal state in the producer are atomic
transactions.

The average length of these transactions in the al-
gorithm correspond to average time intervals in the im-
plementation, so that we can speak of a granularity
with which results are produced.

The time constraints under which the eonsumer is
operating then give the final verdict if the implemeuta-
tion of an algorithm is usable as an anytime producer.
Let us illustrate this by an example: In a real-time
NL/SP-system tim upper bound for the RPG will I, yp-
ieally be in the range of 10 lOOms. That is, a producer
implemented with such an RPG ofl>rs the consumer
the chance to trade a 500ms delay for 5 to 50 fllrther
potential solutions.

Note that goal states can also be associated with
intermediate results in the producer algorithm. Con-
ceptually there really is not much of a difference be-
tween a result and an intermediate result,, but in highly
optimized implementations there might be the need to
explicitly export such intermediate results, due to data
representation incompatibilities or simply because the
data might be overwritten by other (non-result) data.
Section 4 gives an example of how the RPG of an imple-
mentation can be reduced by identifying intermediate
goal states that yield information which is of interest
to the consumer.

3 Breadth and D e p t h of Analy-
sis

In the following we will ask whether and how the idea
of anytime producers can be applied within the active
chart parsing algorithm scheme with feature unifica-
tion. Although the analogy to decision making in plan-
ning where the idea of anytime algorithms has been
developed seems to be rather shallow, we can, for
the operation of the parser, distinguish between depth
and breadth of analysis 7.

We define depth of analysis as the concept refering
to the growing size of information content in a fea-
ture structure over a given set of non-competing
word hypotheses in a certain time segment dur-
ing its computation. Larger depth corresponds to
a more detailed linguistic description of the same
objects.

In contrast, we understand by breadth of analy-
sis the consideration of linguistic descriptions re-
sulting from the analysis of growing sets of word
hypotheses, either from growing segments of the
utterance to be parsed or from a larger number of
competing word hypotheses in a given time seg-
ment.

q'o regard breadth of analysis as a measure in the
context of the anytime algorithm concept is in a sense

r no t to |)e confused wi th dep th - f i r s t or b r e a d t h - f i r s t search .

998

trivial: Considering only one l)arse, the more process-
ing t ime the parser is given the larger the analyzed
segment of the input ut terance will be. In general,
larger breadth corresponds to more information about
competing word hypotheses in an (half-) open time in-
terval as opposed to more information about a given
word sequence. So, obviously, breadth of analysis does
not correspond to what is intended by the concel)t of
anyt ime algorithms, whereas depth of analysis meets
the inliention.

If an ut terance is syntactically ambiguous, we (:an
compute more parses the more processing t ime the
parser is given. Therefore, tohis case is apa r t , icular
instance of depth of analysis, beeaase the same word
sequence is considered, and not of breadth of analysis
given the definition above. In this case one would like
to get the best analysis in terms of the quality scores of
its consti tuents first, and other readings late,', ordered
by score. If the parser works incrementally, what hap-
pens to be the case for the Verbmobil /15 parser s, the
intended effect car, be achieved by the adjus tment of a
strategy parameter namely to report the analysis of
a grammat ica l f ragment of the input ut terance as soon
as it is found.

At least one dist inction might be useful for the
Verbmobi l / [5 parser. In our parser a category check
is performed on two chart edges for eIficiency reasons,
and only if this check is successflfi, the unificatkm of the
associated feature structures is performed, llence, an
interrupt would be admissible after ,,he category check.
In this case we emphasize a factorization of the set; of
constraints in two distinct subsets: phrasal constraints
which are processed by the act.iw~ chart parsing algo-
r i thm schema (with l)olynomial complexity), and func-
tional constraints which are solved by the unification
algori thm (with exponential complexity). ' rhe interface
between both types of constraints is a crucial place for
the introduction of control in the parsing process in
general 9

Since we use a constraint-hased grammar formal-
ism, whose central operat ion is the unification of fea-
ture structures, it does not make sense to admit inter
rupts at any time. Instead, the operation of the parser
consists of a sequence of transactions. At the most
coarse grained level, a t ransact ion would be an appli-
cation of the f lmdamental rule of active chart t)arsing,
i.e. a series of operations which ends when a new edge
is introduced into the chart, including the computat ion
of the feature s tructure associated with it. Of course
this argument holds when an application of the fun-
damental rule results in another application of it on
subunits due to the reeursive structure of the g rammar
ruleQ °. Certainly one might ask whether a smaller
grain size makes sense, i.e. the construclion of a fea-
ture structure should itself he interruptible. In this
case one could think of the possibility of au interrupt.

Sand for Gul , t ' as well
9 cf. [Maxwell a n d Kap lan 1994]

l °This h,'ts been implemented in the in ter rupt system of (lul , l)
[Ggrz 1988].

after one feature in one of the two feature s tructures
to be unified has been l)roeessed. We think tha t this
possibility shouhl be rejected, since feature structures
usually contain eoreli'.rences. If we consider a part ial
feature s tructure - - as in an intermediate step in the
unitication of two feature structures in the s i tuat ion
where just one feature has been processed, this struc-
ture might not be a realistic part ial description of the
part of speech under consideration, but simply inad-
equate as long as not all embedded eoreferences have
been established. It seems obvious tha t the grain size
cannot be meaningfully decreased below the processing
of one feature. Therefore we decided that t ransact ions
must be defined in terms of computat ions of whole fea-
ture structures.

Nevertheless, a possibility for interrupting the com-
puta t ion of a feature s tructure could be considered in
case the set of featnre, s is divided in ~wo classes: fea-
tures which are obligatory and features which are op-
tional. Members of the last group are candidates for
constraint relaxation which seems to be relevant with
respect to robustness at least in the case of speech
parsing. We have just s tar ted to work on the constraint
relaxation problem, but there is no doubt tha t this is
an impor tan t issue for further research. Nevertheless,
at the t ime being we doubt whether the above men-
tione.d problem with coreferences couht be avoided in
this case.

A further opportuni ty for interrupts comes up in
cases where the processing of alternatives in unifying
disjm)ctiw~' feature structures is delayed. In this case,
unilication with one of the disjuncts can be considered
as a transaction.

Another chance R)r the implementat ion of anyt ime
behavior in parsing arises if we consider the gram-
mar from a linguistic perspective ~ oppose.d to the
purely formal view taken above. Since semantic con-
struction is done by our g rammar as well, the func-
t ional constraints contain a distinct subset for the pur-
pose of semantic construction. In a separate b, vesti-
gation [Fischer 1994] implemented a version of A-I)t{;I ~
[l)inkal 1993] within the. same feature unification fo>
realism which buihts semantic structures within the
framework of Discourse Representation Theory. It has
been shown tha t the process of DRS construction can
be split in two types of t ransactions, one which can be
performed incrementally basically the construction
of event representations without temporal information
- - and another one which cannot be concluded before
the end of an ut terance has been reached - - supplying
temporal information. Since the first kind of transac-
tions represents meaningfnl partial semantic analyses
those can be supplied immediately on demand under
au anyt ime regime.

The possibility to process interrupts with the re-
striction tha t the currently active transact ion has to be
complete.d in advance has been built into the Verhmo-
bi l /15 parser, using the APC protocol (of. Appendix).
It therefore exhibits a l imited anyt ime behavior.

999

4 Fea ture U n i f i c a t i o n as an
A n y t i m e A l g o r i t h m ?

Up to now, in our discussion of an appropriate grain
size for the unification of feature structures we consid:
ered two cases: the unification of two whole feature
structures or the unification of parts of two feature
structures on the level of disjuncts or individual fea-
tures..In all of these cases unitication is considered as a
single step, neglecting its real cost, i.e. time constraints
would only affect the number of unification steps, but
not the execution of a particular unification operation.
Alternatively, one might consider the unification algo-
ri thm itself as an anytime algorithm with a property
which one might call "shallow unification". A shallow
unification process would quickly come up with a first,
incomplete and only partially correct solution which
then, given more computation time, would have to be
refined and possibly revised. It seems that this prop-
erty cannot be achieved by a modification of existing
unification algorithms, but would require a radically
different approach. A prerequisite for that would be
a sort of quality measure 11 tbr different partial feature
structures describing a given linguistic object which is
distinct from the subsumption relation. To our knowl-
edge, the definition of such a measure is an open re:
search question.

5 C o n c l u s i o n

According to [Russell and Zilberst, ein 1991] parsing al-
gorithms with feature unification have to be classified
as contract algorithms as opposed to (truly) interrupt-
ible algorithms: They must be given a particular time
allocation in advance, because interrupted at any time
shorter than the contract time they will not yield useflll
results. At least the transaction which is active at the
time an interrupt occurs has to be completed before
the interrupt can be executed. With this restriction,
it is possible to provide a parser with linqited anytime
behavior, which is in fact being realized in the current
version of the Verbmobil/15 parser.

A c k n o w l e d g e m e n t s . The authors would like to
thank Gerhard Kraetzschmar, Herbert Stoyan, and
Hans Weber for w~luable comments on a previous ver.-
sion of this paper.

R e f e r e n c e s

[Dean and Boddy 1988]
Thomas Dean and Mark Boddy: An Analysis of
'I]me-Dependent Planning. AAAI 1988, 49--54

[Dongarra, Geist, Manchek and Sundaram 1993] Jack
Dongarra, G. A. Geist, Robert Manchek and V. S.
Sundaram: Integrated PVM Framework Supports

11 c.f. [Russel l a n d W e f a l d 1989]

Heterogeneous Network Computing. Comlmters in
Physics, Vol. 7, No. 2, 1993, 166-175

[Fischer 1994] Fischer, I.: Die kompositionelle Bildung
yon .Diskursrepriisentationsstrtzkturen fiber einer
Chart. Submitted to KONVENS 94, Vienna.

[Gfrz 1988] G5rz, G.: Struktm'analyse natfirli&er
Spra&e. Bonn: Addison-Wesley, 1988

[Maxwell and Kaplan 1.994] Maxwell, J.T, Kaplan, R.:
The Interface between Pbr<~sal and F~metional
Constraints. Computational l,inguistics, Vol. 19,
1994, 571- 590

[Pinkal 1993] PinkM, M.: Semantik. In: Gfrz, G.
(Ed.): Einffihr,ng in die Kfinstliehe Intelligenz.
Bonn: Addison-Wesley, 1993, 425-498

[Russell and Wefald 1989] Rnssell, S.J. and Wefald, E:
Principles of Metareasoning. Proc. KR-89, 1989,
400 411.

[Russell and Zilberstein 1991] Russell, S. a., Zilber-
stein, S.: Composing Real-Time Systems. Proc.
I3CAI-91, Sydney, 1991, 212-217

[Verbmobil Report 1991] Verbmobil Konsor-
titan (13¢1.): Verbmobil- Mobiles Dohnets&ge-
rat. BMFT Report, Miinchen, 1991

[Wahlster 1992] Wahlster, W.: Complltational Models
of Face-to-Face Dialogs: Multimodality, Negotia-
tion and Translation. Invited talk at COLING-92,
Nantes, 1992. Not contained in the proceedings;
copies of slides are available from the author.

[Weber 1992] Weber, 1I.: Chart Parsing m ASI, ASL
Tecbnical Report ASL-TR-28-92/UER, Univer-
sity of 1;rlaugen-Niirnberg, IMMD VIII, Erlangen,
1992

A p p e n d i x : A P r o t o c o l for A n y -
t i m e P r o d u c e r / C o n s u m e r Pro-
ce s se s

In the following we introduce the APC (Anytime Pro-
ducer Consumer) protocol which allows for easy estab-
lishment of anytime producer/consumer relationships
on parallel architectures.

Let Producer be the flmction that implements the
producer algorithm. In a purely sequential procedural
call/return implementation this function would have a
control structure similar to:

(defml Producer (...)
(Initialize)
(let ((Result nil))

(~hile (not (GoodEnough? Result))
(ImproveResult))

Result))

1000

The RP(] of P roduce r is at least that of the func-
tion ImproveResult. It is finer if ImproveResult is
itself made of loops that produce intermediate results
that are ext)ortable to consumers.

q'he consumer is i lnplemented as the function
Consumer, that at some point calls the l)roducer:

(defun Consumer (. . .)

(Producer . . .)

We now translate Producer and Consumer into
parallel processes , s ing the APC protocol, which is
directly implemented by functions that act as in-
terfaces to the underlying communication/synchro-
nization system. All functions implementing the
protocol have the prefix APC: (In our imphunenta-
| ion all of them are in the Conmlon~l,isp package
a n y t | m e - p r o d u c e r - c o n s u m e r) .

(defun AnytimeProducer (...)
(Initialize)

(let ((Result nil))

(while (not (GoodEnough? Result))

(ImproveResult)

;; Make Result available to consumers
(APC:SetResult! Result)
;; Check for messages/instructions

;; from Consumer
(APC:CheckStatus)

Result))

In a paralM implements | |or , it is not sullicient for
the consumer to simt)ly call the producer. The pro°
ducer has to be spawT~ed or forked as a separate process:

(defun AnytimeConsumer (. . .)

• Create a new p r o c e s s
(l e t ((P-Anyt imeProducer-1

(AI 'g:StartProcess (AnytimeProducer . . .))))

(l e t ((R e s u l t
(hPC:GetResult P - h n y t i m e P r o d u c e r - 1)))

(while (not (ConsumerGoodEnough? Result))

; I)o something else, like going to sleep

; to give tile producer some more time

(setf Result,
(APe :GetResnl t P-Anyt imeProducer-1))

))
(APe :hbortProcess P-AnytimeProducer-:l))

The APC Pr()/;()('()l

A P C : S t a r t P r o c e s s F starts a new process in which
the procedure F is executed. This function is also
responsibh; for tile creation of the protected R e s u l t
slot. APe : S t a r t P r o c e s s returns the id of the new
process.

No~e that an arbitrm:y number of producers may be
started by a consnlner. A prodtlcer may o[' course
also start other producers.

APC:Abor tProcess Proc aborts the process Prec.

APC:SetResult! R sets the value of the Result slot
to R.

A P C : G e t R e s u l t P • retrieves the current value of
the Res u l t slot from process P. Remember
that APC:SetResult ! and APC:GetResult avoid

read/write conflicts by a locking mechanism that
implements mutual exclusion.

APC : g e s e t P r o c e s s Proc I - restarts the process Proc
with new input I.

APC:CheckStatus [Proc] check if any inessages or
instructions have arrived from Proc. Often par-
allel soft;ware environments offer only very crude
process scheduling and control primitives. The
user may have to implement sortie of them by
himself. APC:Rese tProeess , for example, is (lit"
ticult to formulate in a general way. R e s e t
can also involve, ltla.intenance or eleannp work,
which is clearly beyond any process-oriented im-
ph'.mentation of Reset . 'l'he idea is that these
user implemented control procedures are hooked
into hPC:CheckSta tus [Proc] . 'lk) a|,tain a line-
grained control relationship between consunter and
t)roducer, the user simply inserts APC : CheckStatus
at key-positions in the code.

The AP(; protocol has been implemented aud
tested under a coarse grained paralM Common
l,ist) System running on a four processor SUN-
SPARC MP-670. UNIX IPC 1~ shared mem-
ory and sen|spheres are used to implement the
h)w-level communica.tion and synchronisation facil-
ities. We are currently porting the system to
Solaris 2.3, with PVM (Parallel Virtual Machine,
see [l)ongarra, Geist, Manchek and Snndaram 1993])
as the basic communicatkm facility. IWM would al-
low us to mow~ our parallel system h'om tile current
high communication and low memory bandwidth im
plementation on a shared memory machine, to a low
communicat ion/high memory bandwidth implementa-
tion tutoring on a cluster of workstations.

12 [lit,el-pl'og(!ss (] o m m u n l c a t i o n Fac i l i t i e , s

7007

